## Оптические 4f - 4f-переходы в мультиферроике HoMnO<sub>3</sub>

© Н.Н. Лошкарева, А.С. Москвин\*, А.М. Балбашов\*\*

Институт физики металлов Уральского отделения Российской академии наук, Екатеринбург, Россия \* Уральский государственный университет им. А.М. Горького, Екатеринбург, Россия \*\* Московский энергетический институт, Москва, Россия E-mail: loshkareva@imp.uran.ru

## (Поступила в Редакцию 9 июля 2008 г.)

В спектрах поглощения монокристалла гексагонального манганита HoMnO<sub>3</sub> в парамагнитном сегнетоэлектрическом состоянии обнаружены линии вблизи 1.1 и 2.0  $\mu$ m, связаные соответственно с переходами  ${}^{5}I_{8} \rightarrow {}^{5}I_{6}$  и  ${}^{5}I_{8} \rightarrow {}^{5}I_{7}$  в пределах электронной конфигурации  $4f^{10}$  иона Ho<sup>3+</sup>. При T = 80 K переходу  ${}^{5}I_{8} \rightarrow {}^{5}I_{7}$  в HoMnO<sub>3</sub> соответствует одна полоса при 1.9  $\mu$ m для обеих поляризаций: Е || *с* и Е  $\perp$  *с*. С ростом температуры от 80 до 293 K наблюдается "возгорание" низкоэнергетической полосы с пиком при 2.04  $\mu$ m для Е  $\perp$  *с* и 2.07  $\mu$ m для Е || *с*, связанной с переходами с возбужденого штарковского уровня основного мультиплета  ${}^{5}I_{8}$  на штарковские уровни мультиплета  ${}^{5}I_{7}$  и ростом заселенности начального штарковского уровня, энергия которого составляет ~ 100 K.

Работа выполнена по плану РАН, при поддержке РФФИ (грант № 08-02-00633) и программы ОФН РАН и президиума УрО РАН "Новые материалы и структуры".

PACS: 75.47.Lx, 78.20.-e

Мультиферроики (или сегнетомагнетики [1]) в последнее время привлекают к себе внимание возможностью использования магнитоэлектрического взаимодействия в области сосуществования магнитного и ферроэлектрического (сегнетоэлектрического) порядков для разработки новых устройств спинтроники. Оптические и магнитооптические методы являются весьма информативными для изучения электронной структуры мультиферроиков и выявления магнитоэлектрического взаимодействия. Например, с помощью эффекта Фарадея и оптической генерации второй гармоники обнаружен индуцированный статическим электрическим полем ферромагнитный вклад в гексагональном HoMnO<sub>3</sub> [2]. НоМnO<sub>3</sub> проявляет ферроэлектрический порядок ниже  $T_C = 875 \, {\rm K}$ , антиферромагнитный порядок ниже  $T_N = 75 \, {\rm K}$  и магнитное упорядочение  $Ho^{3+}$  ниже 4.6 K [2].

Спектроскопические свойства трехвалентного гольмия,  $\text{Ho}^{3+}$  (4 $f^{10}$ ), изучаются на протяжении многих лет в различных материалах. Так, линии поглощения, соответствующие переходам  ${}^{5}I_8 \rightarrow {}^{5}I_6$  и  ${}^{5}I_8 \rightarrow {}^{5}I_7$ , наблюдались в феррит-гранате  $\text{Ho}_3\text{Fe}_5\text{O}_{12}$  и  $\text{Y}_3\text{Fe}_5\text{O}_{12}$ :  $\text{Ho}^{3+}$  [3], в гранате  $\text{Y}_3\text{Al}_5\text{O}_{12}$  с ионами  $\text{Ho}^{3+}$  [4] вблизи 1.1 и 2.0  $\mu$ m, соответственно. В этом же диапазоне наблюдалась когерентная эмиссия с уровней  ${}^{5}I_6$  и  ${}^{5}I_7$  в  $\text{Y}_3\text{Fe}_5\text{O}_{12}$ :  $\text{Ho}^{3+}$  и  $\text{Y}_3\text{Al}_5\text{O}_{12}$ :  $\text{Ho}^{3+}$  [4,5]. В ферритегранате  $\text{Ho}_3\text{Fe}_5\text{O}_{12}$  на этих переходах обнаружен эффект Фарадея на редкоземельной подрешетке, который имеет различные знаки при T = 77 и 300 K [6].

