Механизм формирования микрополос сдвига при пластической деформации нанокристаллических материалов

© Г.А. Малыгин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, Санкт-Петербург, Россия

E-mail: malygin.ga@mail.ioffe.ru

(Поступила в Редакцию 26 января 2009 г.)

В рамках дислокационно-кинетического подхода теоретически обсуждается механизм локализации деформации и формирования микрополос сдвига при пластической деформации субмикро- и нанокристаллических материалов. Сформулировано уравнение эволюции плотности и самоорганизации дислокаций в такого рода материалах с учетом того, что границы зерен являются основными источниками, стоками и барьерами для движущихся дислокаций. При решении уравнения найдено, что ширина микрополос и расстояние между ними зависят от размера нанозерен и степени пластической деформации. Показано также, что существует критический размер зерен (350 nm в случае α-Fe), выше которого микрополосы в наноматериале не образуются. Теоретические результаты сопоставляются с имеющимися в литературе данными.

PACS: 62.25.+g, 62.20.Fe, 61.72.Cc

1. Введение

Пластическая деформация нанокристаллических (НК) (d < 100 nm) и субмикрокристаллических (СМК) (размер зерен $d < 1\,\mu$ m) металлов сопровождается неоднородным в микронном масштабе ее распределением по деформируемому материалу. Так, в [1,2] при деформировании НК-железа авторы наблюдали образование системы микрополос сдвига, ширина которых w увеличивалась с ростом среднего размера нанозерен d и на порядок его превосходила, $w \approx 60d$. Образование полос локализованного сдвига зафиксировано также в НК-палладии [3], никеле [4], меди [5] и субмикрокристаллическом алюминиевом сплаве [6]. В СМК-алюминии неоднородная деформация протекала в виде перемещения по образцу фронта Людерса [7] с образованием на диаграмме напряжение—деформация площадки текучести.

Из приведенных в [1,2] данных следует, что микрополосы являются местами сильной локализации деформации, деформация сдвига в которых достигает 200-300%. Полосы ориентированы в направлении действия максимальных касательных напряжений, приложенных к материалу. Электронно-микроскопическое исследование показало, что нанозерна внутри микрополос сильно вытянуты в направлении сдвига и содержат большую плотность дислокаций, в то время как вне полос нанозерна остаются равноосными и недеформированными. С ростом степени деформации увеличиваются как число полос, так и их ширина. В результате они образуют пространственно-регулярную структуру. В НК-Fe среднее расстояние между микрополосами $\Lambda \approx (2-10)w$ составляет несколько десятков микрон. В [1,2] найдено также, что неоднородность деформации наблюдается, только если размер зерен становится меньше некоторого критического значения d_c , в случае НК-железа — меньше 300 nm. При больших размерах зерен деформация материала протекает однородно, т.е. равномерно охватывает все зерна, не локализуясь в виде микрополос.

Приведенные выше факты и наблюдения указывают на дислокационно-кооперативный механизм локализации пластической деформации в нанокристаллических металлах. Чем обусловлена эта кооперативность? Авторы [2] предполагают, что кооперативный характер сдвига обусловлен существованием в НК-металле зерен разного размера и, следовательно, согласно соотношению Холла-Петча, разного сопротивления деформированию. Пластическая деформация начинается в более мягких (крупных) нанозернах и по мере их деформационного упрочнения вовлекает в себя соседние, более мелкие зерна.

Дислокационно-кооперативный характер имеют многие явления, наблюдаемые при пластической деформации кристаллических тел, такие, например, как формирование ячеистой [8] и блочной (фрагментированной) [9] дислокационных структур, локализация деформации в виде полос устойчивого скольжения при механической усталости [10], образование "каналов скольжения" в процессе пластической деформации радиационно-упрочненных или закаленных металлов [8]. С дислокационно-кинетической точки зрения [8], все эти структуры являются результатом процессов самоорганизации дислокаций, протекающих в тех или иных структурных условиях.

