Гидростатическое давление и гексагональная магнитная анизотропия гематита

© М.Б. Стругацкий, К.М. Скибинский

Таврический национальный университет им. В.И. Вернадского, Симферополь, Украина

E-mail: Strygatsky@tnu.crimea.ua

(Поступила в Редакцию 3 апреля 2008 г.)

На основе термодинамической теории исследовано влияние гидростатического давления на базисную гексагональную магнитную анизотропию ромбоэдрического легкоплоскостного слабого ферромагнетика. Показано, что вклад в гексагональную анизотропию определяется эффективными константами одноосной и кубической анизотропии, которые включают пропорциональные гидростатическому давлению добавки. Для гематита произведена оценка гидростатического давления, которое приводит к базисной анизотропии, наблюдаемой в экспериментах на напряженном образце.

PACS: 75.50.Ee, 72.55.+s

1. В работе [1] при исследовании угловой зависимости амплитуды поперечного звука в монокристалле гематита в условиях магнитоакустического двупреломления при комнатной температуре было обнаружено, что величина константы гексагональной анизотропии экспериментального образца существенно превосходит известную для гематита величину [2,3]. Такое расхождение авторы связывают с тем, что используемый ими образец не был отожжен. Объяснение резонно, если предположить, что в кристалле существуют остаточные механические напряжения, возникшие в процессе быстрого охлаждения после синтеза и связанные с дефектной структурой реального образца [4]. Эти напряжения в простейшем случае мы можем смоделировать, приложив к идеальному кристаллу гидростатическое давление. Гидростатическое давление не изменяет симметрию кристалла, однако из-за анизотропии упругих и магнитоупругих свойств кристаллического образца такое давление при сохранении симметрии может повлиять на величину магнитной анизотропии. Отметим, что из-за особенностей кристалломагнитной структуры ромбоэдрических легкоплоскостных антиферромагнетиков, таких как гематит и борат железа, магнитоупругая связь в них велика, что в свою очередь делает существенным влияние на магнитные свойства таких кристаллов вызываемых напряжениями деформаций [5].

В настоящей работе мы рассмотрим влияние гидростатического давления на гексагональную базисную анизотропию легкоплоскостных ромбоэдрических антиферромагнетиков. Полученные здесь результаты в последующих работах будут использованы при построении теории двупреломления звука в таких кристаллах с учетом базисной анизотропии, вызванной в том числе и давлением.

2. Плотность энергии кристалла, включающую необходимые для решения поставленной задачи компоненты, представим следующим образом:

$$F = F_m + F_e + F_{me}, \tag{1}$$

где *F_m*, *F_e*, *F_{me}* — плотности магнитной, упругой и магнитоупругой энергии, которые для кристалла тригональной сингонии имеют вид

$$F_{m} = \frac{1}{2} Em^{2} + \frac{1}{2} al_{z}^{2} + D(l_{x}m_{y} - l_{x}m_{x}) + \frac{1}{2i} d[(l_{x} + il_{y})^{3} - (l_{x} - il_{y})^{3}]l_{z} + \frac{1}{2} e[(l_{x} + il_{y})^{6} + (l_{x} - il_{y})^{6}] - \mathbf{MH},$$

$$(2)$$

$$F_{e} = \frac{1}{4} (C_{11} + C_{22})(u_{xx} + u_{yy})^{2} + \frac{1}{2} C_{66} [(u_{xx} - u_{yy})^{2} + 4u_{xy}^{2}]$$

$$+ \frac{1}{4} C_{33}u_{zz}^{2} + 2C_{44}(u_{xz}^{2} + u_{yz}^{2}) + C_{13}(u_{xx} + u_{yy})u_{zz}$$

$$+ 2C_{14} [(u_{xx} - u_{yy})u_{yz} + 2u_{xy}u_{xz}] + P(u_{xx} + u_{yy} + u_{zz}),$$

$$F_{me} = B_{11}(l_{x}^{2}u_{xx} + l_{y}^{2}u_{yy}) + B_{12}(l_{x}^{2}u_{yy} + l_{y}^{2}u_{xx})$$

$$+ B_{66}l_{x}l_{y}l_{xy} + 2B_{14} [2l_{x}l_{y}u_{xz} + (l_{x}^{2} - l_{y}^{2})u_{yz}]$$

