Особенности тепловых, магнитных и диэлектрических свойств мультиферроиков BiFeO₃ и Bi_{0.95}La_{0.05}FeO₃

© А.А. Амиров, А.Б. Батдалов, С.Н. Каллаев, З.М. Омаров, И.А. Вербенко*, О.Н. Разумовская*, Л.А. Резниченко*, Л.А. Шилкина*

Институт физики Дагестанского научного центра Российской академии наук,

Махачкала, Россия

* Научно-исследовательский институт физики Южного федерального университета,

Ростов-на-Дону, Россия

E-mail: amiroff_a@mail.ru

(Поступила в Редакцию 22 сентября 2008 г.)

Проведены комплексные исследования теплофизических, магнитных и диэлектрических свойств керамических соединений мультиферроиков BiFeO₃ и $Bi_{0.95}La_{0.05}FeO_3$. Обнаружены аномалии диэлектрической проницаемости в области антиферроромагнитного перехода, которые связаны со структурными изменениями. Из температурных зависимостей коэффициента теплового расширения, теплоемкости и дифференциальной восприимчивости определены T_N . Показано, что точка перехода смещается в сторону высоких температур при замещении Bi редкоземельным ионом La. Установлено, что незначительное замещение висмута лантаном усиливает магнитные свойства феррита висмута и увеличивает магнитодиэлектрический эффект.

PACS: 75.50.Ee, 77.80.-e, 75.80.+q, 77.84.-s

1. Введение

Соединение BiFeO₃ является одним из первых мультиферроиков: оно впервые получено еще в 60-х годах прошлого века группой ученых под руководством Смоленского [1,2]. Феррит висмута (и соединения на его основе) привлекателен не только в прикладном плане как база создания магнитоэлектрических материалов, но и с фундаментальной точки зрения благодаря тому, что в нем наблюдается сильная взаимосвязь структуры с магнитными и электрическими свойствами [3,4]. Характерной особенностью этих материалов с практической точки зрения является плохая проводимость, высокие значения температур магнитного ($T_N \sim 643$ K) и сегнетоэлектрического упорядочения ($T_c \sim 1083$ K) [5,6].

Кристаллическая структура BiFeO₃ допускает сосуществование антиферромагнитной и сегнетоэлектрической фаз, однако магнитоэлектрические явления в нем не проявляются по причине существования пространственномодулированной спиновой структуры [4,7,8]. Существуют различные способы подавления пространственномодулированной структуры: приложение сильного магнитного поля, замещение Bi редкоземельными ионами, изготовление тонких пленок BiFeO₃ и др. [9–14]. Для нас представляло интерес, как изменяются физические свойства чистого феррита висмута при замещении Bi редкоземельным ионом La.

В настоящей работе приведены результаты комплексных исследований тепловых, магнитных, диэлектрических и магнитоэлектрических свойств керамических образцов BiFeO₃ и Bi_{0.95}La_{0.05}FeO₃.

2. Образцы и эксперимент

О получении BiFeO₃ впервые сообщалось в [15,16], а реакция образования этого соединения рассмотрена

в работе [17]. В ходе проведенных исследований с использованием дифференциального термического анализа установлено, что смесь $Bi_2O_3 + Fe_2O_3$ характеризуется пятью эндоэффектами. При 740°С происходит полиморфное превращение Bi_2O_3 , при 790°С — плавление эвтектики в системе Bi_2O_3 -Fe_2O_3, при 850°С — фазовый переход BiFeO_3, при 920 и 950°С — инконгруэнтное плавление BiFeO_3, что косвенно указывает на то, что образование соединения произошло при температурах ниже 850°С (рис. 1). Это подтверждается структурными исследованиями, результаты которых показали, что реакция образования соединения начинается при 600°С.

Рис. 1. Кривые дифференциального термического анализа. *1* — шихты состава Bi₂O₃ + Fe₂O₃, *2* — соединения BiFeO₃. Числа около кривых — значения температуры в °C.

