Процессы переноса заряда в ион-радикальных молекулярных проводниках κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x}: сверхпроводнике (x = 0.9) и проводнике с переходом металл-диэлектрик (x = 0)

© Р.М. Власова*, Н.В. Дричко*.**, Б.В. Петров*, В.Н. Семкин*, D. Faltermeier**, J. Barz**, M. Dumm**, M. Dressel**, C. Mezier***, P. Batail***

 * Физико-технический институт им. А.Ф. Иоффе Российской академии наук, Санкт-Петербург, Россия
 ** Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
 *** Laboratoire CIMI, FRE 2447 CNRS–Universite d'Angers, Batiment K, UFR Sciences, Angers, France
 E-mail: rema.vlasova@mail.ioffe.ru

(Поступила в Редакцию 9 октября 2008 г.)

Представлены спектральные оптические исследования в диапазоне $50-6000 \text{ cm}^{-1}$ (6 meV-0.74 eV) органических низкоразмерных молекулярных проводников κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} c x = 0.9 (сверхпроводник с $T_c = 11.3 \text{ K}$) и x = 0 (металл с переходом металл/диэлектрик при T < 50 K) при температурах 300-20 K. Проведен количественный анализ спектров оптической проводимости в рамках предложенной авторами модели, предполагающей участие в переносе заряда двух типов носителей: локализованных на кластерах (димерах и тетрамерах молекул BEDT-TTF) электронов (дырок) и квазисвободных носителей заряда, с использованием "кластерной" тетрамерной модели, основанной на гамильтониане Хаббарда для коррелированных электронов, и модели Друде для квазисвободных носителей заряда. Определены физические параметры модели: энергия кулоновского отталкивания двух электронов (дырок) на одной молекуле, интегралы переноса между молекулами внутри димера и между димерами, константы электронно-колебательного взаимодействия. Дано объяснение анизотропии спектров в проводящей плоскости. Сделан вывод о том, что с внутримолекулярными колебаниями взаимодействуют только локализованные на кластерах электроны.

Работа поддержана программами ОФН РАН, НШ-2184.2008.2 и DFG.

PACS: 74.70.Kn, 78.20.Bh

1. Введение

Представленные в работе соединения вызывают в последнее время большой интерес исследователей, так как они относятся к сильно коррелированным электронным системам с необычными электронными свойствами, основным состоянием у которых могут быть конкурирующие моттовский изолятор, магнитоупорядоченное или сверхпроводящее состояние в зависимости от ширины и заполнения зоны проводимости и электронных взаимодействий. Исследования таких состояний интенсивно проводятся также для окислов переходных металлов и высокотемпературных сверхпроводников и представляют собой новую активно развивающиюся область физики твердого тела [1–3].

Значительный интерес к исследуемым молекулярным проводникам вызывают также их необычные электронфононные свойства, обусловленные взаимодействием электронной системы с внутримолекулярными колебаниями. Для κ -фазы проявление таких взаимодействий было обнаружено в оптических спектрах в работах [4–8] в виде интенсивных особенностей в ИК-области, расположенных вблизи частот полносимметричных внутримолекулярных колебаний (A_g -BMK) молекулы BEDT–TTF, которые обычно оптически неактивны в ИК-спектрах и проявляются вследствие взаимодействия электронных переходов с этими колебаниями (электронно-колебательное взаимодействие — ЭКВ) (EMV coupling) [9–12]. Роль такого взаимодействия в электропроводности и появлении сверхпроводимости в органических проводниках, так же как и другие свойства этих материалов, рассмотрены в [13].

Группа изоструктурных солей κ -фазы κ -(BEDT-TTF)₂Cu[N(CN)₂]X (X = Cl, Br, Cl_{0.5}Br_{0.5}) была впервые представлена в работах [14–17]. Соль с Br является сверхпроводником при нормальном давлении с $T_c = 11.6$ K; соль с Cl имеет переход в диэлектрическое состояние ниже 50 K и становится сверхпроводником с $T_c = 12.8$ K под давлением около 0.3 kbar. Соль с $X = Cl_{0.5}Br_{0.5}$ — сверхпроводник с $T_c = 11.3$ K. ИК-оптические свойства этих солей представлены в работах [4–8].

Кристаллическая структура солей изучена в [14–18]. Кристаллы относятся к ромбической сингонии, пространственная группа P_{nma} , Z = 4. Структура состоит из параллельных плоскости (*ac*) слоев катион-радикалов BEDT–TTF^{0.5+}, чередующихся вдоль оси *b* со слоями полимерных анионов Cu[N(CN)₂] X^- . Слои катионрадикалов состоят из димеров (BEDT–TTF)₂⁺, упакованных взаимно перпендикулярно друг другу (*к*-фаза) (вставка на рис. 1).

987

В работе [19] теоретически изучено влияние сильных электронных корреляций для металлической системы с наполовину заполненной зоной проводимости в случае, когда энергия хаббардовского взаимодействия U меньше соответствующей величины, необходимой для перехода в состояние моттовского изолятора. Авторы предполагают, что такая ситуация может иметь место в металлической фазе в молекулярных кристаллах κ -(BEDT-TTF)₂X. В такой системе имеется низкоэнергетическая область, определяемая температурой *T*₀, которая много меньше полуширины зоны невзаимодействующих электронов (D) и энергии кулоновского отталкивания (U). Величина D имеет порядок энергии Ферми, которая определяется из расчета зонной структуры. В металлической фазе плотность состояний $\rho(\omega)$ содержит пики при энергиях $\omega = -U/2$ и +U/2, соответствующие нижней и верхней зонам Хаббарда, в которых имеют место некогерентные возбуждения. Эти пики широкие и имеют ширину порядка D. При температуре меньше T_0 на уровне энергии Ферми в плотности состояний образуется квазичастичный пик шириной T₀, в котором имеют место когерентные возбуждения. Спектральный вес этого пика исчезает по мере приближения перехода металл-изолятор. Величина То определяет границу, на которой имеется переход к некогерентным возбуждениям.

