Влияние *у*-облучения на диэлектрические свойства и проводимость монокристалла TIInS₂

© С.Н. Мустафаева, М.М. Асадов*, А.А. Исмайлов

Институт физики Национальной академии наук Азербайджана, Баку, Азербайджан * Институт химических проблем Национальной академии наук Азербайджана, Баку, Азербайджан

E-mail: mirasadov@gmail.com

(Поступила в Редакцию 12 февраля 2009 г. В окончательной редакции 30 марта 2009 г.)

Изучено влияние γ -облучения на диэлектрические свойства и *ac*-проводимость слоистого монокристалла TIInS₂ в диапазоне частот $5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz. Показано, что γ -облучение монокристалла TIInS₂ дозой $10^4 - 2.25 \cdot 10^6$ гаd приводит к существенному увеличению тангенса угла диэлектрических потерь tg δ , действительной ε' и мнимой ε'' составляющих комплексной диэлектрической проницаемости и *ac*-проводимость вплоть до 10^7 Hz, после чего начинают проявляться релаксационные потери. Облучение монокристалла TIInS₂ приводило к увеличению дисперсии tg δ , ε' и ε'' . Показано, что по мере накопления дозы γ -облучения в монокристалле TIInS₂ плотность локализованных состояний вблизи уровня Ферми $N_{\rm F}$ увеличивается (от $5.2 \cdot 10^{18}$ до $1.9 \cdot 10^{19}$ eV⁻¹ · cm⁻³).

PACS: 71.20.Nr, 72.20.Ee, 72.20.Fr, 72.20.Jv, 72.30.+q

Монокристаллы TIInS₂ являются слоистыми широкозонными полупроводниками, склонными к политипизму [1,2]. Физические свойства монокристаллов TIInS₂ очень чувствительны к внешним воздействиям: постояному (dc) и переменному (ac) электрическим полям, электромагнитным излучениям видимого и рентгеновского диапазонов [3–6]. Управлять физическими свойствами этих кристаллов возможно также путем интеркалирования их металлическими ионами [5].

Целью настоящей работы является изучение влияния гамма-радиации на электрические и диэлектрические свойства монокристаллов TlInS₂, измеренные на переменном токе.

1. Экспериментальная часть

Диэлектрические коэффициенты монокристаллов TIInS₂ измерены резонансным методом с помощью *Q*-метра TESLA BM560. Диапазон частот переменного электрического поля составлял $f = 5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz.

Образцы из TlInS₂ были изготовлены в виде плоских конденсаторов, плоскость которых была перпендикулярна кристаллографической *C*-оси кристалла. В качестве электродов использована серебряная паста. Толщина образцов из TlInS₂ составляла $200-280\,\mu$ m, а темновая удельная электропроводность при комнатной температуре $2 \cdot 10^{-11} \,\Omega^{-1} \cdot \text{cm}^{-1}$. Площадь обкладок для всех изученных конденсаторов варьировалась от $4 \cdot 10^{-2}$ до $0.24 \,\text{cm}^2$. Все измерения проведены при 300 К. Точность определения резонансных значений емкости и добротности $Q = 1/\text{ tg } \delta$ измерительного контура ограничена ошибками, связанными со степенью разрешения

точность $\pm 0.1 \, \text{pF}$. Воспроизводимость положения резонанса составляла по емкости $\pm 0.2 \, \text{pF}$, по добротности $\pm 1.0 - 1.5$ деления шкалы. При этом наибольшие отклонения от средних значений составляли 3 - 4% для ε' и 7% для tg δ .

Облучение образцов проводилось на радиационной химической установке непрерывного действия (РХУНД-20000) от источника Co^{60} . Энергия γ -квантов составляла 1.25 MeV. Дозы облучения накапливались путем последовательных выдержек в одном и том же образце и составляли 10^4 , $4 \cdot 10^4$ и $2.25 \cdot 10^6$ гаd. Диэлектрические измерения образцов проводились после каждого облучения.