В настоящей работе с дислокационно-кинетических позиций рассмотрен механизм формирования микрополос сдвига в НК- и СМК-металлах. По сравнению с их крупнозернистыми аналогами специфика деформации металлов с размером зерен $d < 1 \mu m$ состоит в том, что в них источниками, стоками и препятствиями для движения дислокаций являются в основном границы зерен [1-5,11,12]. В разделе 2 с учетом этого обстоятельства сформулировано уравнение для пространственновременной эволюции средней плотности дислокаций в таких металлах. В разделах 3,4 проанализированы решения этого уравнения и сделано сравнение вытекающих

из него соотношений с имеющимися в литературе экспериментальными данными, касающимися микрополос сдвига в рассматриваемых материалах.

2. Уравнение эволюции плотности дислокаций в НК-металлах

Будем предполагать, как и в других перечисленных выше случаях, что при формировании микрополос сдвига доминирующим является процесс самоорганизации дислокаций. Уравнение эволюции средней плотности дислокаций $\rho(x, y, t)$ в нанометалле запишем в виде редуцированного уравнения Свифта—Хоэнберга [13,14], содержащего в своей правой части характерные для нанозеренных структур дислокационные процессы,

$$\frac{\partial \rho(x, y, t)}{\partial t} + \frac{\partial j_y}{\partial y} = (1 - \beta_{gb})nu + \frac{\beta}{d}u\rho - h_a u\rho^2, \quad (1a)$$

где

$$\dot{v}_y = -(1-\xi)\lambda_D u(\rho)\rho.$$

Здесь х — координата в направлении удлинения микрополос (в направлении действия касательных напряжений), у — координата в направлении их расширения, t — время, u — скорость дислокаций, j_y — диффузионный поток дислокаций, d — размер зерен, $\lambda_D \approx d$ расстояние диффузионного пробега дислокаций при расширении микрополосы, h_a — расстояние аннигиляции винтовых дислокаций в микрополосе механизмом поперечного скольжения [14]. В уравнении (1а) первый член в правой части описывает баланс объемных плотностей источников *n* и стоков $\beta_{gb}n$ дислокаций в границах зерен, второе слагаемое отражает процесс аккумуляции дислокаций внутри нанозерен из-за ограничения длины их свободного пробега размером зерна ($\beta \approx 1$), третье слагаемое учитывает аннигиляцию винтовых компонент дислокационных петель. Параметр $\xi > 1$ обеспечивает пространственную неустойчивость распределения плотности дислокаций (неустойчивость Тьюринга [13,14]), а параметр β_{gb} равен относительной эффективности границ зерен как источников и стоков для дислокаций.

При дифференцировании потока j_y в левой стороне уравнения (1) необходимо принять во внимание зависимость скорости дислокаций от их плотности из-за деформационного (дислокационного) упрочнения наноматериала. С учетом того, что

$$\frac{\partial u(\rho)}{\partial y} = \left(\frac{u}{\rho} \left(\frac{\partial \ln u}{\partial \ln \rho}\right)\right) \frac{\partial \rho}{\partial y}, \quad \frac{\partial \ln u}{\partial \ln \rho} = \left(\frac{\partial \ln u}{\partial \ln \tau}\right) \frac{\partial \ln \tau}{\partial \ln \rho}$$

левая сторона уравнения (1а) принимает вид [14]

$$\frac{\partial \rho(x, y, t)}{\partial t} + (\xi - 1)\lambda_D u \left(\frac{\partial^2 \rho}{\partial y^2} + \frac{M}{\rho} \left(\frac{\partial \rho}{\partial y}\right)^2\right)$$
$$= (1 - \beta_{gb})nu + \frac{\beta}{d}u\rho - h_a u\rho^2, \qquad (1b)$$

где $M = m^{-1}$, $m = d \ln \tau / d \ln u = k_B T / V \tau$ — коэффициент скоростной чувствительности (СЧ) сдвиговых

напряжений течения τ , V — активационный объем, T — температура, k_B — постоянная Больцмана. В нанокристаллических металлах с ГЦК- [15] и ОЦК- [16] решетками коэффициент m зависит от размера нанозерен (см. также [12]).