На основании изложенного выше можно ожидать, что в оптических спектрах возможно проявление двух типов носителей заряда: квазисвободных ("друдевских") электронов (дырок) и локализованных на молекулах носителей заряда. Такое наблюдение было сделано авторами [20] на кристаллах κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl_{0.5}Br_{0.5} на основании анализа спектров оптической проводимости в приближениях "кластерной" модели для локализованных носителей [21] и теории [22], в которой электроны рассматриваются как свободные носители, движущиеся в периодическом поле.

В работе [23] нами представлены экспериментальные спектры отражения и спектры оптической проводимости соединений κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} как функции температуры в диапазоне T = 20-300 K и содержания Br x = 0, 0.4, 0.73, 0.85 и 0.9 и проведен их количественный анализ для x = 0.85 в рамках "кластерной" тетрамерной модели [21] с учетом переноса заряда между соседними параллельными молекулами BEDT-TTF, образующими димер (BEDT-TTF)⁺₂.

В настоящей работе изучены процессы переноса заряда в кристаллах κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} с x = 0.9 (проводник с переходом в сверхпроводящее состояние при T = 11.3 K) и x = 0 (проводник с переходом металл-диэлектрик при T < 50 K) на основании представленных в работе [23] исследований экспериментальных спектров отражения $R(\omega)$ и спектров оптической проводимости $\sigma(\omega)$ в широкой спектральной области от 50 до 6000 сm⁻¹ (6 meV-0.74 eV) в интервале температур 20-300 K (для краткости указанные

соединения будут обозначаться далее как κ -Br (М/СП) и κ -Cl (М/Д) соответственно). Для этой цели нами было предложено комбинированное использование "кластерной" тетрамерной модели [21] с учетом переноса заряда между ближайшими соседними молекулами внутри димера (BEDT-TTF)⁺₂ и между соседними ортогональными димерами и модели Друде для свободных носителей заряда.

Ранее в работе [24] проанализирован отклик свободных носителей заряда в низкочастотной части спектра материалов с содержанием Br x = 0.73 и 0.85, при низких температурах (но T > 11.3 K) являющихся металлами, близкими в моттовскому изолятору. Проведено сравнение этих экспериментальных данных с расчетами по теории динамического среднего поля.

2. Эксперимент

Поляризованные спектры отражения монокристаллов исследованных соединений в области от 50 до $6000\,\mathrm{cm}^{-1}$ при температурах от 20 до 300 К были получены с помощью ИК-Фурье-спектрометра Bruker IFS 113v и гелиевого прокачного криостата Конти. Для измерения абсолютных значений отражения использовалась методика, предложенная в работе [25]: после измерения температурной зависимости отражения образца на него in citu напылялась пленка золота толщиной около 100 nm и измерялась температурная зависимость отражения этого эталона. Абсолютные значения отражения при каждой измеренной температуре определялись как отношение R(образца)/R(эталона). Спектры оптической проводимости были получены с помощью соотношений Крамерса-Кронига. При этом использовалась экстраполяция Хагенса-Рубена в низкочастотную область. Для высокочастотной экстраполяции использовались данные о спектрах отражения аналогичных материалов в видимой области [6,7], а на более высоких частотах принималось $R \sim \omega^{-2}$.

3. Результаты

3.1. Спектры отражения. Ha рис. 1, a-dпредставлены полученные нами ранее в работе [23] спектры отражения $R(\omega)$ кристаллов κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_{0.9}Cl_{0.1} сверхпроводника с $T_c = 11.3$ К (рис. 1, a и b) — и κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl — проводника с переходом металл-диэлектрик при $T < 50 \,\mathrm{K}$ (рис. 1, *c* и *d*) для наиболее развитой грани кристалла (*ac*), в которой расположены проводящие слои молекул BEDT-TTF, в поляризациях **E** || *a* и **E** || *c* в интервале $100-5000 \,\mathrm{cm}^{-1}$ при температурах 300, 150, 90, 50 и 20К. На вставке приведена проекция структуры проводящего слоя $(BEDT-TTF)_{2}^{+}$ на эту грань (см. [18]). Характерные особенности всех представленных спектров, наблюдае-

Рис. 1. Спектры отражения кристаллов κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_{0.9}Cl_{0.1} в поляризациях **E** || a (a) и **E** || c (b) и кристаллов κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl в поляризациях **E** || a (c) и **E** || c (d) при T = 300 (1), 150 (2), 90 (3), 50 (4), 20 K (5). На вставке — структура проводящего слоя (BEDT-TTF)₂ [18].