2. Результаты и обсуждение

При фиксированых частотах произведены измерения диэлектрической проницаемости образца TIInS₂ сначала до у-облучения, а затем после у-облучения дозами $D_{\gamma} = 10^4, 4 \cdot 10^4$ и 2.25 · 10⁶ rad. Зависимости диэлектрической проницаемости от дозы у-облучения при разных частотах показаны на рис. 1 (кривые 1-3). При всех частотах от 5 · 10⁴ до 3.5 · 10⁷ Hz на зависимости $\varepsilon'(D_{\gamma})$ сначала наблюдается рост ε' , а затем (при $D_{\gamma} > 10^4 \, \mathrm{rad})$ по мере накопления дозы значение є' спадало, но при этом всегда превышало значение ε' необлученного образца TlInS₂. Наибольшую диэлектрическую проницаемость образец TIInS2 имел после облучения дозой $D_{\nu} = 10^4$ rad, так что при $f = 5 \cdot 10^4$ Hz значение ε' облученного образца в 2.7 раза превышало є' необлученного образца. При более высоких частотах это отношение составляло ~ 2.3 .

Рис. 1. Зависимости диэлектрической проницаемости монокристалла TIInS₂ от дозы γ -облучения при различных частотах переменного электрического поля. f, Hz: $I - 5 \cdot 10^4$, $2 - 10^5$, $3 - 3 \cdot 10^7$. T = 300 K.

Аналогичные закономерности в дозовой зависимости ε' наблюдались также для изоструктурного соединения TlGaS₂ в [7]. При дозе γ -облучения 10⁶ гаd в частотной области 10⁴–10⁶ Hz диэлектрическая проницаемость TlGaS₂ увеличивалась по сравнению с ε' необлученного образца, а при $D_{\gamma} = 10^7 - 10^8$ гаd в области высоких частот значения ε' оказались меньше, чем до облучения. При 10⁸ гаd происходило уменьшение значений ε' во всей исследованной области температур (200–370 K) и частот (10²–10⁶ Hz). Причину такого поведения ε' TlGaS₂ авторы [7] приписывают радиационно-стимулированному старению образцов, приводящего к стабилизации доменной структуры и снижению значений ε' [8].

В случае с TIInS₂ увеличение ε' при $D_{\gamma} = 10^4$ rad во всей изученной частотной области (рис. 1) можно связать с тем, что обычно при таких сравнительно небольших дозах облучения происходит радиационный отжиг дефектов в кристалле (эффект малых доз). При дальнейшем увеличении дозы облучения вплоть до 2.25 · 10⁶ rad начинают действовать процессы миграции и перераспределения дефектов в кристалле, приводящие к радиционно-стимулированному старению образцов, что в свою очередь приводит к снижению занчений ε' . Тот факт, что значение ε' облученного дозой $2.25 \cdot 10^6$ rad образца TIInS₂ оставалось бо́льшим, чем для необлученного образца, свидетельствует очевидно, о том, что эта доза облучения еще недостаточна для того, чтобы стабилизировать доменную структуру в TlInS₂. Уменьшение значений ε' TlInS₂ по сравнению с ε' необлученного образца наблюдалось в [9] при довольно высоких дозах облучения $(10^8 - 4 \cdot 10^8 \text{ rad})$ в области температур 180-220 К.

Были измерены также частотные зависимости ε' при различных дозах γ -облучения. Обнаружена дисперсия диэлектрической проницаемости как в необлученных,

так и γ -облученных образцах TlInS₂. Так, если до облучения значение ε' монокристалла TlInS₂ по мере роста частоты от $5 \cdot 10^4$ до $3.5 \cdot 10^7$ Hz уменышалось от 12.2 до 9.8, то при $D_{\gamma} = 10^4$ гад в указанной области частот ε' уменьшалось от 32.4 до 22.9, а при $D_{\gamma} = 4 \cdot 10^4$ и $2.25 \cdot 10^6$ гад — от 27.7 до 16.6 и от 19.8 до 12.7 соответственно. Полученные результаты показывают, что если диэлектрическая проницаемость необлученного монокристалла TlInS₂ претерпевает 20% дисперсию в частотном диапзоне $5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz, то после γ -облучения наблюдается более ощутимая дисперсия ε' (рис. 2). Наблюдаемое в экспериментах монотонное уменьшение диэлектрической проницаемости монокристалла TlInS₂ с ростом частоты свидетельствует о релаксационной дисперсии.