Для дальнейшего анализа и решения уравнения (1b) его удобно преобразовать к виду

$$\rho \frac{\partial \rho(x, y, \gamma)}{\partial \gamma} + (\xi - 1) \frac{\lambda_D}{b} \left(\frac{\partial^2 \rho}{\partial y^2} + \frac{M}{\rho} \left(\frac{\partial \rho}{\partial y} \right)^2 \right)$$
$$= (1 - \beta_{gb}) \frac{n}{b} + \frac{\beta}{bd} \rho - k_a \rho^2, \qquad (2)$$

воспользовавшись тем, что в условиях опыта с постоянной скоростью деформации имеет место соотношение $\partial \rho / \partial t = (\partial \rho / \partial \gamma) \dot{\gamma}$, где γ и $\dot{\gamma} = b\rho u$ — соответственно деформация сдвига и ее скорость, b — вектор Бюргерса. Поскольку скорость удлинения микрополос существенно выше, чем скорость их расширения [1,2], вместо двумерной задачи рассмотрим ее одномерный вариант. Решение нелинейного уравнения (2) будем искать в виде $\rho(y, \gamma) = \rho_0 v(\gamma) \psi(y)$, где $\rho_0 = 1/bd$. Подставляя плотность $\rho(y, \gamma)$ в (2) и разделяя переменные, получаем уравнения для неизвестных функций v и ψ

$$\rho_0 \frac{\partial \nu}{\partial \gamma} + k_a \rho_0 \nu = \lambda, \qquad (3a)$$

$$(\xi - 1) \frac{\lambda_D}{b} \left(\frac{\partial^2 \psi}{\partial y^2} + \frac{M}{\psi} \left(\frac{\partial \psi}{\partial y} \right)^2 \right)$$
$$= (1 - \beta_{gb}) \frac{n}{b\rho_0 v(y)} + \frac{\beta}{bd} \psi - \lambda \psi^2, \qquad (3b)$$

где λ — константа разделения.

Функция $v(\gamma)$ в уравнениях (3) описывает зависимость плотности дислокаций, а следовательно, и напряжений течения наноматериала от степени пластической деформации. В [11] найдено, что в случае НК-металлов с экспериментом хорошо согласуется зависимость вида

$$\nu(\gamma) = \beta_0 \exp(-k_a \gamma) + \frac{\beta}{k_a} \left(1 - \exp(-k_a \gamma) \right), \qquad (4a)$$

где $\beta_0 \approx 10^{-2} - 10^0$ — параметр, зависящий от плотности ступенек на границах зерен и определяющий начальную плотность дислокаций, а также величину коэффициента Холла-Петча [11]. Функция (4а) удовлетворяет уравнению (3а) при условии $\lambda = \beta \rho_0$. В результате уравнение (3b) преобразуется к виду

$$\Lambda_0^2 \left(\frac{\partial^2 \psi}{\partial y^2} + \frac{M}{\psi} \left(\frac{\partial \psi}{\partial y} \right)^2 \right) = (1 - \beta_{gb}) \frac{nbd^2 k_a}{\beta^2 \nu_0(\gamma)} + \psi - \psi^2,$$
(4b)
$$\nu_0(\gamma) = \beta^{-1} k_a \gamma(\gamma)$$