Настоящая работа посвящена обнаружению и исследованию оптических 4f - 4f-переходов ионов Ho<sup>3+</sup> в ближнем и среднем ИК-диапазонах в монокристалле гексагонального манганита HoMnO<sub>3</sub>. Монокристалл гек-

сагонального манганита HoMnO<sub>3</sub> был выращен методом плавающей зоны с радиационным нагревом при температуре печи отжига 1300°C со скоростью роста 7.5 mm/h. Рентгеновский анализ показал однофазный состав с параметрами решетки a = 6.140 Å, c = 11.408 Å.

Спектры отражения и поглощения  $HoMnO_3$  в спектральной области  $1-30\,\mu\text{m}$  были измерены с помощью высокочувствительного призменного ИК-спектрометра в области температур 80-300 K, в которой  $HoMnO_3$  является парамагнетиком и сегнетоэлектриком. Для измерения поглощения использовались пластинки  $HoMnO_3$  (110) толщиной 0.6 mm. Оптические поверхности готовились шлифовкой и полировкой алмазными пастами.

На вставке к рис. 1 приведен спектр отражения НоМпО<sub>3</sub> в неполяризованном свете. Видно, что взаимодействие света с колебаниями решетки начинается при длинах волн больше 12.5 $\mu$ m (800 cm<sup>-1</sup>). Согласно литературным данным [7], спектр отражения HoMnO<sub>3</sub> при поляризации **E**  $\perp$  *с* начинается при 16.3 $\mu$ m (620 cm<sup>-1</sup>). Такое различие обусловлено сильной анизотропией спектров отражения. Сильная анизотропия фононных спектров была обнаружена в кристалле гексагонального манганита LuMnO<sub>3</sub> при измерении спектров отражения в поляризациях **E**  $\parallel$  *с* и **E**  $\perp$  *c* [8].

На рис. 1 приведены спектры поглощения HoMnO<sub>3</sub> в среднем ИК-диапазоне. Малая величина коэффициента поглощения свидетельствует о высоком качестве монокристалла. Из рис. 1 видно, что длинноволновый край "окна прозрачности" HoMnO<sub>3</sub> ограничен ~ 5 $\mu$ m. При больших длинах волн (5.0 <  $\lambda$  < 12.5 $\mu$ m) поглощение света обусловлено комбинированными фононными мо-



**Рис. 1.** Спектры поглощения HoMnO<sub>3</sub> в среднем ИК-диапазоне для двух поляризций  $\mathbf{E} \parallel c$  и  $\mathbf{E} \perp c$  при температуре T = 80 К. На вставке — спектр отражения монокристалла HoMnO<sub>3</sub> в неполяризованном свете при T = 293 К.



**Рис. 2.** Спектры поглощения HoMnO<sub>3</sub> в ближнем ИК-диапазоне для двух поляризций  $\mathbf{E} \parallel c$  и  $\mathbf{E} \perp c$  при температуре T = 80 K (точки) и 293 К (линии). На вставке — температурная зависимость пропускания света на длине волны  $\lambda = 2.05 \, \mu$ m.

дами. Поглощение в этой области сильно анизотропно. Дихроизм, равный отношению разности коэффициентов поглощения при двух поляризациях **E** || *c* и **E**  $\perp$  *c* к их сумме,  $(\alpha_a - \alpha_c)/(\alpha_a + \alpha_c)$ , равен ~ 50% в диапазоне 7–9  $\mu$ m. Охлаждение от 293 до 80 K существенно не влияет на поглощение в этой области спектра.

В спектрах поглощения, измеренных в ближнем ИК-диапазоне (рис. 2), наблюдаются особенности вблизи 2.0 и  $1.1\,\mu$ m. Энергетическое положение, величина коэффициента поглощения, соотношение интенсивностей полос позволяет приписать их 4f-4f-переходам из основного мультиплета  ${}^5I_8$  конфигурации  $4f^{10}$ 

иона Ho<sup>3+</sup> на штарковские уровни возбуждения мультиплетов  ${}^{5}I_{7}$  и  ${}^{5}I_{6}$  соответственно. В простейшем приближении энергии "центров тяжести" этих мультиплетов определяются параметром спин-орбитальной связи  $\lambda$  (8 $\lambda$ и 15 $\lambda$  соответственно). В HoMnO<sub>3</sub> они практически такие же, как в случае граната Ho<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> [3] или ионов Ho<sup>3+</sup> в матрице граната Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> (YAG) [4].

