Влияние отжига на ЭПР-характеристики наноразмерных порошков диоксида циркония с разным составом примесей

© И.П. Быков, А.Б. Брик*, Н.Н. Багмут*, А.М. Калиниченко*, В.В. Бевз*, В.Г. Верещак**, Л. Ястрабик***

Институт проблем материаловедения им. И.Н. Францевича Национальной академии наук Украины, Киев. Украина

* Институт геохимии, минералогии и рудообразования им. Н.П. Семененко Национальной академии наук Украины, Киев, Украина

** Украинский химико-технологический университет,

Днепропетровск, Украина

*** Институт физики Академии наук Чехии,

Прага, Чехия

E-mail: bykov@ipms.kiev.ua

(Поступила в Редакцию 7 октября 2008 г.)

Методом электронного парамагнитного резонанса исследованы четыре группы наноразмерных порошков диоксида циркония: номинально чистые порошки ZrO_2 (первая группа), образцы диоксида циркония с примесями Y_2O_3 и Sc_2O_3 (вторая группа), образцы с разным количеством Cr_2O_3 (третья группа), а также образцы, в которых одновременно присутствовали Y_2O_3 и Cr_2O_3 (четвертая группа). Изучено влияние отжига на сигналы ЭПР от ионов Zr^{3+} (первая и вторая группы образцов) и ионов Cr^{5+} (третья и четвертая группы образцов). Установлено, что, хотя радиоспектроскопические характеристики ионов Zr^{3+} и Cr^{5+} близки, влияние отжига на сигналы ЭПР этих ионов существенно разное. Отжиг в интервале температур 200–900°С ведет к монотонному увеличению количества ионов Zr^{3+} . При этом температура отжига, при которой появляются сигналы ЭПР от ионов Zr^{3+} , для образцов с разным составом примесей является неодинаковой. В отличие от ионов Zr^{3+} кривые отжига сигналов ЭПР, обусловленных ионами Cr^{5+} , имеют экстремум при $T = 500-600^{\circ}$ С.

PACS: 73.22.-f, 76.30.-v, 81.07.-b

1. Введение

Диоксид циркония ZrO2 является одним из материалов, который находит широкое применение в науке и технике. На его основе изготавливают различные технические устройства, в том числе работающие при высоких температурах [1]. Диоксид циркония используется при изготовлении топливных ячеек, которые преобразуют химическую энергию в электрическую [2]. При нагревании диоксид циркония претерпевает ряд фазовых переходов, что затрудняет его применение как высокотемпературного материала. Для стабилизации кристаллической решетки ZrO2 используют различные примесистабилизаторы [3-5], которые препятствуют фазовым превращениям и улучшают характеристики изделий, изготовленных на основе диоксида циркония. Изучению структуры и свойств диоксида циркония посвящено большое количество исследований [1,3,6], вместе с тем многие вопросы, связанные со свойствами наноразмерных порошков ZrO₂, и в том числе механизмы стабилизации кристаллической решетки примесными ионами, остаются изученными недостаточно.

Одним из методов, позволяющих получать детальную информацию о локальных свойствах наноразмерных частиц ZrO_2 , является электронный парамагнитный резонанс (ЭПР). Исследованиям диоксида циркония методом ЭПР посвящено значительное число работ [7–14]. Наиболее интересными парамагнитными центрами в ZrO_2 являются ионы Zr^{3+} и Cr^{5+} . Радиоспектроскопические

и другие характеристики ионов Zr^{3+} описаны в работах [7–9], а ионов Cr^{5+} — в [10–14]. Несмотря на большое количество исследований, механизмы формирования парамагнитных центров, связанных с ионами Zr^{3+} и Cr^{5+} в структуре ZrO_2 , изучены недостаточно. Малоизученными остаются особенности ЭПР-характеристик порошков диоксида циркония, обусловленные размерами наночастиц, а также изменения этих характеристик при нагревании образцов.

Целью настоящей работы является изучение механизмов формирования парамагнитных центров, обусловленных ионами Zr^{3+} и Cr^{5+} , а также влияния состава наночастиц на процессы термогенерации указанных парамагнитных центров в структуре ZrO_2 .