мые также в [4–11], следующие: 1) широкий максимум, расположенный в ИК-области (1500–3500 сm⁻¹), что является существенным отличием спектров данных проводников от присущего металлам "друдевского" ("металлического") вида спектров; 2) интенсивные особенности в области 1500–480 сm⁻¹, которые являются следствием взаимодействия электронной системы с A_g -ВМК (см. раздел 1); 3) различие формы ИК-максимума в поляризациях **Е** || *а* и **Е** || *с* (анизотропия спектров в проводящей плоскости): для **Е** || *а* наблюдается один широкий максимум около 2300 сm⁻¹; для **Е** || *с* проявля-

988

ется второй максимум около 3500 сm⁻¹, наиболее ярко выраженный при низких температурах.

Рис. 1 показывает, что имеется существенное различие спектров $R(\omega)$ у двух исследованных кристаллов. Видно, что у κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_{0.9}Cl_{0.1} в низкочастотной области наблюдается характерное для металлов увеличение отражения при уменьшении частоты, которое ярко выражено при низких температурах. У κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl такого увеличения не наблюдается. В то же время характерный максимум в ИК-области наблюдается у обоих соединений.

Рис. 2. Экспериментальные (1) и расчетные (2-4) спектры оптической проводимости κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_{0.9}Cl_{0.1} в поляризации E || *а* при T = 300 (*a*), 90 (*b*), 50 (*c*) и 20 K (*d*): $\sigma(\omega)_{exp}$ (1), $\sigma(\omega)_{Drude}$ (2), $\sigma(\omega)_{tetra}$ (3), $\sigma(\omega)_{cryst}$ (4).

3.2. Спектры оптической проводимости. Ha рис. 2, a-d3, a-dпредставлены И оптической проводимости спектры $\sigma(\omega)$ κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_{0.9}Cl_{0.1} в поляризациях $\mathbf{E} \parallel a$ и $\mathbf{E} \parallel c$ при температурах 300, 90, 50 и 20 К. Видно, что указанные особенности спектров отражения проявляются в спектрах $\sigma(\omega)$ наиболее отчетливо. Для Е || а максимум в ИК-области при указанных температурах находится на частотах 2080, 1880, 1880 и 2000 cm⁻¹ соответственно, т.е. слегка сдвигается при понижении температуры в сторону низких частот, но затем при 20 К вновь сдвигается к более высокой частоте и сильно уширяется. При 50 и 20 К наблюдается увеличение оптической проводимости при уменьшении частоты в интервале 400-100 cm⁻¹, особенно резкое при 20 К. Наиболее интенсивные особенности ЭКВ при 300 К находятся на частотах 1209, 871 и 418 cm⁻¹ и обусловлены взаимодействием электронов с полно-

Рис. 3. Экспериментальные (1) и расчетные (2-4) спектры оптической проводимости κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_{0.9}Cl_{0.1} в поляризации **E** || *с* при T = 300 (*a*), 90 (*b*), 50 (*c*) и 20 K (*d*). Обозначение кривых то же, что на рис. 2. На вставке — зависимость интеграла перекрывания от дигедрального угла θ между плоскостями молекул в структуре κ -фазы [30].

симметричными (A_g) модами υ_2 , υ_3 , υ_6 , υ_7 и υ_{10} (для молекулы BEDT-TTF симметрии D_{2h}) [12]. Особенность на 1209 сm⁻¹ имеет резкие провалы на частотах 1272 и 1174 сm⁻¹, относящиеся к ЭКВ с модами $\upsilon_5(A_g)$ и $\upsilon_{38}(B_{2g})$, и сдвигается в сторону более высоких частот (на 49–52 сm⁻¹) при понижении температуры.

990

Рис. 2 и 3 демонстрируют также анизотропию спектров: для $\mathbf{E} \parallel a$ наблюдается один широкий максимум в ИК-области около 2080 сm⁻¹ при 300 K, а для $\mathbf{E} \parallel c$ проявляются два максимума в этой об-

ласти при $3200-3300 \text{ cm}^{-1}$ и более размытый в области $1500-3000 \text{ cm}^{-1}$, хорошо различимые при T = 150-20 K. Положение этих максимумов слабо зависит от температуры.

На рис. 4, a-d и 5, a-d представлены спектры оптической проводимости $\sigma(\omega)$ κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl в поляризациях **E** || a и **E** || c при температурах 300, 90, 50 и 20 К. Из рисунков видно, что спектры в общих чертах по положению и форме ИК-максимума, положению и отнесению особенностей ЭКВ, анизотропии

Рис. 4. Экспериментальные (1) и расчетные (2–4) спектры оптической проводимости κ -(BEDT–TTF)₂Cu[N(CN)₂]Cl в поляризации **E** || *а* при T = 300 (*a*), 90 (*b*), 50 (*c*) и 20 K (*d*). Обозначение кривых то же, что на рис. 2.

подобны спектрам κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_{0.9}Cl_{0.1}. Основное отличие заключается в том, что в этих спектрах не наблюдается увеличения σ с уменьшением частоты при низких частотах и уширения ИК-максимума при 20 К. Имеются также и определенные различия в особенностях ЭКВ, наиболее отчетливо проявляющиеся при низких температурах.

4. Обсуждение результатов

4.1. Теоретическая модель. Для описания оптических спектров низкоразмерных молекулярных проводников главным образом используются два альтернативных приближения, учитывающих электронноколебательное взаимодействие: теория "фазовых фононов", предложенная в [22], и "кластерные" модели [26]. Первая теория предполагает, что электроны делокализованы, а электронные корреляции могут быть приняты во внимание только в приближении среднего поля. В кластерном приближении, предложенном для молекулярных проводников κ -фазы в [21], наиболее простая модель проводящего слоя представляет собой два ортогональных димера (BEDT–TTF)⁺₂ с двумя дырками на внешних молекулярных орбиталях BEDT–TTF. Модель рассматривает электронные корреляции в приближении Хаббарда и учитывает взаимодействие электронов с внутримолекулярными колебаниями.

