Магнитоэлектричество в двумерных статистических смесях

© А.В. Турик, А.И. Чернобабов*, М.Ю. Родинин, Е.А. Толокольников*

Южный федеральный университет, Ростов-на-Дону, Россия * Пятигорский государственный технологический университет, Пятигорск, Россия E-mail: turik@sfedu.ru

> Исследованы концентрационные и частотные зависимости эффективных физических констант двумерных феррит-пьезокерамических композитов в виде статистической смеси, компоненты которой представляли собой хаотически расположенные вытянутые цилиндры кругового сечения с одинаково ориентированными в *z*-направлении осями. Для расчета эффективных физических констант композита использовался самосогласованный метод эффективной среды. Обнаружены немонотонные концентрационные зависимости магнитоэлектрической и диэлектрической проницаемостей, тогда как соответствующие зависимости пьезомагнитных и пьезоэлектрических модулей имели монотонный характер. При некоторых концентрациях компонентов наблюдались глубокая недебаевская релаксация пьезомагнитных и пьезоэлектрических коэффициентов.

Работа выполнена при финансовой поддержке Южного федерального университета (грант № К-07-Т-40).

PACS: 75.80.+q, 77.65.-j, 77.84.Lf

1. Введение

Магнитоэлектрические (МЭ) материалы являются одними из наиболее перспективных функциональных (активных) материалов современной твердотельной электроники. В них сочетаются диэлектрические, пьезоэлектрические, упругие, пьезомагнитные и магнитные свойства, которыми можно эффективно управлять с помощью внешних воздействий. В настоящей работе мы рассматриваем двумерные двухкомпонентные (n = 1, 2) гетерогенные магнитоэлектрические ферритпьезокерамические композиты в виде статистической смеси, компоненты которой имеют объемные концентрации θ_1 и θ_2 и представляют собой хаотически расположенные вытянутые цилиндры кругового сечения с одинаково ориентированными в *z*-направлении осями. Предполагалось, что остаточные поляризации и намагниченность направлены вдоль *z*-оси, тогда как внешнее электрическое E_1^* (здесь и в дальнейшем символом со звездочкой обозначаются усредненные поля и комплексные константы композита) или магнитное поле H_1^* частоты ω приложены в *х*-направлении.

В таких композитах МЭ-эффект отсутствует как в пьезоэлектрическом, так и в ферритовом компонентах; его возникновение в композитах связано с пьезомагнитоэлектрическим взаимодействием пьезоэлектрической и ферритовой подсистем. Во внешнем электрическом поле вследствие пьезоэффекта в пьезоэлектрическом компоненте возникают механические напряжения и деформации, которые передаются в магнитный компонент, что (вследствие пьезомагнитного эффекта) приводит к возникновению магнитного поля. Нашей задачей является определение эффективных (усредненных по структуре) параметров композита, которые определяются параметрами и объемными концентрациями пьезоэлектрического и ферритового компонентов.

2. Основные положения и формулы

Под влиянием внешнего электрического поля E_1^* в обоих компонентах композита в отсутствие внешних механических напряжений ($\sigma^* = 0$) и магнитных полей ($H^* = 0$) индуцируются внутренние электрические $E_1^{(n)}$ и магнитные $H_1^{(n)}$ поля ($E_1^* = \theta_1 E_1^{(1)} + \theta_2 E_1^{(2)}$, $H_1^* = \theta_1 H_1^{(1)} + \theta_2 H_1^{(2)} = 0$) и внутренние механические напряжения $\sigma_5^{(n)}$ ($\sigma_5^* = \theta_1 \sigma_5^{(1)} + \theta_2 \sigma_5^{(2)} = 0$). Следуя [1–4], запишем пьезоэлектромагнитные уравнения, связывающие компоненты механических деформаций $\xi_5^{(n)}$, электрической и магнитной индукций $D_1^{(n)}$ и $B_1^{(n)}$ внутри каждого из компонентов с напряженностями электрического $E_1^{(n)}$ и магнитного $H_1^{(n)}$ полей и механическими напряжениями $\sigma_5^{(n)}$, в следующем виде:

$$\begin{split} \xi_{5}^{(n)} &= s_{44}^{(n)} \sigma_{5}^{(n)} + d_{15}^{(n)} E_{1}^{(n)} + q_{15}^{(n)} H_{1}^{(n)}, \\ D_{1}^{(n)} &= d_{15}^{(n)} \sigma_{5}^{(n)} + \varepsilon_{11}^{(n)} E_{1}^{(n)} + \alpha_{11}^{(n)} H_{1}^{(n)}, \\ B_{1}^{(n)} &= q_{15}^{(n)} \sigma_{5}^{(n)} + \alpha_{11}^{(n)} E_{1}^{(n)} + \mu_{11}^{(n)} H_{1}^{(n)}. \end{split}$$
(1)