2. Образцы и методика экспериментов

Исследованные образцы были получены по методике совместного осаждения, описанной в работах [3–5]. Исходные (неотожженные) образцы представляли собой гидроксиды циркония, которые во время отжига (за счет процессов дегидроксилации) преобразуются в диоксиды циркония [4,11–13]. Размер частиц в исходных образцах равнялся 3–5 nm. Эксперименты выполнены на четырех группах образцов, состав которых был неодинаковым. Первая группа образцов представляла собой номинально чистые порошки ZrO₂. В шихте, используемой для получения этих образцов, какие-либо специально введенные примеси отсутствовали. При получении второй группы образцов состав шихты соответствовал формулам $ZrO_2 + 3 \mod \% Y_2O_3$, $ZrO_2 + 8 \mod \% Y_2O_3$ и $ZrO_2 + 8 \mod \% Sc_2O_3$. Состав шихты для третьей группы образцов соответствовал $ZrO_2 + n \mod \% Cr_2O_3$, где n = 0.5, 1.0 и 2.0, а для четвертой группы — $ZrO_2 + 3 \mod \% Y_2O_3 + n \mod \% Cr_2O_3$, где n = 0.1, 0.25, 0.5 и 1.0.

Отжиг образцов производился в трубчатой печи в атмосфере воздуха. Образцы отжигались в керамической лодочке в интервале температур 100–900°С. Длительность отжига при каждой температуре равнялась одному часу. Отжиг образцов производился последовательно, т. е. сначала образцы отжигались при более низких температурах (после отжига в этих образцах регистрировались сигналы ЭПР), а затем эти же образцы отжигались при более высоких температурах.

Запись спектров ЭПР производилась с помощью спектрометра РЭ-1306 (Россия, Черноголовка), который работает в трехсантиметровом диапазоне длин волн. Частота модуляции магнитного поля равнялась 100 kHz. Спектры ЭПР регистрировались при комнатной температуре. В качестве эталона использовался порошкообразный образец MgO с примесью Mn²⁺.

3. Экспериментальные результаты

В исходных (неотожженных) образцах сигналы ЭПР со значительным соотношением сигнал/шум отсутствуют. Отжиг образцов ведет к появлению в них различных сигналов ЭПР. Наиболее интенсивные сигналы ЭПР в образцах первой и второй групп обусловлены ионами Zr³⁺, а в образцах третьей и четвертой групп — ионами Cr⁵⁺. При невысоких температурах отжига ($T < 400^{\circ}$ C) во многих образцах присутствуют достаточно интенсивные сигналы ЭПР, обусловленные поляронами (g-фактор 2.0036 ± 0.005). Свойства этих сигналов описаны в работах [9,13]. Кроме того, в исследованных образцах можно зафиксировать малоинтенсивные сигналы ЭПР, связанные с ионами Cr³⁺, сигналы, обусловленные ионами Fe³⁺, а также другие сигналы, происхождение которых требует специальных исследований. В настоящей работе основное внимание уделено сигналами, которые обусловлены ионами Zr³⁺ и Cr⁵⁺.

Ширина и форма сигналов ЭПР от ионов Zr³⁺ и Cr⁵⁺ в образцах, отожженных при разных температурах, а также в образцах с разным составом примесей несколько различаются. На рис. 1 представлены характерные сигналы ЭПР, обусловленные ионами Zr³⁺ и Cr⁵⁺. Исходя из формы спектров, приведенных на рис. 1, можно считать, что эти сигналы описываются аксиальным *g*-тензором. Значения *g*-тензора для ионов Zr³⁺ оказываются равными $g_{\parallel} = 1.959 \pm 0.001$ и $g_{\perp} = 1.978 \pm 0.001$, а для ионов Cr⁵⁺ соответственно $g_{\parallel} = 1.958 \pm 0.001$ и

Рис. 1. Вид сигналов ЭПР, обусловленных ионами Zr^{3+} и Cr^{5+} . Спектр *а* обусловлен ионами Zr^{3+} в образце $ZrO_2 + 8 \text{ mol.}\%$ Y_2O_3 , отожженном при 900°С, спектр *b* — ионами Cr^{5+} в образце $ZrO_2 + 3 \text{ mol.}\%$ $Y_2O_3 + +0.1 \text{ mol.}\%$ Cr_2O_3 , отожженном при 400°С. Цифры 3–5 указывают соответствующие линии секстета от ионов Mn^{2+} в эталонном образце.