Рис. 5. Экспериментальные (1) и расчетные (2-4) спектры оптической проводимости κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl в поляризации E || *с* при T = 300 (*a*), 90 (*b*), 50 (*c*) и 20 K (*d*). Обозначение кривых то же, что на рис. 2.

Так как теория "фазовых фононов" написана для одномерного случая и, кроме того, предполагает наличие энергетической щели в спектре электронных возбуждений, для описания делокализованных электронов в настоящей работе мы использовали простую модель Друде: $\varepsilon = \varepsilon_{\infty} - \omega_p^2/(\omega^2 + i\Gamma_D\omega)$. Для количественного описания полученных нами спектров $\sigma(\omega)$ мы использовали комбинацию кластерной теории и модели Друде аналогично тому, как это было сделано нами ранее для описания оптических свойств молекулярного сверхпроводника κ -(BETS)₄Hg_{2.84}Br₈ [27].

992

Принятое нами кластерное приближение описывается уравнением

$$H = H_e + H_V + \sum_{\alpha,i} g_{\alpha,i} n_i Q_{\alpha,i} - \mathbf{p} \cdot \mathbf{E}, \qquad (1)$$

где первые два члена описывают соответственно электроны (дырки) и внутримолекулярные колебания каждой молекулы в отсутствие ЭКВ, третий член описывает ЭКВ в линейном приближении, где $g_{\alpha,i}$ обозначает константы ЭКВ электронной плотности дырок n_i на молекуле i и моды $\alpha(A_g)$ колебаний этой молеку-

лы с безразмерной координатой $Q_{\alpha,i}$. Последний член представляет собой энергию взаимодействия электрического дипольного момента **р** тетрамера, наведенного смещением электронной плотности дырок во внешнем электрическом поле **E**.

Электронный гамильтониан *H_e* принимается в приближении Хаббарда

$$H_{e} = \frac{U}{2} \sum_{i,\sigma} n_{i,\sigma} n_{i,-\sigma} - t \sum_{\sigma} (c_{1}^{+}c_{2} + c_{3}^{+}c_{4} + \text{h.c.}) - t' \sum_{\sigma} (c_{2}^{+}c_{3} + c_{2}^{+}c_{4} + \text{h.c.}), \qquad (2)$$

где U — энергия кулоновского отталкивания двух электронов (дырок) на одной молекуле, t и t' — интегралы переноса заряда между молекулами внутри димера и между димерами.

Комплексная проводимость кристалла *к*-фазы определяется выражением [28]

$$\sigma_{\text{tetra}}(\omega) = -i\omega N(\mathbf{p}, [\mathbf{I} - \mathbf{X} \cdot \text{diag}\mathbf{D}]^{-1} \cdot \mathbf{X} \cdot \mathbf{p}), \quad (3)$$
$$\mathbf{p} = \begin{pmatrix} e(a+a') \\ ea \\ 0 \\ 0 \end{pmatrix}, \quad (4)$$

где N — концентрация тетрамеров, a и a' — расстояния между молекулами BEDT—TTF внутри димера и между димерами, I обозначает унитарную матрицу, diagD — диагональная матрица с компонентами

$$D_{i}(\omega) = \sum_{\alpha} \frac{2g_{\alpha,i}^{2}\omega_{\alpha i}}{\omega_{\alpha i}^{2} - \omega^{2} - i\omega\gamma_{\alpha i}},$$
(5)

X обозначает матрицу электронных поляризуемостей с элементами

$$\chi_{ij} = \sum_{\beta} \frac{\langle 1|n_i|\beta\rangle\langle\beta|n_j|1\rangle 2\omega_{\beta 1}}{\omega_{\beta 1}^2 - \omega^2 - i\omega\Gamma_{\beta}}.$$
 (6)

В равенстве (5) $\omega_{\alpha i}$ и $\gamma_{\alpha i}$ — частота и коэффициент затухания α -моды A_g -ВМК. В равенстве (6) Γ_{β} — феноменологический коэффициент затухания электронного возбуждения с переносом заряда с энергией $\omega_{\beta 1} = E_{\beta} - E_1; E_{\beta}$ и $|\beta\rangle$ — собственные величины и собственные функции электронного гамильтониана H_e в равенстве (1). $\beta = 1$ обозначает основное состояние. Согласно [29], вклад в $\sigma(\omega)$ вносят два разрешенных перехода: ω_{21} и ω_{51} .

Общая проводимость кристалла определялась как сумма оптической проводимости локализованных электронов σ_{tetra} и сквозной проводимости квазисвободных "друдевских" электронов σ_{Drude} .

