Кристаллоструктурные и магнитные фазовые превращения в системе BiFeO₃-CaFe_{0.5}Nb_{0.5}O₃

© И.О. Троянчук, Н.В. Терешко, М.В. Бушинский

Научно-практический центр по материаловедению Национальной академии наук Беларуси, Минск, Беларусь

E-mail: troyan@ifttp.bas-net.by

(Поступила в Редакцию 10 июня 2008 г.)

Исследованы кристаллическая структура и магнитные свойства системы $\operatorname{Bi}_{1-x}\operatorname{Ca}_x\operatorname{Fe}_{1-x/2}\operatorname{Nb}_{x/2}\operatorname{O_3}$. Показано, что при $x \leq 0.15$ симметрия элементарной ячейки твердых растворов является ромбоэдрической (пространственная группа R3c). Твердые растворы с $x \geq 0.3$ характеризуются орторомбической элементарной ячейкой (пространственная группа *Pbnm*). Ромбоэдрические составы являются антиферромагнитными, тогда как в орторомбических обнаружена небольшая спонтанная намагниченность за счет взаимодействия Дзялошинского-Мория. В CaFe_{0.5}Nb_{0.5}O₃ ионы Fe³⁺ и Nb⁵⁺ частично упорядочены, и элементарная ячейка описывается моноклинной пространственной группой $P2_1/n$. В интервале концентраций 0.15 < x < 0.3обнаружено двухфазное состояние (R3c + Pbnm).

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проекты Ф08-112 и Ф07-120).

PACS: 68.05.cf, 75.50.Bb, 75.50.Dd, 75.60.Ej

1. Введение

BiFeO₃ является одним из немногих материалов, в которых магнитное и дипольное упорядочения происходят значительно выше комнатной температуры. Температура, при которой устанавливается магнитное упорядочение, равна $T_N = 640 \, \text{K}$ [1]. Антиферромагнитное упорядочение — G-типа и циклоидально модулировано с периодом 620 Å [2,3]. Следствием этой модуляции является отсутствие спонтанной намагниченности и линейного магнитоэлектрического эффекта [4-6]. BiFeO₃ характеризуется элементарной ячейкой, которая описывается полярной пространственной группой R3c [7]. Дипольное упорядочение обусловлено относительным сдвигом ионов Bi³⁺, Fe³⁺ и O²⁻ вдоль гексагональной оси [001]. Дипольный порядок возникает вследствие стереохимической активности электронной пары 6s² иона висмута. Ион Ві³⁺ имеет валентную электронную конфигурацию $6s^2p^0$, при этом $6s^2$ -электроны иона Bi³⁺ гибридизируются как с пустыми $6p^0$ -орбиталями Bi^{3+} , так и с заполненными 2p⁶-электронами анионов О²⁻, образуя ковалентные связи Ві-О, что ведет к структурному искажению и дипольному порядку.

Одним из наиболее известных способов получения образцов, в которых модулированная магнитная структура разрушена и, как полагают, слабый ферромагнетизм сосуществует с дипольным порядком, заключается в замещении ионов висмута редкоземельными ионами [8–12]. Однако большая концентрация редкоземельных ионов ведет к разрушению дипольного порядка вследствие концентрационного структурного фазового превращения в неполярную фазу. Сегнетоэлектрические свойства обнаружены в твердых растворах на основе BiFeO₃—PbTiO₃ [13–16]. В этой системе твердых растворов вблизи концентрации 30% PbTiO₃ находится морфотропная фазовая граница, где симметрия элементарной

ячейки меняется от ромбоэдрической (пространственная группа R3c) к тетрагональной, которая описывается полярной группой *Р4mm*. Однако в этом случае для появления спонтанной намагниченности необходимо легирование редкоземельными ионами. Это обусловлено тем, что в группе *Р4mm* слабый ферромагнетизм запрещен.