$$+ 2B_{41} [l_{y}l_{z}(u_{xx} - u_{yy}) + 2l_{x}l_{z}u_{xy}] + B_{44}(l_{x}l_{z}u_{xz} + l_{y}l_{z}u_{yz})$$

$$+ B_{13}(l_{x}^{2} + l_{y}^{2})u_{zz} + B_{31}l_{z}^{2}(u_{xx} + u_{yy}) + B_{33}l_{z}^{2}u_{zz}.$$

$$(4)$$

выражениях (2)-(4) l_i, m_i — компоненты В антиферромагнитного и ферромагнитного векторов соответственно; *u*_{*ij*} — компоненты тензора деформаций; Е — обменная постоянная; D — константа Дзялошинского; a, d, e — константы одноосной, кубической и гексагональной магнитной кристаллографической анизотропии; Н — внешнее магнитное поле; М намагниченность кристалла; Р — гидростатическое давление; *С*_{*ii*}, *B*_{*ii*} — упругие и магнитоупругие постоянные. В случае гематита имеем следующие данные [2,6–9]: $H_E = E/4M_0 = 9.2 \cdot 10^6 \text{ Oe}, \ H_D = D/2M_0$ $= 2.2 \cdot 10^4$ Ое ($M_0 = 870$ G — подрешеточная намагниченность), $e \sim d^2/4a \sim 1 \text{ erg/cm}^3$, $a = 4 \cdot 10^5 \text{ erg/cm}^3$, $d \sim 10^3 \, {\rm erg/cm^3}, C \sim 10^{12} \, {\rm erg/cm^3}, B \sim 10^7 \, {\rm erg/cm^3}.$ Здесь и далее ось х совпадает с осью симметрии второго

порядка кристалла, ось у лежит в плоскости симметрии, z параллельна тригональной оси.

Приведенные оценки для констант магнитной анизотропии свидетельствуют о том, что в отсутствие внешнего давления выход магнитных векторов из базисной плоскости будет незначительным.

Для исследования базисной анизоропии кристалла удобно представить вектор антиферромагнетизма l в сферических координатах:

$$\begin{cases} l_x = \sin \theta \cos \varphi, \\ l_y = \sin \theta \sin \varphi, \\ l_z = \cos \theta, \end{cases}$$
(5)

где θ, ϕ — полярный и азимутальный углы антиферромагнитного вектора.

Минимизируя энергию (1) по компонентам вектора **m** и компонентам тензора деформаций, с учетом (5) находим

$$\begin{cases} m_x = \frac{D \sin \theta \sin \varphi + 2M_0 H_x}{E}, \\ m_y = \frac{D \sin \theta \cos \varphi - 2M_0 H_y}{E}, \\ m_z = 0, \end{cases}$$
(6)