Здесь s_{44} — упругие податливости компонентов, измеренные при условиях E = 0, H = 0, d_{15} и q_{15} — пьезоэлектрический и пьезомагнитный модули, $\alpha_{11}^{(n)}$ и $\varepsilon_{11}^{(n)} = \varepsilon^{(n)} - i\gamma^{(n)}/\omega$ — МЭ- и комплексные диэлектрические проницаемости компонентов с удельными проводимостями $\gamma^{(n)}$, измеренные при условиях $\sigma = 0$, H = 0, $\mu_{11}^{(n)}$ — магнитные проницаемости.

Методика расчета эффективных параметров композиционного материала, в основу которой положено усреднение входящих в (1) компонентов $\xi_5^{(n)}$, $D_1^{(n)}$ и $B_1^{(n)}$ при учете граничных условий

$$\xi_5^{(n)} = \xi_5^{*(n)}, \quad D_1^{(n)} = D_1^{*(n)}, \quad B_1^{(n)} = B_1^{*(n)}$$
(2)

 $(\xi_5^{*(n)}, D_1^{*(n)}$ и $B_1^{*(n)}$ — различные для n = 1 и n = 2 компоненты механических и электрических тензоров

в эффективной среде на границах с цилиндрическими частицами первого и второго компонентов), представлена в работах [1–4]. Учет проводимостей компонентов приводит к возникновению максвелл-вагнеровской поляризации и релаксации, обусловленных накоплением свободного объемного заряда на поверхностях раздела компонентов. Связанные заряды, создаваемые остаточной поляризацией сегнетокерамики, считаются полностью экранированными [1,2].

3. Результаты и обсуждение

Нами рассмотрены концентрационные и частотные зависимости магнитоэлектрофизических констант композита, представляющего собой статистическую смесь из хаотически расположенных одинаково ориентированных частиц цилиндрической формы пьезоэлектрического (поляризованная сегнетопьезокерамика ПКР-73 [5]) и магнитострикционного (феррошпинель [4]) компонентов. Физические константы компонентов приведены в таблице. Для расчета эффективных физических констант композита с помощью самосогласованного метода эффективной среды была разработана специальная компьютерная программа. Результаты расчетов показаны на рис. 1 и 2.

Наиболее интересная особенность рассматриваемой системы заключается в возникновении в композите очень большой магнитоэлектрической проницаемости $\alpha_{11}^* = \alpha_{11}' - i\alpha_{11}'' (\alpha_{11}' \sim (10^{-9} - 10^{-8}) \text{ s/m})$ при отсутствии $\alpha^{(i)}$ в обоих компонентах (рис. 1). Причиной являются пьезоэлектрическое и пьезомагнитное взаимодействия проводящих слоев: α_{11}^* обращается в нуль при $d^{(i)} = 0$ или при $q^{(i)} = 0$. Зависимость $\alpha_{11}'(\theta)$ немонотонна и характеризуется минимумом, становящимся более острым и глубоким по мере уменьшения частоты ω приложенного электрического поля. При изменении ω происходит как сдвиг, так и изменение формы кривой $\alpha_{11}'(\theta)$, что в свою очередь приводит к сложной зависимости $\alpha_{11}^*(\omega)$.