Исследованная в нашей работе керамика получена по обычной керамической технологии (твердофазный двустадийный синтез с последующим спеканием без приложения давления) с подбором оптимальных режимов синтеза и спекания BiFeO₃ и Bi_{0.95}La_{0.05}FeO₃. Синтез осуществлен методом твердофазных реакций из окислов Bi₂O₃, Fe₂O₃ и La₂O₃ квалификаций осч, чда и ЛаO-1 соответственно в две стадии с промежуточным помолом при температурах $T_1 = 800^{\circ}$ C (10 h) и $T_2 = 800-820^{\circ}$ C (4 h). Для получения высокоплотной керамики с плотностью $\rho_{rel} = \rho_{exp}/\rho_{theor} \ge 90\%$ порошок гранулировали с раствором поливинилового спирта, брикетировали в виде столбиков диаметром 15–20 mm и спекали при температуре 870 ± 10°C в течение 3 h.

Рентгеноструктурные исследовния выполнялись на измельченных керамических спеках методом порошковой рентгеновской дифракции на дифрактометре ДРОН-3 с использованием отфильтрованного Си_{Ка}-излучения (фокусировка по Брэггу–Брэнтано). По данным рентгеновской дифракции определено, что соединение BiFeO₃ имеет при комнатной температуре ромбоэдрическую ячейку с параметрами a = 3.965 Åи $\alpha = 89^{\circ}24'$. Погрешности определения параметров составили $\Delta a = \pm 0.001$, $\Delta \alpha = 0.05^{\circ}$.

Измерения коэффициента теплового расширения (КРТ) были выполнены на емкостном дилатометре. Теплоемкость исследовалась на дифференциальном сканирующей калориметре DSC 204 F1 Phoenix[®] фирмы NETZSCH (Германия). Исследования дифференциальной восприимчивости проводились на автоматизированной установке модуляционным методом с частотой модуляции $\nu = 80$ kHz и амплитудой модуляции H = 0.5 Oe. Кривые намагничивания измерялись на вибрационном магнитометре фирмы Макриэл (Россия). Диэлектрические измерения были проведены с помощью LCR-моста E7-8 на частоте 1 kHz.

Также были проведены исследования образцов на наличие магнитодиэлектрического эффекта (магнитоемкости), суть которого заключается в изменении диэлектрической проницаемости при внесении образца в магнитное поле

$$\frac{\Delta \varepsilon(H)}{\varepsilon(0)} = \frac{\varepsilon(H) - \varepsilon(0)}{\varepsilon(0)},$$

где $\varepsilon(H)$ и $\varepsilon(0)$ — диэлектрическая проницаемость в магнитном поле и в его отсутствии соответственно. Для измерений магнитодиэлектрического эффекта образцы изготавливались в виде тонких пластинок с линейными размерами $\sim \times 3$ mm и толщиной $d \approx 1$ mm. Электрические контакты наносились вжиганием серебряной пасты.

3. Результаты и их обсуждение

На рис. 2 приведены температурные зависимости дифференциальной восприимчивости и относительной диэлектрической проницаемости обоих соединений. Восприимчивость чистого BiFeO₃ проходит через два максимума, второй из которых соответствует антиферромагнитному фазовому переходу $T_N = 646$ K, что согласуется

Рис. 2. Дифференциальная магнитная восприимчивость и относительная диэлектрическая проницаемость образцов BiFeO₃ и Bi_{0.95}La_{0.05}FeO₃ в зависимости от температуры.

с литературными данными. В случае Bi_{0.95}La_{0.05}FeO₃ антиферромагнитное упорядочение наблюдается при 660 К, максимум выражен острее, что указывает на усиление антиферромагнитной фазы при введении редкоземельной примеси лантана. Следует отметить, что для обоих случаев антиферромагнитный переход отражается и на поведении относительной диэлектрической проницаемости — в виде излома для BiFeO₃ и небольшого горба в случае Bi_{0.95}La_{0.05}FeO₃ (рис. 2). На температурной зависимости КТР недопированного феррита висмута наблюдаются два отчетливых пика: один при 533 К (условно обозначим как Т₀), а второй — при $T_N = 645.5 \, \text{K}$ — соответствует антиферромагнитному переходу. Как и в недопированном случае, на температурной зависимости КТР для Bi0.95La0.05FeO3 имеют место два острых пика — при температуре То и в самой точке T_N. Следует отметить лишь, что ширина области перехода $\Delta T = T_N - T_O$ для $\operatorname{Bi}_{0.95}\operatorname{La}_{0.05}\operatorname{FeO}_3$ больше, чем в случае чистого BiFeO₃, и равна ~ 203.5 К. Примерно при этих двух температурах испытывает аномалию и диэлектрическая проницаемость. Отметим, что подобные аномалии на тепловых и диэлектрических свойствах описывались и в работе [18]. В ней авторы связывают Т_О с началом структурных изменений, а T_N — с концом перехода. В нашем случае картина аналогична: магнит-