Мы полагаем, что анизотропия экспериментальных спектров $R(\omega)$ и $\sigma(\omega)$ в плоскости (ac) может быть обусловлена различной ориентацией молекул BEDT-TTF относительно осей a и c (вставка на рис. 1 [18]) и

зависимостью интегралов перекрывания от дигедрального угла θ между плоскостями молекул в структуре к-фазы (вставка на рис. 3 [30]). Поскольку длинная ось молекулы BEDT-TTF наклонена под острым углом к оси $a ~ (\sim 56^{\circ})$, мы полагаем, что интеграл перекрывания между соседними ортогональными димерами вдоль оси a больше соответствующего интеграла вдоль оси c, в то время как внутридимерные интегралы перекрывания вдоль осей a и c близки. Поэтому в спектрах $\sigma(\omega)$ в поляризации Е || с более отчетливо проявляется внутридимерный перенос заряда (хорошо выраженный при низких температурах максимум вблизи 3200-3300 cm⁻¹) наряду с переносом заряда между четырьмя молекулами в тетрамере (широкий максимум при 1500-3000 cm⁻¹). Можно было бы предположить, что наблюдаемая анизотропия спектров $\sigma(\omega)$ определяется анизотропией интеграла переноса t'. Однако сделанный нами расчет $\sigma(\omega)$ с различными значениями t' для $\mathbf{E} \parallel a$ и $\mathbf{E} \parallel c$ в большом интервале значений t' не привел к наблюдаемому на опыте (рис. 2 и 3 и рис. 4 и 5) различию $\sigma(\omega)$ в этих поляризациях. Поэтому на основани приведенной выше анизотропии структуры и интегралов перекрывания мы предположили, что в поляризации Е || с возможно наблюдение как чисто внутридимерных переходов заряда (которые не проявляются в спектрах для $\mathbf{E} \parallel a$), так и тетрамерных переходов, т.е. переходов между четырьмя молекулами. В этом упрощенном предположении общая проводимость кристалла определяется выражениями

$$\sigma_{\text{cryst}}(\omega) = \sigma_{\text{tetra}} + \sigma_{\text{Drude}}, \quad \mathbf{E} \parallel a,$$
 (7)

$$\sigma_{\text{cryst}}(\omega) = (1 - \delta)\sigma_{\text{tetra}} + \delta\sigma_{\text{dimer}} + \sigma_{\text{Drude}} \quad (\delta \le 1), \quad \mathbf{E} \parallel c.$$
(8)

Параметр δ определяет долю чисто внутридимерных переходов.

4.2. Сравнение с экспериментом. Полученные расчетные зависимости $\sigma_{\text{tetra}}(\omega)$, $\sigma_{\text{Drude}}(\omega)$ и общей проводимости кристалла $\sigma_{\text{cryst}}(\omega)$ (7) и (8) представлены на рис. 2 и 3 для κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_{0.9}Cl_{0.1} и рис. 4 и 5 для κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl для обеих поляризаций вместе с экспериментальными спектрами $\sigma_{\text{ехр}}(\omega)$ при T = 300, 90, 50 и 20 К.

Видно, что представленные расчетные (подгоночные) спектры для обеих поляризаций достаточно хорошо описывают экспериментальные спектры — положение и интенсивность ИК-максимума, положение и форму особенностей ЭКВ. (Экспериментальные спектры $\sigma(\omega)$ при 150 К, не представленные на рисунках, также описываются расчетным спектром.) Показано, что наилучшая подгонка экспериментальных спектров $\sigma(\omega)$ достигается только при учете суммы параллельных составляющих (7) и (8). Предложенная упрощенная модель объясняет наблюдаемую анизотропию спектров в проводящей плоскости кристаллов (ac). Полученные путем подгонки спектров параметры — величины t, t', $\Gamma_{\beta}, \omega_{p}, \Gamma_{D}$ — приведены на рис. 6 для κ -Вг (М/СП) (a, b, c) и для κ -Cl (М/Д) (d). Величина U, определенная для молекулы BEDT-TTF в данном приближении,

994

Рис. 6. Физические параметры спектров $\sigma_{cryst}(\omega)$ κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_{0.9}Cl_{0.1} при Е || a (a, b), Е || c (c) и κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl при Е || a (d) при температурах 300, 150, 90, 50 и 20 К.

находилась в пределах 2900–2200 сm⁻¹ (0.36–0.27 eV). Эта величина согласуется со значением, полученным в [23] для кулоновского отталкивания электронов между соседними димерами: $U_{dimer} = 2000 \text{ cm}^{-1}$. Из этих рисунков видно, что наблюдаются следующие различия параметров и их изменения с температурой для двух соединений. При подгонке расчетных спектров в поляризации **E** || *c*, в которой отчетливо наблюдается димерный максимум при 3200–3300 сm⁻¹, было установлено, что параметр *t* в интервале T = 300-20 K изменяется в пределах 1600–1680 сm⁻¹ (0.2–0.21 eV), т.е. не больше чем на 5%. Поэтому при подгонке спектров параметр *t* принимался постоянным (t = 0.2 eV) в исследованном интервале *T*. Мы полагаем, что отсутствие димерного

максимума в поляризации $\mathbf{E} \parallel a$ связано с давыдовским расщеплением, вторая компонента которого ($\parallel a$) попадает в область более интенсивного тетрамерного максимума и поэтому не видна в спектре.

Наиболее существенны следующие наблюдаемые нами закономерности.

4.2.1. κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_{0.9}Cl_{0.1} (M/CΠ). E || *a*

1) Наблюдаемая зависимость положения электронного максимума ω_{max} от T коррелирует с зависимостью t'/tот T (рис. 6, *a*). Это указывает на то, что спектр в данной области определяется в значительной степени переносом заряда между ортогональными димерами и подтверждает, по нашему мнению, обоснованность использования "кластерной" тетрамерной модели.