$$\begin{cases} u_{xx}^{0} - u_{yy}^{0} \\ = \frac{(2C_{14}B_{14} - C_{44}B_{66})\cos 2\varphi \sin^{2}\theta + (C_{14}B_{44} - 2C_{44}B_{41})\sin\varphi \sin 2\theta}{2(C_{44}C_{66} - C_{14}^{2})}, \\ u_{xy}^{0} = \frac{(2C_{14}B_{14} - C_{44}B_{66})\sin 2\varphi \sin^{2}\theta + (C_{14}B_{44} - 2C_{44}B_{41})\cos\varphi \sin 2\theta}{4(C_{44}C_{66} - C_{14}^{2})}, \\ u_{xz}^{0} = \frac{(C_{14}B_{66} - 2C_{66}B_{14})\sin 2\varphi \sin^{2}\theta + (2C_{14}B_{41} - C_{66}B_{44})\cos\varphi \sin 2\theta}{4(C_{44}C_{66} - C_{14}^{2})}, \\ u_{yz}^{0} = \frac{(C_{14}B_{66} - 2C_{66}B_{14})\cos 2\varphi \sin^{2}\theta + (2C_{14}B_{41} - C_{66}B_{44})\sin\varphi \sin 2\theta}{4(C_{44}C_{66} - C_{14}^{2})}, \\ u_{yz}^{0} = \frac{(C_{14}B_{66} - 2C_{66}B_{14})\cos 2\varphi \sin^{2}\theta + (2C_{14}B_{41} - C_{66}B_{44})\sin\varphi \sin 2\theta}{4(C_{44}C_{66} - C_{14}^{2})}, \\ u_{xx}^{0} + u_{yy}^{0} = \frac{[2C_{13}B_{13} - C_{33}(B_{11} + B_{12})]\sin^{2}\theta + 2(C_{13}B_{33} - C_{33}B_{31})\cos^{2}\theta}{C_{33}(C_{11} + C_{12}) - 2C_{13}^{2}}, \\ u_{zz}^{0} = \frac{[C_{13}(B_{11} + B_{12}) - B_{13}(C_{11} + C_{12})]\sin^{2}\theta + [2(C_{13}B_{31} - (C_{11} + C_{12})B_{33}]\cos^{2}\theta}{C_{33}(C_{11} + C_{12}) - 2C_{13}^{2}}, \\ u_{zz}^{0} = \frac{[C_{13}(B_{11} + B_{12}) - B_{13}(C_{11} + C_{12})]\sin^{2}\theta + [2(C_{13}B_{31} - (C_{11} + C_{12})B_{33}]\cos^{2}\theta}{C_{33}(C_{11} + C_{12}) - 2C_{13}^{2}}, \\ u_{zz}^{0} = \frac{[C_{13}(B_{11} + B_{12}) - B_{13}(C_{11} + C_{12})]\sin^{2}\theta + [2(C_{13}B_{31} - (C_{11} + C_{12})B_{33}]\cos^{2}\theta}{C_{33}(C_{11} + C_{12}) - 2C_{13}^{2}}, \\ u_{zz}^{0} = \frac{[C_{13}(B_{11} + B_{12}) - B_{13}(C_{11} + C_{12})]\sin^{2}\theta + [2(C_{13}B_{31} - (C_{11} + C_{12})B_{33}]\cos^{2}\theta}{C_{33}(C_{11} + C_{12}) - 2C_{13}^{2}}, \\ u_{zz}^{0} = \frac{[C_{13}(B_{11} + B_{12}) - B_{13}(C_{11} + C_{12})]\sin^{2}\theta + [2(C_{13}B_{31} - (C_{11} + C_{12})B_{33}]\cos^{2}\theta}{C_{33}(C_{11} + C_{12}) - 2C_{13}^{2}}, \\ u_{zz}^{0} = \frac{[C_{13}(B_{11} + B_{12}) - B_{13}(C_{11} + C_{12})]\sin^{2}\theta + [2(C_{13}B_{31} - (C_{11} + C_{12})B_{33}]\cos^{2}\theta}{C_{33}(C_{11} + C_{12}) - 2C_{13}^{2}}}, \\ u_{zz}^{0} = \frac{[C_{13}(B_{11} + B_{12}) - B_{13}(C_{11} + C_{12})]\sin^{2}\theta + [C_{13}(B_{11} + C_{12})B_{13}]\cos^{2}\theta}}{C_{33}(C_{11} + C_{12}) - 2C_{13}^{2}}}, \\ u_{zz}^{0} = \frac{[C_{13}(B_{11} + C_{12}) - C_{13}^{2}]$$

Определим равновесную зависимость полярного угла θ от азимутального φ , задаваемого внешним полем. Для этого подставим в (2) и (4) выражения (5) и минимизируем по углу θ энергию кристалла (1). Учитывая (6) и (7) и считая выход вектора l из базисной плоскости малым, получаем

$$\delta = \theta - \frac{\pi}{2} = \frac{d'}{a - \mu_0 P} \sin 3\varphi, \qquad (8)$$

где $d' = d + \frac{4C_{14}B_{14}B_{41} - 2C_{44}B_{66}B_{41} + C_{14}B_{44}B_{66} - 2C_{66}B_{14}B_{44}}{2(C_{44}C_{66} - C_{14}^2)} \sim 10^3 \text{ erg/cm}^3$ — эффективная константа кубической

анизотропии;

$$\mu_0 = 2 \frac{(B_{11} + B_{12} - 2B_{31})(C_{13} - C_{33}) + (B_{13} - B_{33})((2C_{13} - C_{11} - C_{12})}{C_{33}(C_{11} + C_{12}) - 2C_{13}^2}$$

$$\sim B/C \sim 10^{-5}.\tag{9}$$

Отметим, что порядок величины μ_0 в (8) определен все же приближенно по причине отсутствия полной информации о магнитоупругих постоянных B_{ij} . Фигурирующие в (8) магнитоупругие постоянные известны не все (нет данных о B_{13} и B_{31}). Известные же константы определены с разбросом в достаточно широком диапазоне [9]. Кроме того, эти константы должны сильно зависеть от деформаций [8].