Кроме BiFeO₃ есть другой интересный материал, PbFe0.5Nb0.5O3, который, как предполагают, также является мультиферроиком при температурах выше комнатной [17-23]. Это вещество является сегнетоэлектриком с $T_C = 370$ К и антиферромагнетиком с $T_N \approx 150$ К, причем при $T \le 370 \,\mathrm{K}$ обнаружена небольшая спонтанная намагниченность [17]. Причины появления спонтанной намагниченности при температуре выше $T_N \approx 150 \,\mathrm{K}$ остаются неясными. Интерпретация магнитных свойств мультиферроиков является сложной задачей, так как спонтанная намагниченность, как правило, очень мала и неясно, чем она обусловлена. Небольшое количество сильномагнитных примесей со структурой типа гексаферрита или у-Fe₂O₃, которые трудно выявить при рентгенофазовом анализе, может сильно повлиять на магнитные свойства образов.

В настоящей работе проведено исследование кристаллической структуры и магнитных свойств твердых растворов в системе типа BiFeO₃-CaFe_{0.5}Nb_{0.5}O₃. Показано, что появление спонтанной намагниченности строго коррелирует с типом кристаллоструктурных искажений элементарной ячейки.

2. Эксперимент

Система состава $Bi_{1-x}Ca_xFe_{1-x/2}Nb_{x/2}O_3$ была получена по обычной керамической технологии из простых оксидов и карбонатов, смешанных в стехиометрическом соотношении в планетарной мельнице

x	$T_{\rm syn},^{\circ}{ m C}$	Пространственная группа	<i>a</i> , Å	b, Å	<i>c</i> , Å	α, β, \deg	$V, Å^3$
0	1350	R3c	5.630			59.35	124.319
0.15	1000	R3c	5.605			59.50	123.096
0.15	1040	R3c	5.604			59.37	122.707
		Pbnm	5.517(3)	5.589(8)	7.866(4)		243.360
0.3	1050	Pbnm	5.488(4)	5.587(9)	7.841(4)		240.490
0.5	1100	Pbnm	5.475(3)	5.576(9)	7.812(8)		238.569
0.7	1180	Pbnm	5.463(9)	5.576(1)	7.792(6)		237.427
0.9	1180	Pbnm	5.452(7)	5.546(1)	7.761(4)		234.723
1	1350	Pbnm	5.439(6)	5.551(3)	7.751(3)		234.065
1	1350	$P2_1/n$	5.439(8)	5.551(3)	7.751(5)	90.007(5)	234.078

Таблица 1. Параметры элементарных ячеек твердых растворов Bi_{1-x}Ca_x(Fe_{1-x/2}Nb_{x/2})O₃ при комнатной температуре

фирмы RETSCH. Образцы помещались в разогретую печь и после синтеза в течение часа вынимались из горячей печи. Температура синтеза повышалась с ростом содержания ниобия. BiFeO3 получен при 870°С, Ві_{0.5}Са_{0.5}Fe_{0.75}Nb_{0.25}O₃ — при 1170°С, тогда как CaFe_{0.5}Nb_{0.5}O₃ — при 1350°С. Образцы состава Ві0.7Рb0.3Fe0.85Nb0.15O3 получены при 920°С. Поверхностный слой образцов после синтеза удалялся. Это обусловлено тем, что висмут является летучим компонентом, что может привести к нарушению соотношения между катионами. Рентгеноструктурные исследования проведены на дифрактометре ДРОН-3М в СиКа-излучении. Расчет кристаллической структуры выполнялся с помощью программы FullProf. Измерения магнитных свойств осуществлены на СКВИД-магнитометре MPMS-5 и вибрационном магнитометре Q-2001.