$$= (\beta_0/\beta)k_a \exp(-k_a\gamma) + (1 - \exp(-k_a\gamma)), \quad (4c)$$

где $\Lambda_0(d) = [(\xi - 1)\lambda_D d/\beta]^{1/2} \sim d.$

Из правой части уравнения (4b) видно, что полного разделения переменных γ и γ не происходит. Разделение имеет место в предельном случае $\gamma \to \infty$, когда $\nu_0(\infty) = 1$. На рис. 1 кривые демонстрируют зависимости $\nu_0(\gamma)$ при $k_a = 10$ и разных значениях комбинации параметров (β_0/β) k_a в (4c). При величине этой комбинации, превышающей единицу (кривая 4), плотность дислокаций, а следовательно, и напряжение течения снижаются с ростом степени пластической деформации. Именно такая ситуация имеет место при деформировании НК-железа [1,2] (см. далее). При (β_0/β) $k_a \ge 1$ функция $\nu_0(\gamma)$ не сильно отличается от единицы, поэтому уравнения (4a) и (4b) можно считать условно разделенными.

Для объемной плотности дислокационных источников имеем соотношение $n = (sl_bd)^{-1}$, где $s \approx 2b$ — ширина границ зерен, l_b^{-1} — линейная плотность источников дислокаций в границах, зависящая от плотности ступенек на них [11]. Подставляя плотность n в уравнение (4b), имеем окончательную форму этого уравнения

$$\frac{d^2\psi}{dY^2} + \frac{M}{\psi} \left(\frac{d\psi}{dY}\right)^2 = (1 - \beta_{gb}) \frac{d}{\nu_0(\gamma)d_0} + \psi - \psi^2, \quad (5)$$

где $Y = y/\Lambda_0$, $d_0 = \beta^2 s l_b/b k_a$. Далее, вводя обозначение $(d\psi/dy)^2 = W(\psi)$ и используя соотношение $d^2\psi/dY^2 = dW/d\psi$ и граничное условие $d\psi/dY|_{\psi=0} = 0$, получаем после однократного интегрирования (5) уравнения

$$(M+3)\left(\frac{d\psi}{dY}\right)^2 = P(\psi) = \psi(\psi_1 - \psi)(\psi - \psi_2),$$
 (6a)

$$\psi_{1,2} = \frac{1}{2} A(M) \left(1 \pm \sqrt{1 - \frac{B(M)d}{\nu_0(\gamma)d_c}} \right), \quad d_c = \frac{3d_0}{16(\beta_{gb} - 1)k_a},$$
(6b)

в которых A(M) = (M+3)/(M+2), B(M) = (M+3)/(M+1)A(M). Поскольку коэффициент СЧ

Рис. 1. Зависимости безразмерной плотности дислокаций v_0 от степени пластической деформации согласно уравнению (4c) при значениях комбинации параметров $\beta_0 k_a / \beta = 0$ (1), 0.5 (2), 1.0 (3) и 1.1 (4).

Рис. 2. Зависимость кинетического потенциала *P* от безразмерной плотности дислокаций ψ при $v_0(\infty) = 1$ и размерах зерен $d = 0.5d_c$ (1), d_c (2) и $1.5d_c$ (3).

напряжений течения в нанометаллах $m \ll 1$ [12,15,16], в (6) $M = m^{-1} \gg 1$, $A(M) \approx B(M) \approx 1$.

Рис. 2 демонстрирует зависимости кинетического потенциала $P(\psi)$ (6a) от безразмерной плотности дислокаций ψ при $\beta_{gb} > 1$, $\nu_0(\infty) = 1$, A = B = 1 и размерах зерен соответственно $d = 0.6d_c$ (кривая 1), $d = d_c$ (кривая 2) и $d = 1.5d_c$ (кривая 3). Видно, что при величине зерен меньше критического значения d_c квадрат производной $d\psi/dY$ положителен при условии $\psi_2 < \psi < \psi_1$, отрицателен при $d \ge d_c$ и равен нулю при $d = d_c$ и $\psi = \psi_1 = \psi_2 = 1/2$. При размерах зерен $d < \nu_0(\gamma)d_c$, когда потенциал $P(\psi)$ положителен и становится возможной самоорганизация дислокаций, решением уравнения (6a) является эллиптический интеграл первого рода

$$\frac{y}{(M+3)^{1/2}\Lambda_0} = \int_{\psi_2}^{\psi(\theta)} \frac{d\psi}{[P(\psi)]^{1/2}} = \frac{2}{\psi_1^{1/2}} F(\theta, k), \quad (7a)$$

$$\psi(\theta) = \frac{\psi_2}{1 - k^2 \sin^2(\theta)}, \quad k = \left(\frac{\psi_1 - \psi_2}{\psi_1}\right)^{1/2}.$$
(7b)