Как и в гетерогенных немагнитных системах [1,2,6], во взаимных ($\varepsilon^{(1)}/\varepsilon^{(2)} \gg 1$, $\gamma^{(1)}/\gamma^{(2)} \ll 1$ [7]) магнитоэлектрических композитах наблюдается гигантское диэлектрическое усиление, т.е. возникновение огромной статической (при $\omega \to 0$) диэлектрической проницаемости ε'_{11} при критической концентрации компонентов

Величины упругих податливостей s_{44}^E ($10^{-12} \text{ m}^2/\text{N}$), пьезоэлектрических d_{15} (10^{-12} m/V) и пьезомагнитных q_{15} (10^{-12} m/A) модулей, диэлектрических $\varepsilon_{11}^{\sigma}/\varepsilon_0$, магнитных μ_{11}/μ_0 и магнитоэлектрических α_{11} (10^{-11} s/m) проницаемостей сегнетокерамики ПКР-73 [5] и феррошпинели [14]*

	s_{44}^{E}	<i>d</i> ₁₅	$\varepsilon_{11}^{\sigma}/\varepsilon_0$	q_{15}	μ_{11}/μ_0	α_{11}
ПКР-73	43.7	980	4750	0	1	0
Феррошпинель	40.0	0	10	-2000	3	0

* Удельные проводимости $\gamma^{(1)} = 10^{-13} \ (\Omega \cdot cm)^{-1}$ [6], $\gamma^{(2)} = 10^{-5} \ (\Omega \cdot cm)^{-1}$ [4].

Рис. 1. Зависимости действительной и мнимой частей магнитоэлектрической проницаемости α_{11}^* , электрического d_{15}^* и магнитного q_{15}^* пьезомодулей системы ПКР-73 [5]-феррошпинель [4] от концентрации ферроппинели θ_2 при частоте $\omega = 1$ rad/s.

Рис. 2. Зависимости действительной и мнимой частей магнитоэлектрической проницаемости α_{11}^* и электрического пьезомодуля d_{15}^* системы ПКР-73 [5]-феррошпинель [4] от частоты ω при концентрации пьезокерамики $\theta_1 = 0.5$. На вставке показана диаграмма Коула-Коула для α_{11} .

смеси $\theta_c = 1/2$, соответствующей порогу перколяции. Причиной является большая напряженность внутреннего электрического поля $E_1^{(1)}$ в частицах компонента с большой диэлектрической проницаемостью $\varepsilon^{(1)}$ и малой проводимостью $\gamma^{(1)}$, что ведет к максвелл-вагнеровской поляризации. Концентрационные экстремумы α'_{11} и ε'_{11} наблюдаются при разных концентрациях (в рассматриваемой системе $\theta_1 \cong 0.8$ и 0.5 соответственно).

Не менее интересен также показанный на рис. 1 быстрый рост с увеличением концентрации θ_1 сегнетокерамики действительных частей эффективных пьезоэлектрических модулей d'_{15} композита, уже при $\theta_1 = 0.1-0.2$ достигающих величин, соизмеримых с величинами d_{15} сегнетокерамики. Причина такого поведения d'_{15} рассмотрена в [2] и связана с возникновением в пьезоэлектрическом компоненте наряду с большими внутренними

электрическими полями $E_1^{(1)}$ больших механических напряжений $\sigma_5^{(1)} = \sigma_5^{(2)}$. Такова же природа возникновения большой величины статистической магнитоэлектрической проницаемости α'_{11} композита. Наиболее крутой ход d' наблюдается при $\omega \to 0$. Необходимо отметить, что экстремумы в концентрационных зависимостях пьезоэлектрических модулей d' могут наблюдаться только в слоистых системах с сильно различающимися упругими константами [2], поэтому в исследованной нами системе экстремумов d'_{15} нет. Немонотонная концентрационная зависимость $\alpha'_{11}(\theta)$ обнаружена и на высоких частотах, тогда как соответствующие зависимости d_{15} и ε_{11} имели монотонный характер. По мере уменьшения частоты область, в которой наблюдаются большие величины α'_{11} , сужается до $0.5 < \theta_2 < 1$.

Для концентрационных зависимостей мнимых частей $\alpha_{11}''(\theta)$ и $d_{15}''(\theta)$ характерны острые экстремумы, особенно четко выраженные в квазистатическом режиме. Мнимые части эффективных $\alpha_{11}^*(\theta)$ и $d_{15}^*(\theta)$ порождаются проводимостями компонентов и исчезают при $\gamma^{(1,2)} \rightarrow 0$. Между тем ε_{11}'' композита монотонно увеличивается с ростом θ_2 ; такое поведение характерно для фазового перехода диэлектрик–проводник.

Для частотных (рис. 2) зависимостей $\varepsilon_{11}^*(\omega)$ и $d_{15}^*(\omega)$ характерна глубокая нормальная релаксация, обусловленная тем, что на высоких частотах не успевает накапливаться объемный заряд на границах раздела слоев. При нормальной релаксации действительные части ε_{11}^* и d_{15}^* монотонно уменьшаются с ростом частоты, тогда как для мнимых частей характерны четко выраженные релаксацинные экстремумы.