2) Наблюдается слабое уменьшение затухания Γ_{β} электронного возбуждения при уменьшении *T* с небольшим минимумом при 150 K (0.21 eV) и резкое возрастание его (до 0.37 eV) при 20 K.

3) Величина ω_p квазисвободных ("друдевских") электронов практически не зависит от T, небольшое увеличение ω_p наблюдается при 20 К. Затухание "друдевских" электронов Γ_D резко уменьшается при T < 150 К. При 300 и 150 К эти электроны представляют собой сильно затухающую (сильно демпфированную) электронную систему, так как $\Gamma_D > \omega_p$, и дают слабую подставку в $\sigma_{cryst}(\omega)$. Ниже 150 К наблюдается резкое уменьшение Γ_D , так что при 20 К Γ_D становится много меньше ω_p ($\Gamma_D \ll \omega_p$), и наблюдается резкий друдевский пик в $\sigma_{cryst}(\omega)$ на низких частотах. Эти результаты позволяют связать сильное возрастание затухания Γ_β локализованных на кластерах электронов с их взаимодействием с квазисвободыми ("друдевскими") электронами.

4) В табл. 1 приведены константы g_{α} ЭКВ с полносимметричными внутримолекулярными колебаниями A_g -ВМК (ЕМV coupling). (При отнесении особенностей ЭКВ в спектрах $\sigma(\omega)$ нами были использованы данные работы [12] для частот и формы A_g -ВМК молекулы BEDT-TTF и иона (BEDT-TTF)^{+0.5e}). Видно, что наибольшую константу ЭКВ имеет ВМК $\upsilon_3(A_g)$ $g_3 = 0.092$ eV. При понижении T наблюдается уменьшение констант ЭКВ: $\upsilon_3(A_g)$ от $g_3 = 0.092$ eV до $g_3 = 0.06$ eV и $\upsilon_7(A_g)$ от $g_7 = 0.031$ eV до $g_7 = 0.025$ eV при 300 и при 20 K соответственно. Кроме того, при 20 K несколько изменяется форма особенности ЭКВ $\upsilon_7(A_g)$. Другие константы практически не изменяются.

1) В спектрах $\sigma(\omega)$ в ИК-области наблюдаются два максимума: широкий около 2200 сm⁻¹, наблюдаемый в спектре для Е || *а* и отнесенный нами к возбуждениям локализованных электронов в тетрамере, и более узкий максимум при 3200–3300 сm⁻¹ (см. также в [23]), который, как показано в [21], относится к переходу электрона между молекулами BEDT–TTF в димерах. Из рис. 3 видно, что спектр общей проводимости кристалла $\sigma_{cryst}(\omega)$ хорошо описывается уравнением (8). Параметр $\delta = 0.4$

 $(10^{-2} \,\mathrm{eV})$ g_{α}

для

	$\upsilon_lpha(A_g)$				(D) 1174	$\upsilon_{lpha}(A_{g})$		
<i>Т</i> , К	$v_2 = 1496 \ cm^{-1}$	$v_3 = 1468 \ cm^{-1}$	$v_4 = 1370 \ { m cm}^{-1}$	$v_5 = 1276 \ cm^{-1}$	$v_{38} (B_{2g}) = 11/4$ cm ⁻¹	$\begin{array}{c} \upsilon_6 = 977 \\ \mathrm{cm}^{-1} \end{array}$	$\begin{array}{c} \upsilon_7 = 912 \\ \mathrm{cm}^{-1} \end{array}$	$v_{10} = 480 \ { m cm}^{-1}$
300	0.6	9.2	1.2	1.0	1.0	0.6	3.1	4.3
150	1.2	7.4	0.6	1.0	1.0	0.25	1.4	1.9
90	1.2	6.8	0.5	1.0	0.6	0.37	1.9	3.7
50	0.7	7.1	0.7	0.87	0.7	0.25	3.1	4.0
20	0.7	6.2	0.7	0.7	0.87	0.25	2.5	4.2

взаимолействия

* Отнесение особенностей ЭКВ для молекулы BEDT-TTF симметрии D_{2h} [12].

Таблица 2. Константы электронно-колебательного взаимодействия ga (10⁻² eV) для соединения к-(BEDT-TTF)₂Cu[N(CN)₂]Cl $(M/Д) (E \parallel a)^*$

	$\upsilon_{a}(A_{g})$					$\upsilon_{lpha}(A_g)$		
Т, К	$v_2 = 1496 \ cm^{-1}$	$v_3 = 1468 \ { m cm}^{-1}$	$\begin{array}{c} \upsilon_4 = 1370 \\ cm^{-1} \end{array}$	$\begin{array}{c} \upsilon_5 = 1276\\ \mathrm{cm}^{-1} \end{array}$	$v_{38} (B_{2g}) = 11/4$ cm ⁻¹	$v_6 = 977$ cm ⁻¹	$v_7 = 912$ cm ⁻¹	$v_{10} = 480 \ { m cm}^{-1}$
300	0.6	9.1	1.2	1.0	0.74	0.25	3.2	4.4
150	1.2	7.4	0.6	1.0	1.0	0.25	3.1	2.4
90	1.2	6.2	0.5	1.9	1.0	0.37	3.4	4.7
50	0.6	5.8	0.87	1.2	1.1	0.6	2.7	4.1
20	0.6	6.6	1.4	0.6	0.5	0.25	3.1	3.9

* Отнесение особенностей ЭКВ для молекулы BEDT-TTF симметрии D_{2h} [12].