Изучены также частотные зависимости тангенса угла диэлектрических потерь в монокристалле $TIInS_2$ при различных дозах γ -облучения (рис. 3).

Характер изменения tg δ с частотой показывает, что в TIInS₂ как до, так и после облучения дозами $10^4 - 2.25 \cdot 10^6$ гад имеют место потери на электропроводность вплоть до частоты $f = 10^7$ Hz, выше которой

Рис. 2. Дозовая зависимость дисперсии диэлектрической проницаемости монокристалла TIInS₂.

Рис. 3. Частотные зависимости тангенса угла диэлектрических потерь монокристалла TIInS_2 при различных дозах *γ*-облучения. D_γ , rad: I - 0, $2 - 10^4$, $3 - 4 \cdot 10^4$, $4 - 2.25 \cdot 10^6$.

Рис. 4. Частотные зависимости мнимой составляющей комплексной диэлектрической проницаемости монокристалла TllnS₂ при различных дозах γ -облучения. D_{γ} , rad: 1 - 0, $2 - 10^4$, $3 - 4 \cdot 10^4$, $4 - 2.25 \cdot 10^6$.

Рис. 5. Дозовые характеристики *ac*-проводимости монокристалла TIInS₂ при различных частотах *f*, Hz: $I - 4 \cdot 10^5$, $2 - 3.2 \cdot 10^6$, $3 - 10^7$, $4 - 3.5 \cdot 10^7$.

начинают проявляться релаксационные потери. Доля релаксационных потерь была наиболее высока для максимально ($D_{\gamma} = 2.25 \cdot 10^6$ rad) облученного TIInS₂ (высокочастотная ветвь кривой 4 на рис. 3). Из рис. 3 видно, что по мере увеличения дозы от 0 до $2.25 \cdot 10^6$ rad tg δ во всем изученном диапазоне частот растет и претерпевает более ощутимую дисперсию. Аналогичные закономерности наблюдались и для частотных зависимостей мнимой составляющей комплексной диэлектрической проницаемости ε'' кристалла TIInS₂ при различных дозах γ -облучения (рис. 4).

Далее были изучены дозовые характеристики *ac*-проводимости монокристалла TIInS₂ при различных частотах (рис. 5). Из приведенных на рис. 5 зависимостей $\sigma_{ac}(D_{\gamma})$ видно, что с увеличением дозы облучения σ_{ac} растет при всех частотах. При дозе $D_{\gamma} = 10^4$ rad изменение проводимости по сравнению с σ_{ac} необлученного образца TIInS₂ было довольно значительным ($\sigma_{ac}^{\gamma}/\sigma_{ac} \approx 9$). Однако по мере дальнейшего накопления дозы в образце рост σ_{ac} замедлялся. В области сравнительно высоких доз облучения $(D_{\gamma} > 10^4 \text{ rad})$ наклон участков зависимости $\sigma_{ac}(D_{\gamma})$ уменышался с увеличением частоты переменного электрического поля, а при $f = 3.5 \cdot 10^7 \text{ Hz} \ \sigma_{ac}$ практически не зависела от D_{γ} . В общем в изученной области частот максимальное увеличение *ac*-проводимости монокристалла TlInS₂ за счет γ -облучения составляло $\sigma_{ac}^{\gamma}/\sigma_{ac} \approx 13$.

На рис. 6 представлены частотные зависимости ac-проводимости исследуемого монокристалла TlInS₂ при 300 К до облучения (кривая 1) и после облучения (кривые 2-4). Отметим, что ас-проводимость существенно превышала dc-проводимость монокристалла TlInS₂ ($\sigma_{dc} = 2 \cdot 10^{-11} \,\Omega^{-1} \cdot \mathrm{cm}^{-1}$). Кривые 1-4 на рис. 6 состояли из участков $\sigma_{ac} \sim f^{0.8}$, сменяющихся при $f > 10^7$ Hz суперлинейными участками $\sigma_{ac} \sim f^{1.3}$. Увеличение дозы облучения приводило к смещению зависимостей $\sigma_{ac}(f)$ вверх. При этом диапазон частот $f = 5 \cdot 10^4 - 10^7$ Hz, в котором имел место закон $\sigma_{ac} \sim f^{0.8}$, характерный для прыжковой проводимости [10], оставался почти неизменным для всех кривых на рис. 6. Этот экспериментальный факт свидетельствует о том, что среднее расстояние R и время τ прыжков не претерпевают каких-либо существенных изменений за счет γ -облучения образца TlInS₂.