Он описывает пространственно неоднородную в направлении оси y дислокационную структуру с периодом Λ

$$\frac{y}{\Lambda} = \frac{1}{2} \frac{F(\theta, k)}{F(\frac{\pi}{2}, k)}, \quad \Lambda = \frac{4\sqrt{M+3}\Lambda_0}{\psi_1^{1/2}} F\left(\frac{\pi}{2}, k\right). \tag{8}$$

Параметры структуры зависят от размера нанозерен dи деформации γ , поскольку от них зависят корни ψ_1 и ψ_2 (6b), модуль k интеграла (7), а также параметры Λ_0 и $M(d) = m(d)^{-1}$ в соотношениях (8). В нанокристаллическом ОЦК-металле зависимость коэффициента m от dимеет вид [12]

$$m = m_P \left(1 + \left(\frac{d_P}{d}\right)^{1/2} \right)^{-1}.$$
(9)

Рис. 3. Зависимость коэффициента скоростной чувствительности напряжения течения в НК-Fe от размера зерен [16]. Кривая — расчет согласно соотношению (9), точки — эксперимент.

На рис. З приведены экспериментальные данные, касающиеся этой зависимости в НК-железе [16]. Кривая на этом рисунке проведена согласно соотношению (9) при $m_P = 0.07$ и $d_P = 2.9 \cdot 10^3$ nm, где m_P — величина коэффициента СЧ в крупнозернистом армко-Fe, d_P характерный размер критических двойных перегибов в рельефе Пайерлса, когда их ширина становится сравнимой с размером зерен.

3. Структура и параметры микрополос

Рис. 4, *а* и *b* демонстрируют в приведенных координатах $\rho/\rho_m - y/\Lambda$, где $\rho_m = \beta/bd_ck_a$, как изменяется плотность дислокаций $\rho(y, \gamma, d) = \rho_m(d_c/d)v_0(\gamma)\psi(y, \gamma, d)$ в НК-материале согласно соотношениям (7) и (8) при $v_0(\gamma) = 1$ ($\gamma \to \infty$) и вариации величины зерен *d*. Видно, что при $d \ge d_c$ (рис. 4, *a*) дислокации равномерно распределены по наноматериалу, а при $d < d_c$ они образуют микрополосы, в которых плотность дислокаций увеличивается по мере уменьшения размера зерен (рис. 4, *b*) и слегка снижается с ростом степени деформации γ (рис. 5). Пунктир на рис. 4, *b* показывает величину плотности дислокаций, соответствующую однородной плотности на рис. 4, *a*. Она существенно меньше, чем плотность дислокаций в микрополосах.

Из приведенных на рис. 4 и 5 результатов видно также, что плотность дислокаций между полосами скольжения (отрезки 1' и 2' кривых на рис. 5) мала и практически не зависит ни от размера зерен, ни от степени пластической деформации. В то же время в микрополосах она непрерывно возрастает как d^{-1} (сегменты 1 и 2 кривых на рис. 5) вследствие работы дислокационных источников в границах зерен и аккумуляции дислокаций внутри зерен. При расчете кривых на рис. 5

Рис. 4. Распределение плотности дислокаций в НК-металле согласно соотношениям (7) и (8) при различных размерах зерен. $a - d \ge d_c$; $b - d = 0.9d_c$ (1), $0.5d_c$ (2), $0.2d_c$ (3) и $0.1d_c$ (4).