Рис. 3. Температурные зависимости КТР и теплоемкости образцов BiFeO₃ и Bi_{0.95}La_{0.05}FeO₃.

ный фазовый переход сопровождается структурными изменениями, что отражается на поведении диэлектрической проницаемости. Такое поведение диэлектрической проницаемости в области магнитного перехода характерно для сред с магнитоэлектрическим упорядочением, причем экспериментально в окрестности перехода чаще наблюдается излом, чем скачок. Наличие двух аномалий в диапазоне ΔT вместо одной в точке T_N может быть обусловлено уширением магнитоэлектрического взаимодействия вследствие неоднородности.

Наиболее яркой иллюстрацией отмеченного выше можно считать поведение теплоемкости $C_P(T)$, являющейся чувствительным индикатором происходящих в твердых телах фазовых переходов. В области T_N наблюдаются четкие максимумы теплоемкости BiFeO₃ и Bi_{0.95}La_{0.05}FeO₃ (рис. 3). В допированном случае максимум незначительно смещается в сторону высоких температур. Кроме того, проведенные рентгеноструктурные измерения показали изменение параметра решетки в окрестности точки T_N . Это позволяет говорить о тесной взаимосвязи магнитных, электрических фазовых переходов и кристаллической структуры, что часто наблюдается для таких систем, как мультиферроики.

Наглядно проследить за характером изменения тепловых, магнитных и диэлектрических свойств можно по таблице, в которой приведены экспериментальные

значения T_N , полученные из различных экспериментов, и значения магнитоемкости при H = 1.1 T при комнатной температуре. Анализируя данные, можно увидеть следующую закономерность: редкоземельная примесь лантана смещает T_N в сторону высоких температур и увеличивает магнитодиэлектрический эффект (МДЭ). Полученные значения МДЭ можно трактовать как усиление эффекта при замещении иона висмута, которое, возможно, будет более значительным при увеличении степени легирования. Если сравнивать значения МДЭ наших образцов с данными для близкого состава Ві_{0.825}Тb_{0.075}La_{0.1}FeO₃ [19], в котором был обнаружен МДЭ величиной 2.38% при индукции поля 1 Т, то можно видеть вполне согласуемые результаты, учитывая наличие в приведенном составе Тb и La с более высокой степенью легирования.

Магнитодиэлектрический эффект и экспериментальные значения T_N для образцов BiFeO₃ и Bi_{0.95}La_{0.05}FeO₃

Образец	T_N, \mathbf{K}			$\Delta \varepsilon(H)/\varepsilon(0),$ %
	по $\alpha(T)$	по $\chi(T)$	по $C_P(T)$	(H = 1.1 T, T = 300 K)
BiFeO ₃ Bi _{0.95} La _{0.05} FeO ₃	645.5 659	646 660	642 646	1 1.6

Смещение T_N при введении примеси лантана наблюдается на всех трех зависимостях $\alpha(T)$, $\chi(T)$, $C_P(T)$, хотя величины смещения в каждом случае различаются.

Проведенные измерения намагниченности при комнатной и азотной температурах также выявили существенное влияние примеси лантана на магнитные свойства феррита висмута. На рис. 4 приведены кривые намагничивания исследованных образцов при комнатной температуре. Намагниченность чистого BiFeO₃ мала́ и линейно растет с увеличением магнитного поля. Такой вид кривой намагничивания характерен для антиферромагнетика; аналогичное поведение феррита висмута

Рис. 4. Кривые намагничивания образцов BiFeO₃ и $Bi_{0.95}La_{0.05}FeO_3$ при комнатной температуре T = 300 К.