 $g_{\perp} = 1.977 \pm 0.001$. Таким образом, для порошкообразных образцов (в пределах точности опыта) значения компонент *g*-тензора для ионов Zr³⁺ и Cr⁵⁺ оказываются почти одинаковыми. Ширина и форма сигналов, обусловленных ионами Cr⁵⁺, зависят от температуры отжига образцов, а также от количества и состава примесей. Факторы, которые влияют на ширину и форму сигналов ЭПР от ионов Cr^{5+} в наноразмерных образцах ZrO_2 , описаны в работах [11-14]. Количественные измерения изменений величины компонент g-тензора, которые имеют место при отжиге и спекании наночастиц, оказываются затруднительными, поскольку мы имеем дело с порошкообразными образцами и, кроме того, линии ЭПР имеют достаточно большую ширину. Однако исходя из положения и формы полученных нами сигналов ЭПР, а также на основании результатов работ [11-14] можно сделать вывод, что изменения локального окружения, которые имеют место при отжиге образцов, не приводят к сильным изменениям g-тензора исследуемых парамагнитных центров. Вместе с тем внутренние механические напряжения, которые возникают при нагревании и охлаждении образцов, могут существенно влиять на разброс значений g-факторов и соответственно на ширину и форму исследуемых сигналов [11–13].

Несмотря на близость радиоспектроскопических характеристик сигналов, обусловленных ионами Zr^{3+} и Cr^{5+} , зависимости интенсивностей этих сигналов от температуры отжига образцов являются существенно не одинаковыми. Соответствующие кривые отжига для ионов Zr^{3+} и Cr^{5+} представлены на рис. 2 и 3. Как видно из рис. 2, при увеличении температуры отжига интенсивность сигнала ЭПР, обусловленного ионами Zr^{3+} , монотонно возрастает. Вместе с тем температура T (Zr), при которой появляются соответствующие сигналы ЭПР,

Рис. 2. Зависимости интенсивностей сигналов ЭПР ионов Zr^{3+} от температуры отжига. Кривые относятся к номинально чистому образцу ZrO_2 (1) и образцам, шихта которых содержит 3 mol.% Y_2O_3 (2), 8 mol.% Y_2O_3 (3) и 8 mol.% Sc_2O_3 (4). Интенсивности сигналов *I* нормированы на максимальное значение соответствующего сигнала I_{max} .

Рис. 3. Зависимости интенсивностей сигналов ЭПР ионов Cr^{5+} от температуры отжига. Кривые относятся к образцам, шихта которых содержит *n* mol.% Cr_2O_3 , где n = 0.5 (1), 1.0 (2) и 2.0 (3). Интенсивности сигналов I нормированы на максимальное значение соответствующего сигнала I_{max} .

существенно зависит от состава исследуемых образцов. Для номинально чистых образцов ZrO_2 и образцов с примесями ($ZrO_2 + 3 \text{ mol.}\% Y_2O_3$, $ZrO_2 + 8 \text{ mol.}\% Y_2O_3$, $ZrO_2 + 8 \text{ mol.}\% Sc_2O_3$) величина T (Zr) оказывается равной примерно 200, 350, 400 и 500°C соответственно. Таким образом, энергия активации процессов, связанных с генерацией ионов Zr^{3+} , существенно зависит от состава и количества примесей в исследованных образцах.

Для ионов Cr⁵⁺ зависимости интенсивности сигналов ЭПР от температуры отжига (рис. 3) качественно отличаются от соответствующих зависимостей для

Физика твердого тела, 2009, том 51, вып. 6

ионов Zr³⁺. Кривые отжига для ионов Cr⁵⁺ представляют собой кривые с экстремумом. При этом для образцов третьей группы температура отжига, соответствующая экстремуму кривых отжига T_{max} , лежит в интервале 500-600°С и сдвигается в область более высоких температур при повышении количества Cr₂O₃ в шихте исследуемых образцов. Температура отжига T (Cr), при которой появляются сигналы ЭПР от ионов Cr⁵⁺, для образцов ZrO₂ + 0.5 mol.% Cr₂O₃, ZrO₂ + 1 mol.% Cr₂O₃ и ZrO₂ + 2 mol.% Cr₂O₃ приближенно равна 200, 250 и 300°С соответственно. Кроме того, согласно рис. 3, при температурах отжига $T > T_{\text{max}}$ крутизна кривых отжига увеличивается с ростом в шихте количества Cr₂O₃.