3. Результаты и обсуждение

Соединение BiFeO₃ кристаллизуется в ромбоэдрической сингонии, пространственная группа *R*3*c*. Параметры элементарных ячеек твердых растворов $Bi_{1-x}Ca_xFe_{1-x/2}Nb_{x/2}O_3$ представлены В табл. 1. Элементарная ячейка твердых растворов ${
m Bi}_{1-x}{
m Ca}_{x}{
m Fe}_{1-x/2}{
m Nb}_{x/2}{
m O}_{3}$ вплоть до x=0.15 хорошо описывается в рамках пространственной группы R3c. Состав x = 0.15 можно получить в различном фазовом состоянии в зависимости от температуры синтеза. Синтез при температуре 1000°С ведет к образованию однофазного состава с ромбоэдрической структурой (пространственная группа R3c). Однако если образец получен при 1040°С, то на рентгенограмме появляются дополнительные рефлексы, которые указывают на образование сверхструктуры типа $\sqrt{2}a_p \times \sqrt{2}a_p \times 2a_p$, где *а*_{*p*} — параметр исходной кубической ячейки. Сверхструктура такого типа соответствует орторомбическим искажениям элементарной ячейки. Профиль рентгенограммы удалось хорошо описать только в предположении, что образец состоит из двух кристаллоструктурных фаз: ромбоэдрической (пространственная группа *R*3*c*) и орторомбической (пространственная группа *Pbnm*). Образец состава x = 0.2 в однофазном состоянии получить не удалось. Если синтез проводился при температуре до 1050°C, образцы состояли из двух перовскитных фаз: орторомбической Pbnm и ромбоэдрической R3c. При повышении температуры выше 1050°С количество ромбоэдрической фазы уменьшалось, а количество орторомбической увеличивалось, но при этом появлялись фазы на основе висмута и железа. Образец состава x = 0.3 можно получить практически однофазным при температуре синтеза 1050°С. Его элементарная ячейка хорошо описывается пространственной группой Рbnm. Отметим, что эта пространственная группа характерна для многих перовскитов типа LaMnO₃ или LaFeO₃. Используя эту пространственную группу, можно описать элементарную ячейку составов вплоть до x = 1. Рассчитанный по методу Ритвельда и экспериментальный профили рентгенограммы состава x = 0.7 представлены на рис. 1. Рассчитанные координаты ионов приведены в табл. 2, а

Рис. 1. Рассчитанный (сплошная линия) и экспериментальный (точки) профили рентгенограммы состава Bi_{0.3}Ca_{0.7}Fe_{0.65}Nb_{0.35}O₃. Кривая в нижней части рисунка соответствует разности между наблюдаемыми и вычисленными значениями. Положения брэгговских рефлексов для кристаллической структуры представлены вертикальными метками.

Таблица 2. Координаты атомов и изотропные тепловые параметры B_{iso} для составов $Bi_{0.3}Ca_{0.7}Fe_{0.65}Nb_{0.35}O_3$ и Ca_2FeNbO_6 при комнатной температуре, уточненные методом Ритвельда

Атом	Позиция	x	у	z	$B_{\rm iso},{\rm \AA}$						
${\rm Bi}_{0.3}{\rm Ca}_{0.7}{\rm Fe}_{0.65}{\rm Nb}_{0.35}{\rm O_3}^*$											
Bi/Ca	4c	-0.0049	0.4535	0.2500	3.03(6)						
Fe/Nb	4a	0	0	0	1.24(5)						
01	4c	0.0880	0.0249	0.2500	0.9(3)						
O2	8d	0.7077	0.2048	0.0423	1.2(2)						
Ca ₂ FeNbO ₆ **											
Ca	4c	0.5047	0.5425	0.2532	1.8700						
Fe1	2c	0	0.5	0	1.46						
Nb1	2c	0	0.5	0	1.46						
Fe2	2d	0.5	0	0	1.46						
Nb2	2d	0.5	0	0	1.46						
01	4e	0.2040	0.2070	-0.0520	2.5						
O2	4e	0.3090	0.6960	-0.0250	2.3						
O3	4e	0.4124	0.9713	0.2500	1.5						

* Пространственная группа *Pbnm*, a = 5.463(9) Å, b = 5.576(1) Å, c = 7.792(6) Å, V = 237.427 Å³. Факторы достоверности: $\chi^2 = 2.20$, $R_{wp} = 10.5\%$, $R_p = 7.89\%$.

** Пространственная группа $P2_1/n$, a = 5.439(8) Å, b = 5.551(3) Å, c = 7.751(5) Å, $\beta = 90.007(5)$ deg, V = 234.078 Å³. Факторы достоверности: $\chi^2 = 2.31$, $R_{wp} = 7.73\%$, $R_p = 11.1\%$.

некоторые характерные длины и углы связей — в табл. 3. Из таблиц видно, что октаэдр (Fe/Nb)–O₆ практически не искажен, тогда как углы связей сильно отличаются от идеального значения для кубического провскита — 180°.