Однако, если в гранатах интенсивность более или менее равномерно распределена между переходами на различные штарковские уровни возбужденных мультиплетов, что позволяет легко разрешить все 2J + 1 разрешенных переходов, то, например, переходу  ${}^{5}I_{8} \rightarrow {}^{5}I_{7}$  в НоМпО<sub>3</sub> при азотных температурах соответствует всего лишь одна полоса при  $1.9\,\mu$ m, причем для обеих поляризаций:  $\mathbf{E} \parallel c$  и  $\mathbf{E} \perp c$ . Этот эффект свидетельсвует о существенно различном характере кристаллического поля в этих системах, различающихся локальной симметрией позиций Ho<sup>3+</sup> ( $C_{s}$  в гранатах,  $C_{3}(C_{3v})$  в HoMnO<sub>3</sub>) [9]. Подобная HoMnO<sub>3</sub> ситуация наблюдалась для перехода  ${}^{5}I_{8} \rightarrow {}^{5}I_{7}$  и в других системах [10].

Спектры поглощения в области переходов  ${}^5I_8 \rightarrow {}^5I_7$ и  ${}^{5}I_{8} \rightarrow {}^{5}I_{6}$  сильно зависят от температуры. Так, с ростом температуры от 80 до 293 К наблюдается "возгорание" низкоэнергетической полосы с пиком при 2.04  $\mu$ m для **E**  $\perp$  *c* и 2.07  $\mu$ m для **E**  $\parallel$  *c*. Температурная зависимость пропускания света в низкоэнергетической полосе при Е || с представлена на вставке к рис. 2. Очевидно, что эта полоса связана с переходами с возбуженного штарковского уровня основного мультиплета  ${}^{5}I_{8}$  на штарковские уровни мультиплета  ${}^{5}I_{7}$ . Сильный рост интенсивности полосы с температурой является результатом роста заселенности начального штарковского уровня. Простейшие оценки больцмановской заселенности показывают, что температурный эффект может быть объяснен в предположении, что энергия начального штарковского уровня составляет ~ 100 К. Штарковские уровни с близкой энергией наблюдались в разных системах с Ho<sup>3+</sup> (в ортоферрите HoMnO<sub>3</sub> [11], гексагональном  $Sr_5(PO_4)F:Ho^{3+}[10]$ ).

Обращает на себя внимание сильный сдвиг спектрального веса в область больших энергий для высокоэнергетических переходов вблизи  $\sim 1.1 \,\mu m$  в обеих поляризациях при охлаждении от 293 до 80 K, который составляет 0.03 eV по сравнению со сдвигом высокоэнергетической полосы дублета 0.004 eV.

Обнаруженные полосы поглощения  $\text{Ho}^{3+}$  в гексагональном  $\text{HoMnO}_3$  могут найти применение при создании лазеров. В области магнитного упорядочения ( $T < T_N < 75 \text{ K}$ ) следует ожидать индуцированного электрическим полем эффекта Фарадея, который может служить эффективным индикатором состояния РЗ-решетки, а также иметь практическое применение.

Авторы признательны Л.Н. Рыбиной за рост кристалла, С.В. Наумову и Н.В. Костромитиной за рентгеновские исследования.

## Список литературы

- [1] Г.А. Смоленский, И.Е. Чупис. УФН 137, 415 (1982).
- [2] M. Fiebig, D. Frohlich, K. Kohn, St. Leute, Th. Lottermoser, V.V. Pavlov, R.V. Pisarev. Phys. Rev. Lett. 84, 5620 (2000).
- [3] D.L. Wood, J.P. Remeika. J. Appl. Phys. 38, 1038 (1967).
- [4] M. Malinowski, Z. Frukacz, M. Szuflinska, A. Whuk, M. Kaczkan. J. Alloys Comp. 300–301, 389 (2000).
- [5] Г.С. Кринчик, М.В. Четкин. ЖЭТФ 40, 729 (1961).
- [6] L.F. Johnson, J.P. Remeika, J.F. Dillon. Phys. Lett. 21, 37 (1966).
- [7] A.P. Litvinchuk, M.N. Iliev, V.N. Popov, M.M. Gospodinov. J. Phys.: Cond. Matter 16, 809 (2004).
- [8] A.B. Souchkov, J.R. Simpson, M. Quijada, H. Ishibashi, N. Hur, J.S. Ahn, S.W. Cheong, A.J. Millis, H.D. Drew. Phys. Rev. Lett. 91, 027 207 (2003).
- [9] M.N. Iliev, H.-G. Lee, V.N. Popov, M.V. Abrashev, A. Hamed, R.L. Meng, C.W. Chu. Phys. Rev. B 56, 2488 (1997).
- [10] J.B. Gruber, B. Zandi, M.D. Seltzer. J. Appl. Phys. 81, 7506 (1997).
- [11] J.C. Walling, R.L. White. Phys. Rev. B 10, 4737 (1974).