Кривые отжига сигналов ЭПР от ионов Cr^{5+} в образцах четвертой группы подобны кривым отжига для образцов третьей группы. Закономерности влияния примесей на эти кривые также являются подобными. Это относится к температурам T(Cr) и T_{max} , а также к крутизне кривых отжига при температурах отжига $T > T_{max}$. Вместе с тем в отличие от образцов третьей группы при наличии в шихте одновременно Y_2O_3 и Cr_2O_3 кривые отжига сигналов ЭПР, обусловленных ионами Cr^{5+} , имеют дополнительный слабый экстремум в области $T \approx 250-300^{\circ}$ С. Отметим, что вид кривых отжига для образцов четвертой группы подобен виду кривой отжига, приведенной в работе [14] для образца $ZrO_2 + 3 \text{ mol.}\%$ $Y_2O_3 + 0.5 \text{ mol.}\%$ Cr_2O_3 .

4. Обсуждение результатов

4.1. Механизмы формирования парамагнитных центров. Важным отличием сигналов ЭПР от ионов Zr³⁺ и Cr⁵⁺ является то, что ионы циркония являются основными ионами, формирующими кристаллическую решетку образцов, а ионы хрома являются примесными ионами. В исследованных образцах основная масса ионов циркония находится в непарамагнитном зарядовом состоянии Zr⁴⁺, а большинство ионов хрома, очевидно, в зарядовом состоянии Cr³⁺, которое является парамагнитным (электронный спин 3/2). Отсутствие в исследованных образцах интенсивных сигналов ЭПР, обусловленных ионами Cr³⁺, согласно работам [10,12-14], связано с тем, что из-за анизотропии эти сигналы существенно уширены, поскольку мы имеет дело с порошкообразными образцами. Уменьшению интенсивности сигналов от ионов Cr³⁺ способствует также то, что из-за взаимодействия ионов Cr³⁺ с электрическими полями дефектов и наличия существенных дисторсий в локальном окружении ионов хрома имеет место дополнительное уширение линий ЭПР [12-14].

Электронные конфигурации ионов Zr^{3+} и Cr^{5+} соответствуют $4d^1$ и $3d^1$. Поскольку электронный спин для рассматриваемых ионов равен 1/2, это снижает влияние электрических полей, обусловленных дефектами структуры, на сигналы ЭПР этих ионов. Схожесть электронных конфигураций ионов Zr^{3+} и Cr^{5+} позволяет понять

близость величин главных значений g-тензоров этих ионов. Хотя ядра изотопов ⁹¹Zr (распространенность 11.23%) и ⁵³Cr (распространенность 9.54%) обладают магнитным моментом (спины ядер равны 5/2 и 3/2 соответственно), регистрация сигналов ЭПР, связанных с магнитными изотопами, для порошкообразных образцов оказывается затруднительной. Это обусловлено, очевидно, как большой шириной сигналов ЭПР, так и анизотропией сверхтонкого взаимодействия неспаренного электрона с магнитными ядрами.

Сигналы ЭПР от ионов Zr³⁺ не связаны с примесями, поэтому можно предположить, что эти сигналы кроме образцов первой и второй групп присутствуют также в образцах третьей и четвертой групп. Вместе с тем на основании данных, представленных на рис. 1–3, можно сделать вывод, что в образцах, шихта которых содержит Cr₂O₃, сигналы ЭПР от ионов Cr⁵⁺ намного интенсивнее, чем от ионов Zr³⁺.

Качественное различие кривых отжига, представленных на рис. 2 и 3, указывает на то, что механизмы формирования ионов $Zr^{3+} Cr^{5+}$ в наноразмерных частицах ZrO_2 являются существенно не одинаковыми. В работах [11,13] механизм термогенерации ионов Cr^{5+} в интервале температур 150–500°С был связан с процессами дегидроксилации исходных образцов гидроксида циркония $Zr(OH)_4$ или $ZrO(OH)_2$. При нагревании гидроксиды циркония теряют воду

$$2(OH^{-}) \rightarrow O^{2-} + H_2O\uparrow$$
(1)