Рис. 5. Зависимость максимальной плотности дислокаций в микрополосе (отрезки *I* и *2*) и минимальной их плотности между полосами (отрезки 1' и 2') от величины нанозерен при различных степенях пластической деформации. $\gamma = 0.05 (I, I')$ и $\infty (2, 2')$.

использовались те же значения коэффициента аннигиляции дислокаций k_a и комбинации параметров $(\beta_0/\beta)k_a$ в формуле (4с), что и при расчете кривой 4 на рис. 1.

Особый интерес представляют зависимости ширины микрополос w и расстояний между ними Λ от размера зерен и степени пластической деформации. На рис. 6 в координатах $\Lambda/d_c - (d/d_c)^{0.6}$ показано, как изменяется расстояние между микрополосами согласно соотношению (8) при вариации размеров зерен. При расчете кривых $\Lambda(d)$ использовались зависимости параметров $M(d) \sim d^{-1/2}$ и $\Lambda_0(d) \sim d$ от размера зерен согласно формулам (4b) и (8) при $\xi = 2.5, \ \beta = 1, \ \lambda_D = d$ и приведенных выше значениях параметров *m_P* и *d_P* для армко-железа. Из рис. 6 видно, что при измельчении зерен расстояние между микрополосами изменяется в соответствии с законом $\Lambda \sim d^{0.6}$. Деления правой оси на рис. 6 соответствуют критическому размеру зерен $d_c = 0.35 \,\mu {\rm m}.$

Согласно (7) и (8), для определения ширины микрополос w на уровне приведенной плотности дислокаций $\rho/\rho_m = f$ имеем соотношения

$$w = 2y_0 = \Lambda \frac{F(\pi/2 - \theta_0, k)}{F(\pi/2, k)},$$

$$\theta_0 = \arcsin\left[\frac{\left(1 - \psi_2 d_c v(\gamma) / f d\right)^{1/2}}{k(d, \gamma)}\right], \quad (10)$$

где y₀ — полуширина полосы при заданной величине параметра f, θ_0 — соответствующий ему угол эллиптического интеграла (7). На рис. 7 приведены данные [2] по зависимости ширины микрополос от размера зерен в НК-Fe. Кривые на рисунке рассчитаны в соответствии с соотношениями (10) при значениях параметров $d_c = 0.35 \,\mu \text{m}$, $v_0(\infty) = 1$ и нескольких значениях

Рис. 6. Зависимость расстояния между микрополосами Л от размера зерен согласно соотношению (8). Правая ось соответствует критическому размеру зерен $d_c = 0.35 \, \mu$ m.

Рис. 7. Зависимость ширины микрополос w от размера зерен согласно соотношению (10) при $\nu(\infty) = 1$ и значениях параметра f = 0.4 (1), 0.5 (2) и 0.6 (3). Экспериментальные точки — данные [2] для НК-Fе.

параметра f, определяющего относительную величину плотности дислокации, при которой измеряется ширина микрополос. Видно, что при указанных выше значениях параметров эксперименту лучше соответствует значение f = 0.4. Как показывает расчет (рис. 8), при этих значениях параметров ширина микрополос w с ростом степени деформации увеличивается (кривая 1), а расстояние между ними Λ уменьшается (кривая 2).

4. Обсуждение результатов

В настоящее время отсутствуют полномасштабные и систематические исследования механизма формирования и параметров микрополос в наноматериалах в зависимости от размера нанозерен и степени пластической деформации. Имеются лишь качественные наблюдения [3–6] и отдельные количественные данные [1,2] (рис. 7). Приведенные выше результаты теоретического расчета характеристик и структуры микрополос, основанные на дислокационно-кинетической модели их формирования (раздел 2), находятся в удовлетворительном соответствии с имеющимися на данный момент эмпирическими наблюдениями, касающимися неоднородного распределения пластической деформации в НК-металлах в виде микрополос сдвига шириной, значительно превышающей размеры нанозерен.