Согласно теории прыжковой проводимости, на переменном токе среднее расстояние прыжков определяется по формуле [10]

$$R = (1/2\alpha)\ln(\nu_{\rm ph}/f), \qquad (1)$$

где α — постоянная спада волновой функции локализованного носителя заряда $\Psi \sim e^{-\alpha r}$; $\alpha = 1/a$ (a — радиус локализации); $\nu_{\rm ph}$ — фононная частота; $1/f = \tau$ — среднее время прыжков. Экспериментально τ^{-1} находится как средняя частота, при которой наблюдается зависимость $f^{0.8}$ для σ_{ac} -проводимости. Из полученных нами зависимостей $\sigma_{ac}(f)$ (рис. 6) для τ получено

Рис. 6. Дисперсия *ac*-проводимости монокристалла TlInS₂ до облучения (1) и после γ -облучения (2–4). D_{γ} , rad: 2 — 10⁴, 3 — 4 · 10⁴, 4 — 2.25 · 10⁶.

Физика твердого тела, 2009, том 51, вып. 11

Параметры локализованных состояний в запрещенной зоне монокристалла TIInS₂, полученные из высокочастотных диэлектрических измерений

Доза γ -облучения D_{γ} , rad	$N_{\rm F},~{\rm eV}^{-1}\cdot{\rm cm}^{-3}$	ΔE , eV	N_t , cm ⁻³	$N_{rd}, \ \mathrm{cm}^{-3}$
$0 \\ 10^4 \\ 4 \cdot 10^4 \\ 2.25 \cdot 10^4$	$5.2 \cdot 10^{18} \\ 1.5 \cdot 10^{19} \\ 1.6 \cdot 10^{19} \\ 1.9 \cdot 10^{19}$	0.14 0.05 0.047 0.04	$\begin{array}{c} 7.3 \cdot 10^{17} \\ 7.5 \cdot 10^{17} \\ 7.5 \cdot 10^{17} \\ 7.6 \cdot 10^{17} \end{array}$	$\begin{array}{c} 0 \\ 2 \cdot 10^{16} \\ 2 \cdot 10^{16} \\ 3 \cdot 10^{16} \end{array}$

значение 0.2 μ s. Вычисленное по формуле (1) значение *R* для исследуемого монокристалла TlInS₂ составило 86 Å. При вычислении *R* для радиуса локализации монокристалла TlInS₂ взято значение a = 14 Å по аналогии с бинарными сульфидами [11]. Значение $\nu_{\rm ph}$ для TlInS₂ порядка 10^{12} Hz [12].

Экспериментальные результаты позволили оценить плотность локализованных состояний вблизи уровня Ферми ($N_{\rm F}$), по которым осуществляются прыжки носителей заряда [13],

$$\sigma_{ac}(f) = (\pi^3/96)e^2kTN_{\rm F}^2a^5f[\ln(\nu_{\rm ph}/f)]^4, \qquad (2)$$

где *е* — заряд электрона, *k* — постоянная Больцмана.

Полученные значения $N_{\rm F}$ при различных дозах облучения приведены в таблице, из которой следует, что по мере накопления дозы γ -облучения в кристалле TlInS₂ $N_{\rm F}$ увеличивается. По формуле [10]

$$\Delta E = 3/(2\pi R^3 N_{\rm F}) \tag{3}$$

оценен энергетический разброс локализованных состояний ΔE в окрестности уровня Ферми. Значения ΔE до и после γ -облучения различными дозами также представлены в таблице, откуда видно, что с ростом D_{γ} полоса энергий ΔE сужается. Вычисленные по формуле

$$N_t = N_F \Delta E \tag{4}$$

концентрации ловушечных состояний в $TIInS_2$ до и после γ -облучения также приведены в таблице.