Однако $\alpha_{11}^*(\omega)$ может испытывать как нормальную, так и обратную релаксации. Как показано в [1,2], при приложении к слоистому композиту или статистической смеси низкочастотного ($\omega \to 0$) электрического поля в них индуцируются большие внутренние механические напряжения σ_i . В случае нормальной релаксации действительные части σ_i положительны, при обратной релаксации — отрицательны. Поэтому существенную роль в формировании α играют упругие податливости компонентов. Величина и положение α'_{min} зависят как от ω (γ_1 и γ_2), так и от s_1 и s_2 , причем положение α'_{min} не связано непосредственно с θ_c .

Диаграммы Коула–Коула $\varepsilon_{11}''(\varepsilon_{11}')$, $d_{15}''(d_{15}')$ и $\alpha_{11}''(\alpha_{11}')$ имеют характерный для статистических смесей асимметричный вид [8]. Однако вблизи критической концентрации θ_c (в нашей системе при $0.4 < \theta_2 < 0.7$), когда в спектрах $\alpha_{11}^*(\omega)$ сочетаются обратная и нормальная релаксации, диаграммы $\alpha_{11}''(\alpha_{11}')$ приобретают необычный вид (рис. 2), ранее не описанный в литературе. Они представляют собой скручивающиеся или раскручивающиеся спирали, начинающиеся (при $\omega \to 0$) под разными, зависящими от θ , углами и заканчивающиеся (при $\omega \to \infty$) под прямым углом к оси α_{11}' .

Магнитоэлектрические, пьезоэлектрические и диэлектрические спектры имеют недебаевский характер и в этом отношении не отличаются от немагнитоэлектрических статистических смесей [6]; для них характерно асимметричное распределение времен релаксации. Большая глубина релаксации характерна для взаимных композитов [7], пьезоэлектрический компонент которых имеет большую величину диэлектрической проницаемости, а ферритовый компонент — большую проводимость. При $\gamma^{(1)} = \gamma^{(2)} = 0$ частотная зависимость всех эффективных констант композита прекращается.

Пьезомагнитный модуль композита q'_{15} имеет монотонную концентрационную зависимость, изменяясь от приведенных в таблице значений при $\theta_1 = 0$ до нуля при $\theta_1 = 1$. Кроме того, q' очень слабо зависит от частоты, так как с изменением частоты распределение внутренних магнитных полей в слоях композита не изменяется. Тем не менее в концентрационной и частотной зависимостях q^* при конечных проводимостях $\gamma^{(1,2)}$ появляются небольшие мнимые части.

4. Заключение

Таким образом, максвелл-вагнеровская поляризация в феррит-пьезоэлектрических статистических смесях приводит к гигантскому магнитоэлектрическому и диэлектрическому усилению. Это проявляется в возникновении немонотонных концентрационных зависимостей α'_{11} и ε'_{11} и глубокой релаксации эффективных магнитоэлектрических, диэлектрических и пьезоэлектрических констант композитов.

Список литературы

- [1] A.V. Turik, G.S. Radchenko. J. Phys. D: Appl. Phys. **35**, 1188 (2002).
- [2] Г.С. Радченко, А.В. Турик. ФТТ 45, 1676 (2003).
- [3] M.I. Bichurin, V.M. Petrov, G. Srinivasan. Phys. Rev. B 68, 054402 (2003).
- [4] В.М. Петров, М.И. Бичурин, G. Srinivasan. Письма в ЖТФ 30, 81 (2004).
- [5] А.Я. Данцигер, О.Н. Разумовская, Л.А. Резниченко, С.И. Дудкина. Высокоэффективные пьезокерамические материалы. Оптимизация поиска. Пайк, Ростов н/Д (1995). 94 с.
- [6] А.В. Турик, А.И. Чернобабов, Г.С. Радченко, С.А. Турик. ФТТ 46, 2139 (2004).
- [7] E. Tuncer, B. Nettelblad, S.M. Gubanski. J. Appl. Phys. 92, 4612 (2002).
- [8] A.I. Chernobabov, A.V. Turik, G.S. Radchenko. Ferroelectrics 360, 67 (2007).