и переходят в диоксид циркония ZrO₂. Предполагается [11,13], что в процессе перестройки кристаллической решетки, связанной с потерей гидроксильных групп, на поверхности наночастиц образуются анионные вакансии, которые захватывают электроны от ионов хрома. Соответственно предполагается, что процессы дегидроксилации способствуют переходу ионов хрома в более высокое зарядовое состояние. В рамках этой модели образование парамагнитных центров Cr⁵⁺ можно описать схемой

$$Cr^{3+} - 2e^- \to Cr^{5+}.$$
 (2)

Подтверждением рассматриваемого механизма является тот факт, что рост сигналов ЭПР от ионов Cr^{5+} имеет место в том же интервале температур, в котором происходит потеря образцами гидроксильных групп [11,13]. Следует отметить, что, согласно данным протонного магнитного резонанса, хотя основная масса гидроксильных групп уходит из образцов при отжиге в интервале температур 150–500°C [11,13], небольшое количество гидроксильных групп (1–3%) имеет высокую температурную стабильность и остается в структуре образцов вплоть до $T \approx 1000^{\circ}$ С.

С учетом рассмотренного механизма формирования ионов Cr^{5+} и на основании данных, представленных на рис. 3, можно сделать вывод, что энергия активации процессов дегидроксилации (и соответственно температура *T* (Cr), которая характеризует появление ионов Cr^{5+})

увеличивается при увеличении в шихте концентрации Cr_2O_3 , а также Y_2O_3 . Поскольку примеси Y^{3+} и Cr^{3+} , замещающие ионы Zr^{4+} , способствуют образованию вакансий кислорода, можно предположить, что вакансии кислорода тормозят термостимулированные процессы изменения структуры гидроксидов циркония.

Сопоставление хода кривых отжига, представленных на рис. 2 и 3, показывает, что механизм формирования парамагнитных центров Zr^{3+} качественно отличается от механизма формирования ионов Cr^{5+} . Поскольку ионы циркония в исследованных образцах находятся в зарядовом состоянии Zr^{4+} , появление ионов Zr^{3+} , очевидно, обусловлено тем, что в процессе отжига образцов ионы Zr^{4+} захватывают электрон и переходят в парамагнитное состояние в соответствии со схемой

$$Zr^{4+} + e^- \to Zr^{3+}.$$
 (3)

Отметим, что процессы формирования парамагнитных центров по схемам (2) и (3) являются качественно противоположными. Формирование парамагнитных центров Cr^{5+} происходит за счет потери электронов предцентрами (ионами Cr^{3+}), а центров Zr^{3+} , наоборот, за счет захвата электронов предцентрами (ионами Zr^{4+}).

Для реализации схемы (3) необходимо выполнение нескольких условий. Во-первых, в образце должны быть некие дефекты структуры (поставщики электронов), которые могут передать электрон ионам циркония. Во-вторых, в структуре наночастиц должны быть особые ионы Zr⁴⁺ (реципиенты электронов), которые благодаря наличию в ближнем окружении каких-либо дефектов оказываются способными захватывать электроны. Поставщиками электронов, фигурирующих в схеме (3), могут быть либо вакансии кислорода, захватывающие один или два электрона, либо ионы кислорода О²⁻. При высоких температурах отжига наличие вакансий кислорода с локализованными в них электронами представляется маловероятным. Ионы О²⁻ могут быть поставщиками электронов только в том случае, если в катионных узлах, расположенных вблизи этих ионов, имеется дефицит положительного заряда. Дефицит положительного заряда в катионных узлах может быть обусловлен либо отсутствием (вакансией) иона циркония, либо замещением иона Zr⁴⁺ на ион с меньшим положительным зарядом (например, Y³⁺ или Sc³⁺). В качестве реципиентов электронов могут выступать только те ионы Zr⁴⁺, в ближнем окружении которых имеются анионные узлы с дефицитом отрицательного заряда. Такой дефицит отрицательного заряда может быть обусловлен вакансиями кислорода. Таким образом, в рамках рассматриваемой модели механизм формирования парамагнитных центров Zr^{3+} требует наличия в структуре образца как поставщиков, так и реципиентов электронов. Важной особенностью наноразмерных частиц диоксида циркония является то, что поставщики и приемщики электронов в этом материале могут формироваться не только при образовании (росте) наночастиц, но и в процессе их отжига за счет термодинамически обусловленного перехода ионов в междоузлия. Отметим, что, поскольку процессы формирования термодинамически обусловленных вакансий являются универсальными, а формирование парамагнитных центров на собственных ионах решетки является скорее исключением, чем правилом, для формирования стабильных парамагнитных центров нужны, очевидно, дополнительные условия. Можно предположить, что важную роль в стабилизации изученных парамагнитных центров, а также вакансий вблизи этих центров играет поверхность наночастиц.