Так, в согласии с данными [1,2] для НК-железа расчет показывает, что существует критический размер зерен d_c (рис. 2 и 4), выше которого микрополосы в нанокристаллическом материале не формируются. Что касается структуры микрополос и зависимости их параметров от размера зерен (рис. 6 и 7) и степени пластической

Рис. 8. Зависимость ширины полос w(1) и расстояния между ними $\Lambda(2)$ от степени пластической деформации согласно соотношениям (8) и (10) при $d = 0.9d_c$ и $\beta_0k_a/\beta = 1.2$.

Рис. 9. Зависимость напряжения течения σ от деформации сжатия ε в НК-Fe (размер зерна 0.268 μ m) согласно уравнению (11). Экспериментальные точки — данные [2].

деформации (рис. 8), то здесь также имеется хорошее качественное соответствие результатам работ [1,2]. Авторы [1,2] отмечают, что микрополосы заметной ширины образуются сразу с началом пластической деформации, что согласуется с результатами расчета эволюции ширины микрополос с деформацией, приведенными на рис. 8 (кривая *1*).

Другой характерной особенностью микролокализации пластической деформации в НК-металлах является большая величина деформации пластического сдвига в микрополосах, $\gamma_p \approx 2-3$ [1]. При дислокационной деформации величина сдвига определяется соотношением Орована $\gamma_p = b\rho L$, где L — длина свободного пробега дислокаций. Из приведенных на рис. 5 результатов следует, что при $d < d_c$ максимальная плотность дислокаций в микрополосе (кривая 2) подчиняется соотношению $\rho_{\text{max}}/\rho_m = d_c/d$. Следовательно, для плотности дислокаций в полосе и деформации сдвига получаем оценки $\rho_{\max} = \beta/bdk_a = 4 \cdot 10^{15} \text{ m}^{-2}$ ($\beta = 1, b = 0.25 \text{ nm}, d = 100 \text{ nm}, k_a = 10$) и $\gamma_p = \beta L/dk_a = 0.1(L/d)$. Из второй оценки следует, что при L = d деформация сдвига в микрополосе γ_p равна 10%, а при $L = w/2 \approx 30d$ (рис. 7) она приближается к величине деформации сдвига 300%, наблюдаемой на опыте [1].

Есть еще одна возможность количественной проверки рассмотренной выше лислокационно-кинетической модели эволюции плотности дислокаций в НК-материале — это анализ кривой его деформации $\sigma - \epsilon$. На рис. 9 экспериментальные точки иллюстрируют величину напряжения течения σ НК-железа (размер зерна 0.268 µm), деформировавшегося с образованием микрополос сдвига, при нескольких значениях деформации сжатия є. Как и в [11], будем предполагать, что сдвиговые напряжения течения НК-материала подчиняются соотношению Тейлора $\tau = \alpha \mu b \rho^{1/2}$, где α постоянная взаимодействия дислокаций, μ — модуль сдвига. Плотность дислокаций в наноматериале в обозначениях настоящей работы описывается соотношением $\rho(\gamma) = \rho_0 \nu(\gamma)$, где $\rho_0 = 1/bd$, а $\nu(\gamma)$ имеет вид формулы (4а). В результате для зависимости напряжения течения $\sigma = m_T \tau$ от деформации сжатия $\varepsilon = \gamma/m_T$ получаем соотношение

$$\sigma(\varepsilon) = m_T \alpha \mu \left(\frac{b}{d}\right)^{1/2} \left[\beta_0 \exp(-m_T k_a \varepsilon) + \frac{\beta}{k_a} \left(1 - \exp(-m_T k_a \varepsilon)\right)\right]^{1/2}, \quad (11)$$

где *m*_T = 3.05 — фактор Тейлора для поликристалла.