Обратим внимание также на то, что наше предположение о малой величине угла δ в (8) основано на результатах эксперимента [1]: при действующих напряжениях монокристалл гематита остается в легкоплоскостном состоянии.

Подставим теперь (3), (6), (7) и (8) в (1) и выделим часть энергии, определяющую гексагональную анизотропию. В результате преобразований получим

$$\Delta F = e' \cos(6\varphi)$$

= $(e + \Delta e_{mep_1} + \Delta e_{mep_2} + \Delta e_{mep_3}) \cos(6\varphi).$ (10)

Здесь

$$\Delta e_{mep_1} = rac{d'^2}{4(a-\mu_0 P)}, \quad \Delta e_{mep_2} \sim rac{B^2}{C} rac{d'}{4(a-\mu_0 P)},$$
 $\Delta e_{mep_3} \sim rac{B}{C} rac{d'^2}{4(a-\mu_0 P)}$

— вклады в эффективную константу гексагональной анизотропии e', определяемые константами одноосной и кубической анизотропии, упругими и магнитоупругими постоянными. Видно, что все вклады связаны с гидростатическим давлением.

3. В [1] гексагональная анизотропия экспериментального образца существенно превосходила известную для гематита величину, что может быть вызвано давлениями $P \sim a/\mu_0 \sim 10^9$ Ра (см. (10)). Обратим внимание на то, что из-за приближенности оценки порядка величины μ_0 (см. выше) порядок Р также можно определить только приближенно. Тем не менее приведенная оценка давления представляется разумной. Действительно, коэффициент линейного термического расширения гематита $\alpha \sim 10^{-5} \, {
m K}^{-1}$. Снижение температуры кристалла по завершении процесса синтеза составляет величину $\Delta t \sim (10^2 - 10^3) \, \mathrm{K}$. Для термических деформаций при этом получаем $u \sim \alpha \Delta t \sim 10^{-3} - 10^{-2}$. Остаточные деформации таких величин, которые могут возникать при быстром охлаждении, должны вызывать механические напряжения $\sigma \sim Cu \sim 10^8 - 10^9$ Ра. Оценим теперь полученные в (10) вклады в гексагональную анизотропию для давлений, не превосходящих по порядку величины 10⁹ Ра. Полагая также, что добавка к константе

одноосной анизотропии, связанная с давлением $\mu_0 P$, не превосходит a $(a - \mu_0 P > 0)$, в этом случае получаем $\Delta e_{mep_1} \sim 1 \text{ erg/cm}^3$, $\Delta e_{mep_2} \sim 10^{-1} \text{ erg/cm}^3$, $\Delta e_{mep_3} \sim \sim 10^{-5} \text{ erg/cm}^3$. Поскольку $e \sim \Delta e_{mep_1} \gg \Delta e_{mep_2} \gg \Delta e_{mep_3}$, то в дальнейшем ограничимся учетом только лишь вклада

$$\Delta e = \Delta e_{mep_1} = \frac{d'^2}{4(a - \mu_0 P)}.$$
 (11)

Теперь обсудим важный вопрос — о знаке давления. Одна из трудностей здесь — неопределенность знака величины μ_0 . Как следует из (11), базисная анизотропия с ростом давления будет возрастать, если уменьшается константа эффективной одноосной анизотропии — знаменатель (11). А это возможно, когда $\mu_0 P > 0$. Результаты экспериментальных исследований влияния давления на точку Морина гематита свидетельствуют о ее возрастании при сжатии (P > 0) кристалла [10,11]. Такой результат означает, что эффективная константа одноосной анизотропии уменьшается при положительном давлении и, следовательно, величина Δe должна расти при P > 0. В результате приходим к заключению, что $\mu_0 > 0$. Непосредственной информации о знаке напряжений в конкретном экспериментальном образце [1] у нас, к сожалению, нет. Следует отметить, что в монографии [4] приводятся результаты прямых экспериментальных исследований, свидетельствующие о том, что в кристаллах наблюдаются остаточные напряжения обоих знаков. Все это делает уместным анализ еще и следующей ситуации: $\mu_0 P < 0$. При этом формула (11) уже не будет приводить к росту базисной анизотропии при возрастании давления. В этом случае для адекватного описания эффекта возрастания гексагональной анизотропии имеет смысл учесть инварианты в упругой и магнитоупругой энергии более высоких порядков, например, такие: $B^{(4)}ul^4$ и $C^{(3)}u^3$. Новые слагаемые в (3) и (4) должны привести к добавкам к константе кубической анизотропии d, пропорциональным Р. Тогда вместо формулы (11) мы получим следующее выражение:

$$\Delta e = \frac{(d' - \mu_1 P)^2}{4(a - \mu_0 P)}.$$
(12)