4.2. Влияние примесей на формирование парамагнитных центров. Известно [1,4,9], что при образовании (росте) наноразмерных частиц диоксида циркония в кристаллической решетке этих материалов может формироваться значительное количество вакансий кислорода, которые мы будет называть ростовыми вакансиями. В связи с необходимой компенсацией электрического заряда в исследуемых образцах формируются также ростовые вакансии ионов циркония. Как было уже отмечено выше, в наночастицах ZrO2 всегда имеются также термодинамически обусловленные вакансии кислорода и циркония, связанные с переходом этих ионов в междоузлия под влиянием тепловых колебаний решетки. Такие вакансии мы будем называть термодинамическими. Замещение в структуре исследованных образцов ионов Zr⁴⁺ примесными ионами с меньшим зарядом, в том числе ионами Cr³⁺, Y³⁺, Sc³⁺, стимулирует формирование в этих образцах ростовых вакансий кислорода. Известно, что перечисленные выше примеси стабилизируют кристаллическую решетку ZrO2. Стабилизация решетки обусловлена тем, что примесные ионыстабилизаторы препятствуют перемещениям ионов, формирующих кристаллическую решетку, и соответственно препятствуют изменениям симметрии кристаллической решетки при нагревании и охлаждении образцов [1,3,11].

Данные, представленные на рис. 2, показывают, что в номинально чистых образцах ZrO_2 процессы перезарядки ионов Zr^{4+} в соответствии со схемой (3) и формирование парамагнитных центров Zr^{3+} происходят при более низких температурах, чем в образцах с примесями. Увеличение количества Y_2O_3 , а также замена ионов Y^{3+} на ионы Sc^{3+} приводят к росту температуры T (Zr), при которой имеет место образование парамагнитных центров Zr^{3+} . На основании этих данных можно предположить, что ионы-стабилизаторы повышают энергию активации процессов, которые приводят к образованию ионов Zr^{3+} .

В начале кривых отжига (рис. 2) формирование ионов Zr^{3+} происходит, очевидно, благодаря наличию ростовых вакансий (которые достаточно легко диффундируют), а при более высоких температурах также благодаря образованию термодинамических вакансий. Наличие ионовстабилизаторов, очевидно, тормозит диффузию ростовых вакансий, а также повышает энергию активации процессов, ведущих к образованию термодинамических

вакансий. Эти факторы приводят к повышению температуры T (Zr) для образцов, содержащих примесистабилизаторы.

Увеличение количества ионов Zr³⁺ с ростом температуры отжига (рис. 2) можно пояснить ростом количества термодинамически стимулированных вакансий в связи с повышением температуры. Высокие температуры отжига могут стимулировать также диффузию ионов Ү и Sc в кристаллическую решетку наночастиц ZrO2 с поверхности. При этом увеличение в решетке примесей Y и Sc, с одной стороны, ведет к формированию в решетке дополнительных вакансий кислорода, а с другой стороны, затрудняет формирование термодинамических вакансий. Перечисленные выше факторы делают процессы термогенерации ионов Zr³⁺ сложной функцией не только химического состава наночастиц, но и режимов отжига и охлаждения. Важную роль при этом могут играть также фазовые переходы и метастабильные состояния, которые возникают при нагревании и охлаждении наночастиц. Отметим, что ионы-стабилизаторы кроме влияния на формирование ионов Zr³⁺ повышают также энергию активации процессов, ведущих к образованию ионов Cr^{5+} .

5. Заключение

На основании экспериментальных исследований, описанных в настоящей работе, можно сделать выводы, что с помощью ЭПР ионов Zr³⁺ и Cr⁵⁺ можно получать детальную информацию о процессах, протекающих при нагревании наноразмерных частиц диоксида циркония. Эта информация может быть использована для выяснения механизмов стабилизации кристаллической решетки ZrO₂ с помощью разного рода примесей и соответственно для создания материалов с заранее заданными свойствами. Параметром, который может быть использован для определения стабильности кристаллической решетки, может быть температура T (Zr), при которой начинают эффективно генерироваться парамагнитные центры Zr³⁺. Информация об изменениях структуры наночастиц диоксида циркония в процессе их отжига и охлаждения может быть использована для оптимизации технологий создания материалов, работающих при высоких температурах.