наблюдалось в работах [19,20]. Введение даже небольшой редкоземельной добавки меняет магнитную структуру феррита висмута, что можно видеть по кривой намагничивания Bi_{0.95}La_{0.05}FeO₃. Она имеет характерный для магнитных материалов гистерезис. Изменение магнитных свойств в этом случае объясняется различием ионных радиусов La и Bi и вызванным этим различием изменением магнитной анизотропии кристалла.

Таким образом, результаты исследований тепловых, магнитных и диэлектрических свойств мультиферроиков $BiFeO_3$ и $Bi_{0.95}La_{0.05}FeO_3$ показывают, что незначительное замещение висмута лантаном в $BiFeO_3$ смещает точку антиферромагнитного упорядочения в сторону высоких температур, усиливает магнитные свойства и увеличивает магнитодиэлектрический эффект.

Список литературы

- Г.А. Смоленский, А.И. Аграновская. ЖЭТФ 28, 1491 (1958).
- [2] Г.А. Смоленский, А.И. Аграновская, С.Н. Попов, В.А. Исупов. ЖТФ 28, 2152 (1958).
- [3] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaityanathan, D.G. Scholm, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wutting, R. Ramesh. Science **299**, 1719 (2003).
- [4] А.К. Звездин, А.П. Пятаков. УФН 174, 465 (2004).
- [5] J.R. Teague, R. Gerson, W.J. James. Solid State Commun. 8, 1073 (1970).
- [6] P. Fischer, M. Polomska. J. Phys. C: Solid State 13, 1931 (1980).
- [7] А.Г. Жданов, А.К. Звездин, А.П. Пятаков, Т.Б. Косых, D. Viehland. ФТТ 48, 83 (2006).
- [8] А.М. Кадомцева, А.К. Звездин, Ю.Ф. Попов, А.П. Пятаков, Г.П. Воробьев. Письма в ЖЭТФ 79, 705 (2004).
- [9] D. Lee, M.G. Kim, S. Ryu, H.M. Jang, S.G. Lee. Appl. Phys. Lett. 86, 222 903 (2005).
- [10] N. Wang, J. Cheng, A.P. Pyatakov, A.K. Zvezdin, J.F. Li, L.E. Cross, D. Viehland. Phys. Rev. B 72, 104 434 (2005).
- [11] J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A.P. Pyatakov, A.K. Zvezdin, D. Viehland. Appl. Phys. Lett. 84, 5261 (2004).
- [12] В.А. Мурашев, Д.Н. Раков, И.С. Дубенко, А.К. Звездин, В.М. Ионов. Кристаллография 35, 912 (1990).
- [13] В.А. Мурашев, Д.Н. Раков, Н.А. Экономов, А.К. Звездин, И.С. Дубенко. ФТТ **32**, 2156 (1990).
- [14] Z.A. Gabbasova, M.D. Kuz'min, A.K. Zvezdin, I.S. Dubenko, V.A. Murashov, D.N. Rakov, I.B. Krynetsky. Phys. Lett. A 158, 491 (1991).
- [15] А.Н. Заславский, А.Г. Тутов. ДАН СССР 135, 815 (1960).
- [16] Г.А. Смоленский, В.А. Исупов, А.И. Аграновская, Н.Н. Крайник. ФТТ **2**, 2982 (1960).
- [17] О.Н. Разумовская, Т.Б. Кулешова, Л.М. Рудковская. Изв. АНСССР. Неорган. материалы 19, 13 (1983).
- [18] R. Mazumder, S. Ghosh, P. Mondal, Dipten Bhattachrarya, S. Dasgupta, N. Das, A. Sen, A.K. Tyagi, M. Sivakumar, T. Takami, H. Ikuta. J. Appl. Phys. **100**, 033 908 (2006).
- [19] V.R. Palkar, D.C. Kundaliya, S.K. Malik, S. Bhattacharya. Phys, Rev. B 69, 212 102 (2004).
- [20] Y. P. Wang, G. L. Yuan, X.Y. Chen, J.-M. Liu, Z.G. Liu. J. Phys. D: Appl. Phys. **39**, 2019 (2006).