По разности значений N_t после и до γ -облучения можно определить концентрацию радиационных дефектов $(N_{rd} = N_t^{\gamma} - N_t^0)$ в монокристалле TIInS₂. Вычисленные значения N_{rd} после различных доз γ -облучения D_{γ} монокристалла TIInS₂ приведены в последнем столбце таблицы. Видно, что концентрация радиационных дефектов N_{rd} в монокристалле TIInS₂ не вносит сколь-нибудь существенного вклада в N_t .

Достаточно высокая концентрация локализованных состояний в запрещенной зоне приближает рассматриваемые кристаллы по энергетической структуре к аморфным полупроводникам. Для аморфного состояния характерно наличие сильно деформированных и даже разорванных химических связей, которые склонны к проявлению акцепторных свойств. Роль этих дефектов особенно велика для слоистых (или цепочечных) кристаллов, каковыми и являются монокристаллы TIInS₂. На фоне изначально высокой концентрации локализованных в запрещенной зоне TIInS₂ состояний, обусловленных наличием различных дефектов, рождение новых дефектов за счет γ -облучения не вносит ощутимого вклада. Облучение монокристалла TIInS₂ не только вызывает рождение новых (радиационных) дефектов, но и, как было отмечено выше, стимулирует отжиг, миграцию и перераспределение имеющихся в кристалле дефектов [8,14], что и приводит, по-видимому, к сужению ширины энергетического распределения локализованных состояний.

Таким образом, на основе исследования частотных зависимостей диэлектрических коэфициентов и *ac*-проводимости γ -облученного монокристалла TIInS₂ установлены природа диэлектрических потерь, механизм переноса заряда, оценены плотность и энергетический разброс состояний вблизи уровня Ферми, среднее время и расстояние прыжков, а также концентрация глубоких ловушек, ответственных за проводимость на переменном токе. Показано, что за счет γ -облучения монокристалла TIInS₂ можно управлять его диэлектрическими коэффициентами, а также величиной проводимости на переменном токе. Это создает возможности для использования указанных монокристаллов в качестве активных элементов гамма-детекторов.

Список литературы

- [1] О.Б. Плющ, А.У. Шелег. Кристаллография **44**, *5*, 873 (1999).
- [2] Н.А. Боровой, Ю.П. Гололобов, А.Н. Горб, Г.Л. Исаенко. ФТТ 50, 10, 1866 (2008).
- [3] С.Н. Мустафаева, В.А. Алиев, М.М. Асадов. ФТТ 40, 1, 48 (1998).
- [4] С.Н. Мустафаева, М.М. Асадов, В.А. Рамазанзаде. ФТТ 38, *1*, 14 (1996).
- [5] С.Н. Мустафаева, М.М. Асадов, В.А. Рамазанзаде. Неорган. материалы **31**, *3*, 318 (1995).
- [6] E.M. Kerimova, S.N. Mustafaeva, D.A. Guseinova. Presentations of I Eurasian Conf. on nuclear science and its applications. Ankara, Turkey (2001). V.2. P. 932.
- [7] А.У. Шелег, К.В. Иодковская, Н.Ф. Куриловч. ФТТ. 45, 1, 68 (2003).
- [8] Е.В. Пешиков. Радиационные эффекты в сегнетоэлектриках. Ташкент (1986). 136 с.
- [9] Р.М. Сардарлы, О.А. Самедов, И.Ш. Садыхов, А.И. Наджафов, Ф.Т. Салманов. ФТТ 47, 9, 1665 (2005).
- [10] Н. Мотт, Э. Девис. Электронные процессы в некристаллических веществах. Мир, М. (1974). 472 с.
- [11] V. Augelli, C. Manfredotti, R. Murri, R. Piccolo, L. Vasanelli. Nuovo Cimento B 38, 2, 327 (1977).
- [12] К.Р. Аллахвердиев, Е.А. Виноградов, Р.Х. Нани, Э.Ю. Салаев, Р.М. Сардарлы, Н.Ю. Сафаров. В кн.: Физические свойства сложных полупроводников. Элм, Баку (1982). С. 55.
- [13] M. Pollak. Phil. Mag. 23, 519 (1971).
- [14] В.С. Вавилов, Н.П. Кекелидзе, Л.С. Смирнов. Действие излучений на полупроводники. Наука, М. (1988). 191 с.