При нагревании наночастиц ZrO₂ имеют место разные процессы, в том числе спекание и укрупнение частиц, переход аморфных областей в кристаллические, диффузия и самодиффузия ионов. Поэтому для эффективного решения прикладных задач, связанных с материалами на основе наночастиц ZrO₂, перечисленные выше процессы необходимо исследовать с помощью рентгенофазового анализа, электронной микроскопии и других методов. Интегральная информация, полученная с помощью этих методов, важна для построения моделей, основанных на локальной информации, полученной с помощью метода ЭПР. В заключение подчеркнем также следующее. Описанные выше процессы, связанные с образованием парамагнитных центров Zr^{3+} при нагревании наночастиц диоксида циркония, являются достаточно универсальными. Однако в природных образцах диоксида циркония (минерал бадделеит), имеющих микронные и более размеры, процессы, описанные в настоящей работе, не приводят к образованию парамагнитных центров. На этом основании можно сделать вывод, что рассмотренные выше процессы образования стабильных парамагнитных центров характерны лишь для наноразмерных систем, свойства которых существенно определяются поверхностью наночастиц.

Список литературы

- Д.С. Рутман, Ю.С. Торопов, С.Ю. Планер. Высокотемпературные материалы из диоксида циркония. Металлургия, М. (1985). 136 с.
- [2] В.С. Багоцкий, Н.В. Осетрова, А.М. Скундин. Электрохимия 39, 9, 1027 (2003).
- [3] А.Г. Белоус, Е.В. Пашкова, А.Н. Макаренко. В сб.: Наносистемы, наноматериалы, нанотехнологии / Под ред. А.П. Шпака. Академпериодика, Киев (2003). Т. 1. В. 1. С. 85.
- [4] Т.Е. Константинова, И.А. Даниленко, А.В. Горох, Г.К. Волкова. Огнеупоры и техн. керамика **3**, 12 (2001).
- [5] Т.Е. Константинова, И.А. Даниленко, В.В. Токий, Г.К. Волкова, В.А. Глазунова, Н.В. Токий, Н.П. Пилипенко, А.С. Дорошкевич. В сб.: Наносистемы, наноматериалы, нанотехнологии / Под ред. А.П. Шпака. Академпериодика, Киев (2004). Т. 2. В. 2. С. 609.
- [6] X. Bokhimi, A. Morales, A. Garsia-Ruiz, T.D. Xiao, H. Chen, P.R. Strutt. J. Solid. State Chem. 142, 409 (1999).
- [7] A.M. Slipenyuk, M.D. Glinchuk, I.P. Bykov, A.V. Ragulya, V.P. Klimenko, T.E. Konstantinova, I.A. Danilenko. Ferroelectrics 298, 289 (2004).
- [8] H. Liu, L. Feng, X. Zhaug, Q. Xue. J. Phys. Chem. 99, 332 (1995).
- [9] А.Б. Брик, М.Д. Глинчук, И.П. Быков, В.В. Бевз, Т.Е. Константинова. Наноструктурное материаловедение *1*, 91 (2005).
- [10] E.A. Zhilinskaya, V.N. Lazukin, I.V. Chepeleva, V.V. Osiko. Phys. Status Solidi B 98, 419 (1980).
- [11] А.Б. Брик, И.П. Быков, М.Д. Глинчук, В.В. Бевз, Т.Е. Константинова, И.А. Даниленко. Наноструктурное материаловедение 1, 67 (2006).
- [12] А.Б. Брик, И.П. Быков, М.Д. Глинчук, В.В. Бевз, Т.Е. Константинова, И.А. Даниленко. Наноструктурное материаловедение 1, 66 (2007).
- [13] И.П. Быков, А.Б. Брик, М.Д. Глинчук, В.В. Бевз, Т.Е. Константинова. ФТТ 49, 1189 (2007).
- [14] И.П. Быков, А.Б. Брик, М.Д. Глинчук, В.В. Бевз, Е.А. Калиниченко, Т.Е. Константинова. ФТТ 50, 2214 (2008).