при 300 К и увеличивается при понижении температуры до 0.47. Как показывает рис. 6, параметр t слабо увеличивается (в пределах 5%) при понижении Т (как было отмечено выше).

2) При понижении Т постепенно увеличивается вклад "друдевских" электронов: несколько увеличивается ω_p , уменьшается затухание Γ_D : при 172 К $\Gamma_D = \omega_p$, ниже 172 К $\Gamma_D < \omega_p$, электроны становятся квазисвободными, и при 50 и 20 К наблюдается увеличение σ при уменьшении частоты.

3) Константы ЭКВ и их температурные зависимости очень близки к тем, которые определены для поляризации $\mathbf{E} \parallel a$ (в пределах ошибки определения параметров при подгонке спектров).

4.2.2. *κ*-(BEDT-TTF)₂Cu[N(CN)₂]Cl (М/Д). $\mathbf{E} \parallel a$

Наблюдались существенные различия в изменении физических параметров при уменьшении температуры у этого кристалла (М/Д) (рис. 6, d) и у сверхпроводника (M/CП) (рис. 6, *a*, *b*).

1) t'/t заметно уменьшается (на 20%) при понижении T (в отличие от сверхпроводника, у которого t'/tувеличивается (на 30%) при уменьшении Т); наблюдается заметное уменьшение затухания Γ_{β} (на 50%) электронного тетрамерного перехода; заметно уменьшается вклад "друдевских" электронов (при 50 и 20 К $\omega_p = 0$). Параметр *t* практически не зависит (изменения до 2%) от температуры.

2) Различия в константах ЭКВ (g_a) и их зависимости от температуры у диэлектрика и сверхпроводника, а следовательно, и влияния "друдевских" электронов на g_{α} не наблюдалось (табл. 2). Эти факты позволяют заключить, что "друдевские" электроны не взаимодействуют с A_g -BMK.

 $\mathbf{E} \parallel c$

1) При понижении T параметр δ уменьшается от 0.49 при 300 К до 0.39 при 20 К; t'/t снижается (на 18%); уменьшаются постоянные затухания Г_в для димерного и тетрамерного переходов.

2) Константы ЭКВ и их температурные зависимости очень близки к тем, которые определены для поляризации Е || а (табл. 2).

5. Заключение

Таким образом, настоящей работе В представлены спектральные оптические исследования органических молекулярных проводников κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} c x = 0.9 (cBepxпроводник с $T_c = 11.3 \text{ K}$) и x = 0 (металл с переходом металл/диэлектрик при T < 50 K) при температурах 300, 150, 90, 50 и 20 К. Приведены спектры отражения $R(\omega)$ и спектры оптической проводимости $\sigma(\omega)$ в спектральной области $50-6000 \,\mathrm{cm}^{-1}$ (6 meV $-0.74 \,\mathrm{eV}$). Проведен количественный анализ спектров в рамках предложенной авторами модели, предполагающей

соелинения

участие в переносе заряда двух видов носителей локализованных на димерах и тетрамерах молекул BEDT-TTF электронов (дырок) и квазисвободных ("друдевских") носителей заряда. Для этой цели использованы "кластерная" тетрамерная теория, основанная на гамильтониане Хаббарда для сильно коррелированных электронов, и модель Друде для квазисвободных носителей заряда. Определены физические параметры моделей, в том числе энергия кулоновского отталкивания двух электронов (дырок) на одной молекуле U, интегралы переноса между молекулами внутри димера t и между ортогональными димерами t', феноменологическое затухание электронного перехода Г_в. На основе этой модели дано объяснение природы характерного для молекулярных органических проводников к-фазы ИК-максимума в спектрах $R(\omega)$ и $\sigma(\omega)$ и анизотропии спектров в проводящей плоскости молекул BEDT-TTF.

996

Наблюдались существенные различия в изменении физических параметров t'/t и Γ_{β} при уменьшении температуры у кристаллов κ -Br (М/СП) и κ -Cl (М/Д). У кристаллов κ -Br наблюдается резкое возрастание Γ_{β} при 20 K, что указывает на взаимодействие локализованных на тетрамерах электронов с группой квазисвободных "друдевских" электронов. У кристаллов κ -Cl Γ_{β} значительно уменьшается при низких температурах, что свидетельствует о локализации носителей заряда.

Установлено, что константы ЭКВ и их температурные зависимости для соединений к-Вг (М/СП) и к-Сl (М/Д) очень близки, что указывает на то, что с внутримолекулярными колебаниями взаимодействуют только локализованные на кластерах (димерах и тетрамерах) электроны. "Друдевские" электроны с внутримолекулярными колебаниями не взаимодействуют, что свидетельствует о том, что ЭКВ не играет существенной роли в появлении сверхпроводимости в органических проводниках.

Авторы (Р.М.В., В.Н.С. и Б.В.П.) выражают глубокую благодарность В.М. Ярцеву за полезные обсуждения и алгоритм расчетов спектров по кластерной модели.