Некоторые рефлексы на рентгенограмме состава CaFe_{0.5}Nb_{0.5}O₃ не удалось достаточно точно описать, используя пространственную группу *Pbnm*. Возможно, это обусловлено тем, что ионы железа и ниобия упорядочены. В указанном случае формулу этого соединения более корректно записать в виде Ca₂FeNbO₆. Следует отметить, что в работе [24] также было предположено, что ионы железа и ниобия в Ca₂FeNbO₆ частично упорядочены. Элементарная ячейка этого соединения значительно лучше описывается моноклинной пространственной группой $P2_1/n$ с параметрами элементарной ячейки a = 5.439(8) Å, b = 5.551(3) Å, c = 7.751(5) Å, $\beta = 90.007(5)$ deg. Угол β остается практически рав-

ным 90°, что характерно для орторомбической симметрии. Рассчитанный по методу Ритвельда и экспериментальный профили рентгенограммы представлены на рис. 2. Вставка показывает интенсивность характерных рефлексов в зависимости от степени упорядочения ионов железа и ниобия. Рассчитанные длины связей в октаэдрах и характерные углы наклона октаэдров представлены в табл. 3. Октаэдры (Fe/Nb)O₆ как для Bi_{0.3}Ca_{0.7}Fe_{0.65}Nb_{0.35}O₃, так и для Ca₂FeNbO₆ практически не искажены. Искажение элементарной ячейки обусловлено поворотами октаэдров.

Рис. 2. Рассчитанный (сплошная линия) и экспериментальный (точки) профили рентгенограммы состава Ca₂FeNbO₆. Кривая в нижней части рисунка соответствует разности между наблюдаемыми и вычисленными значениями. Положения брэгговских рефлексов для кристаллической структуры представлены вертикальными метками. На вставке показана интенсивность рефлексов (121) (103), рассчитанная в случае полного упорядочения ионов железа и ниобия (2) и в случае полного беспорядка (3), а также наблюдаемый (кружки) и рассчитанный в случае частичного упорядочения (1) профили.

Структура Bi_{0.7}Pb_{0.3}Fe_{0.85}Nb_{0.15}O₃ близка к кубической. Дифракционные пики на рентгенограмме уширены, что, возможно, обусловлено тем, что истинная симметрия не является кубической. Однако для точного опреде-

Bi_{0.3}Ca_{0.7}Fe_{0.65}Nb_{0.35}O₃ Ca₂FeNbO₆ (Fe/Nb)-O1 2.011(3) 2.01(2)(Fe1/Nb1)-O1 (Fe/Nb)-O2 1.991(9) (Fe1/Nb1) - O22.01(2)(Fe/Nb)-O2 2.026(9)(Fe1/Nb1)-O3 2.00(3)(Fe/Nb)-O1-(Fe/Nb) 151.19(11) (Fe2/Nb2)-O1 2.02(3)(Fe/Nb)-O2-(Fe/Nb) 152.7(4)(Fe2/Nb2)-O2 1.99(2)(Fe2/Nb2)-O3 2.00(3)(Fe1/Nb1)-O1-(Fe2/Nb2) 149.4(11)(Fe1/Nb1)-O2-(Fe2/Nb2) 152.3(9)(Fe1/Nb1)-O3-(Fe2/Nb2) 150.9(12)

Таблица 3. Межатомные расстояния (Å) и углы связей (deg)

Рис. 3. Частные петли магнитного гистерезиса при T = 5 К. a — для $Bi_{0.7}Ca_{0.3}Fe_{0.85}Nb_{0.15}O_3$ (1) и $Bi_{0.7}Pb_{0.3}Fe_{0.85}Nb_{0.15}O_3$ (2), b — для $BiFeO_3$.

ления типа искажения элементарной ячейки необходимы рентгеноструктурные исследования с использованием синхротронного излучения.

Составы Bi_{1-x}Ca_xFe_{1-x/2}Nb_{x/2}O₃ в интервале ромбоэдрических искажений при *x* < 0.15 характеризовались линейной зависимостью намагниченности от поля. При концентрационном переходе от ромбоэдрической к орторомбической фазе в этой системе наблюдалось появление намагниченности. На рис. 3 представлены результаты измерения магнитного гистерезиса состава x = 0.3при 5К. Этот состав является магнитожестким материалом, коэрцитивная сила составляет не менее 7 kOe. Внешнее магнитное поле величиной 15 kOe оказывается малым для того, чтобы полностью перемагнитить образец. Величина спонтанной намагниченности — не менее $0.015 \mu_{\rm B}/{\rm f.u.}$, что характерно для поликристаллических образцов слабых ферромагнетиков типа ортоферритов (YFeO₃). Для состава Bi_{0.7}Pb_{0.3}Fe_{0.85}Nb_{0.15}O₃ спонтанной намагниченности не выявлено.