Согласно (11), при $\varepsilon = 0$ напряжение течения зависит от параметра β_0 , $\sigma(0) = m_T \alpha \mu (\beta_0 b/d)^{1/2}$, а при $\varepsilon = \infty$ — от параметра β и коэффициента аннигиляции дислокаций, $\sigma(\infty) = m_T \alpha \mu (\beta b/dk_a)^{1/2}$. Экспериментальные значения этих напряжений в НК-железе соответственно равны 1.55 и 1.35 GPa (рис. 9). Из теоретического $\sigma(0)/\sigma(\infty) = (\beta_0 k_a/\beta)^{1/2}$ и экспериментального $\sigma(0)/\sigma(\infty) = 1.12$ отношений этих напряжений получаем при $\beta = 1$ и $k_a = 10.5$ [17] оценку параметра $\beta_0 = 0.12$. Далее, подставляя это значение β_0 , а также b = 0.25 nm, d = 286 nm и $\mu = 83$ GPa в соотношение для напряжения $\sigma(0)$, имеем разумную оценку постоянной взаимодействия дислокаций $\alpha = 0.57$. На рис. 9 кривая демонстрирует зависимость напряжения течения от деформации согласно уравнению (11) при найденных выше значениях параметров.

В заключение раздела заметим, что, согласно уравнению (11), коэффициент Холла–Петча $K_y = d\sigma/d(d^{-1/2})$ при $\varepsilon = 0.2\%$ определяется в основном величиной параметра β_0 , $K_y = m_T \alpha \mu (b\beta_0)^{1/2}$, и равен 24.9 GPa · nm^{1/2}, что хорошо соответствует величине этого коэффициента в нанокристаллическом α -Fe, полученной при обработке данных [2].

Таким образом, проведенный в работе детальный анализ механизма формирования специфических микрополос сдвига в нанокристаллических металлах на основе дислокационно-кинетического подхода демонстрирует широкие возможности этого подхода для исследования деформационных и прочностных свойств кристаллических тел в их различных структурных состояниях. В рассматриваемом в работе случае он позволил установить зависимость параметров микрополос от размера нанозерен и существование их критического размера, при превышении которого формирование микрополос в наноматериале не происходит вследствие отсутствия в нем условий для самоорганизации дислокаций.

Список литературы

- [1] Q. Wei, D. Jia, K.T. Ramesh, E. Ma. Appl. Phys. Lett. 81, 1240 (2002).
- [2] D. Jia, K.T. Ramesh, E. Ma. Acta Mater. 51, 3495 (2003).
- [3] P.G. Sanders, C.J. Yougdah, J.R. Weertman. Mater. Sci. Eng. A 234/236, 77 (1997).
- [4] F. Dalla Torre, H.V. Swygenhoven, M. Victoria. Acta Mater. 50, 3957 (2002).
- [5] S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, K. Han. Acta Mater. 53, 1521 (2005).
- [6] I. Sabirov, Y. Estrin, M.R. Barnet, I. Timochina, P.D. Hodgson. Scripta Mater. 58, 163 (2008).
- [7] C.Y. Yu, P.W. Kao, C.P. Chang. Acta Mater. 53, 4019 (2005).
- [8] Г.А. Малыгин. УФН **169**, 979 (1999).
- [9] Г.А. Малыгин. ФТТ 48, 651 (2006).
- [10] A.T. Winter. Phil. Mag. 31, 411 (1975).
- [11] Г.А. Малыгин. ФТТ **49**, 961 (2007).
- [12] Г.А. Малыгин. ФТТ **49**, 2161 (2007).
- [13] M.C. Cross, P.C. Hohenberg. Rev. Mod. Phys. 65, 2492 (1993).
- [14] Г.А. Малыгин. ФТТ 37, 3 (1995).
- [15] J. Chen, L. Lu, K. Lu. Scripta Mater. 54, 1913 (2006).
- [16] Q. Wei, S. Cheng, K.T. Ramesh, E. Ma. Mater. Sci. Eng. A 381, 71 (2004).
- [17] Г.А. Малыгин. ФТТ 47, 870 (2005).