Список литературы

- [1] R.H. McKenzie. Science 278, 821 (1997).
- [2] H. Seo, C. Hotta, H. Fukuyama. Chem. Rev. (Washington, D.C.) 104, 5005 (2004).
- [3] M. Dressel, N. Drichko. Chem. Rev. 104, 5689 (2004).
- [4] K. Kornelsen, J.E. Eldridge, H.H. Wang, H.A. Charlier, J.M. Williams. Solid State Commun. 81, 343 (1992).
- [5] J.E. Eldridge, K. Kornelsen, H.H. Wang, J.M. Williams, A.V. Strieby Crouch, D.M. Watkins. Solid State Commun. 79, 583 (1991).
- [6] O.O. Drozdova, V.N. Semkin, R.M. Vlasova, N.D. Kushch, E.B. Yagubskii. Synth. Met. 64, 1, 17 (1994).
- [7] Р.М. Власова, О.О. Дроздова, В.Н. Семкин, Н.Д. Кущ, Э.Б. Ягубский. ФТТ 38, 3, 869 (1996).
- [8] Р.М. Власова, О.О. Дроздова, В.Н. Семкин, Н.Д. Кущ, Е.И. Жиляева, Р.Н. Любовская, Э.Б. Ягубский. ФТТ 41, 897 (1999).

- [9] M.Menegetti, R. Bozio, C. Pecile. J. Phys. (Paris) 47, 1377 (1986).
- [10] M.G. Kaplunov, E.B. Yagubskii, L.P. Rosenberg, Yu.G. Borodko. Phys. Status Solidi A 89, 509 (1985).
- [11] M.G. Kaplunov, R.N. Lyubovkaya, M.Z. Aldoshina, Yu.G. Borodko. Phys. Status Solidi A 104, 833 (1987).
- [12] J.E. Eldridge, Y. Xie, Hau H. Wang, J.M. Williams, A.M. Kini, J.A. Schlueter. Spectrochim. Acta A 52, 45 (1996); A 51, 947 (1995).
- [13] T. Ishiguro, K. Yamaji. Organic Superconductors. Springer Series in Solid-State Sciences. Springer-Verlag (1990). P. 88.
- [14] A.M. Kini, U. Geiser, H.H. Wang, K.D. Carlson, J.M. Williams, W.K. Kwok, K.G. Vandervoort, J.E. Thompson, D. Stupka, D. Jung, M.-H. Whngbo. Inorg. Chem. 29, 2555 (1990).
- [15] H.H. Wang, A.M. Kini, L.K. Montgomery, U. Geiser, K.D. Karlson, J.M. Willias, J.E. Thompson, D.M. Watkins, W.K. Kwok. Chem. Mater. 2, 482 (1990).
- [16] J.M. Williams, A.M. Kini, H.H. Wang, K.D. Carlson, U. Geiser, L.K. Montgomery, G.J. Pyrka, D.M. Watkins, L.M. Kommers, S.J. Boryschuk, A.V. Strieby Crouch, W.K. Kwok, J.E. Schirber, D.L. Overmyer, D. Jung, M.-H. Whangbo. Inorg. Chem. 29, 3272 (1990).
- [17] N.D. Kushch, L.I. Buravov, A.G. Khomenko, E.B. Yagubskii, L.D. Rozenberg, R.P. Shibaeva. Synth. Met. 53, 155 (1993).
- [18] U. Geiser, A. Schultz, H.H. Wang, D.M. Watkins, D.L. Stupka, J.M. Williams, J.E. Schirber, D.L. Overmyer, D. Jung, J.J. Novoa, M.-H. Whagbo. Physica C 174, 475 (1991).
- [19] J. Merino, R.H. McKenzie. Phys. Rev. B 61, 12, 7696 (2000).
- [20] B.V. Petrov, V.N. Semkin, R.M. Vlasova, V.M. Yartsev, N.D. Kushch, A. Graja. NATO Science Series. V. 59. / Eds. A. Graja, B.R. Bulka, F. Kajzar (2001). P. 259.
- [21] V.M. Yartsev, O.O. Drozdova, V.N. Semkin, R.M. Vlasova. J. Phys. I (France) 6, 1673 (1996).
- [22] M.J. Rice. Phys. Rev. Lett. 37, 1, 36 (1976).
- [23] D. Faltermeier, J. Barz, M. Dumm, M. Dressel, N. Drichko, B. Petrov, V. Semkin, R. Vlasova, C. Meziere, P. Batail. Phys. Rev. B 76, 165 113 (2007).
- [24] J. Merino, M. Dumm, N. Drichko, M. Dressel, R.H. McKenzie. Phys. Rev. Lett. 100, 086 404 (2008).
- [25] C.C. Homes, M. Reedyk, D.A. Cradles, T. Timusk. Appl. Opt. 32, 2976 (1993).
- [26] V.M. Yartsev. Springer proc. in physics. V. 81. Material and measurements in molecular electronics / Eds K. Kajimura, S. Kuroda. Springer-Verlag, Tokyo (1996). P. 189.
- [27] Р.М. Власова, Н.В. Дричко, Б.В. Петров, В.Н. Семкин, Е.И. Жиляева, Р.Н. Любовская, I. Olejniczak, A. Kobayashi, Н. Kobayashi. ФТТ 46, 11, 1921 (2004).
- [28] P. Delhaes, V.M. Yartsev. In: Spectroscopy of new materials / Eds R.J.H. Clark, R.E. Hester. Wiley, Chichester (1993). P. 199.
- [29] V.M. Yartsev, O.O. Drosdova, V.N. Semkin, R.M. Vlasova, R.N. Lyubovskaya. Phys. Status Solidi B 209, 471 (1998).
- [30] T. Mori, H. Mori, S. Tanaka. Bull. Chem. Soc. Jpn. 72, 179 (1999).