При определенных значениях константы μ_1 величина Δe в (12) с ростом давления может возрастать. Отметим еще, что для прямого определения величин P, μ_0 и μ_1 с учетом их знаков требуется дополнительная большая экспериментальная работа. Следует обратить внимание на то, что формула (12) не получена нами строго. Для ее вывода, а также для получения выражения, представляющего собой комбинацию упругих и магнитоупругих постоянных μ_1 , требуется определить инварианты высоких порядков, типа приведенных выше. Все это может составить предмет отдельного исследования. Отметим только, что учет ангармонических слагаемых $C^{(3)}u^3$ для гематита при значительных деформациях может быть важным (см. [12]).

Как мы видели, давления, существенно влияющие на гексагональную анизотропию, велики ($P \gg B$). Это означает, что вклад в деформации (7) за счет гидростатического давления значительно превосходит стрикционный вклад. Однако учет стрикционного вклада в (7) необходим. При подстановке (7) в выражение для упругой энергии (3) мы получаем такие же по порядку величины и структуре слагаемые, какие получаются в магнитоупругой энергии (4) за счет части деформаций, связанной с давлением.

Обратим внимание еще на следующее обстоятельство. Из формул (11) и (12) следует, что в рассматриваемых приближениях вклад в гексагональную анизотропию определяется эффективными константами одноосной и кубической анизотропии, которые включают пропорциональные гидростатическому давлению добавки. Эти константы, конкурируя, определяют угол выход антиферромагнитного вектора из базисной плоскости кристалла (см. (9)). Учет в упругой и магнитоупругой энергии инвариантов более высоких порядков, чем упомянутые выше, видимо, приведет к зависящим от давления добавкам непосредственно к константе гексагональной анизотропии e (см. (2)).

Таким образом, величина константы гексагональной анизотропии в неидеальном кристалле может быть существенным образом скорректирована механическими напряжениями, моделью которых может служить внешнее гидростатическое давление, приложенное к идеальному образцу. Такая модель позволяет получить соответствующие эксперименту [1] поправки к анизотропным константам гематита [2,3].

Список литературы

- И.Ш. Ахмадуллин, С.А. Мигачев, М.Ф. Садыков, М.М. Шакирзянов. ФТТ 46, 2, 305 (2004).
- [2] М.М. Фарзтдинов. УФН 84, 4, 611 (1964).
- [3] H. Kumaga, H. Abe, K. Ono, J. Shimada, K. Iwanada. Phys. Rev. 99, 1116 (1955).
- [4] Современная кристаллография. Т. 3. Образование кристаллов / А.А. Чернов, Е.И. Гиваргизов, Х.С. Багдасаров, В.А. Кузнецов, Л.Н. Демьянец, А.Н. Лобачев. Наука, М. (1980). 407 с.
- [5] Yu.N. Mitsay, K.M. Skibinsky, M.B. Strugatsky, A.P. Korolyuk, V.V. Tarakanov, V.I. Khizhnyi. J. Magn. Magn. Mater. 219, 340 (2000).
- [6] Е.А. Туров, И.Ф. Мирсаев, В.В. Николаев. УФН 172, 2, 193 (2002).
- [7] Е.А. Туров, А.В. Колчанов, В.В. Меньшенин, И.Ф. Мирсаев, В.В. Николаев. Симметрия и физические свойства антиферромагнетиков. Физматлит, М. (2001). 560 с.
- [8] D. Sander. J. Phys.: Cond. Matter 16, 603 (2004).
- [9] Р.З. Левитин, В.А. Шуров. В сб.: Физика и химия ферритов / Под ред. К.П. Белова, Ю.Д. Третьякова. Изд-во МГУ, М. (1973). С. 162.
- [10] C.L. Bruzzone, R. Ingalls. Phys. Rev. B 28, 2430 (1983).
- [11] Y. Syono, A. Ito, S. Morimoto, T. Suzuki, T. Yagi, S. Akimoto. Solid State Commun. 50, 97 (1984).
- [12] В.И. Ожогин, В.Л. Преображенский. УФН 155, 4, 593 (1988).