Дипольное упорядочение в BiFeO₃ обусловлено относительным сдвигом ионов Bi³⁺, Fe³⁺ и O²⁻ вдоль оси [001] в гексагональной установке. В отличие от ионов висмута ионы Ca²⁺ не образуют резко анизотропных химических связей. Поэтому при замещении ионов висмута щелочно-земельными ионами можно ожидать постепенного разрушения дальнего дипольного порядка вследствие образования высокосимметричных позиций, занятых щелочно-земельными ионами. Каждый *A*-катион перовскита АВО3 окружен ближайшими шестью соседями А-типа. Поэтому приблизительно при 15-20% содержания щелочно-земельного иона от общего количества А-позиций дальний дипольный порядок должен разрушиться и система перейдет в фазу с другим типом симметрии. Ионы Ca²⁺, Pb²⁺, Ba²⁺ сильно различаются по величине ионного радиуса. В этом ряду радиус последовательно увеличивается от 1.31 Å (Ca²⁺) до $1.65 \text{ Å} (\text{Ba}^{2+})$ для координационного числа 12 по кислороду. Вследствие размерного эффекта при замещении этими ионами должны возникать разного рода кристаллоструктурные искажения. В случае малых А-катионов $(A = Ca^{2+})$ в перовскитах часто возникают орторомбические искажения (пространственная группа Pbnm), тогда как в случае больших *А*-катионов ($A = Pb^{2+}, Ba^{2+}$) система часто стремится принять кубическую симметрию (пространственная группа $Pm\bar{3}m$). По-видимому, эта общая тенденция справедлива и в случае систем $BiFeO_3 - A(Fe_{0.5}Nb_{0.5})O_3$ (A = Ca, Pb, Ba). При замещении иона Bi³⁺ ионами Ca²⁺ возникают орторомбические искажения, тогда как в случае $A = Pb^{2+}$ система стремится к кубической симметрии. Орторомбическая пространственная группа Рbnm допускает существование слабого ферромагнетизма, но является центросимметричной и не допускает существования дальнего дипольного порядка. Поэтому магнитные свойства системы с $A = Ca^{2+}$ резко отличаются от свойств системы с $A = Pb^{2+}$. В кальциевой системе наблюдается появление небольшой спонтанной намагниченности за счет взаимодействия Дзялошинского-Мория, приволяшего к малому наклону магнитных подрешеток. Это явление запрещено в магнетиках с кубической симметрией. В интервале концентраций 0.15 < x < 0.3 спонтанная намагниченность и спонтанная поляризация сосуществуют. Однако материалы в этом концентрационном материале являются композиционными, так как состоят из фаз с разной симметрией элементарной ячейки.

Список литературы

- C. Michel, J.M. Moreau, G.D. Achenbach, R. Gerson, W.J. James. Solid State Commun. 7, 701 (1969).
- [2] I. Sosnowska, T. Peterlin-Neumaier, E. Steichele. J. Phys. C: Solid State Phys. 15, 4835 (1982).
- [3] I. Sosnowska, M. Loewenhaupt, W.I.F. David, R.M. Ibberson. Physica B 180–181, 117 (1992).
- [4] C. Ederer, N.A. Spaldin. Curr. Opin. Solid State Mater. Sci. 9, 128 (2006).
- [5] M. Fiebig. J. Phys. D: Appl. Phys. 38, R 123 (2005).
- [6] А.М. Кадомцева, А.К. Звездин, Ю.Ф. Попов, А.П. Пятаков, Г.П. Воробьев. Письма в ЖЭТФ 79, 705 (2004).
- [7] A. Palewicz, R. Przenioslo, I. Sosnowska, A.W. Hewat. Acta Cryst. B 63, 537 (2007).
- [8] D. Lee, M.G. Kim, S. Ryu, H.M. Jang, S.G. Lee. Appl. Phys. Lett. 86, 222 903 (2005).
- [9] Sh.-T. Zhang, Yi Zhang, M.H. Lu, Y.-F. Chen, Z.-G. Liu, Y.-Y. Zhu, N.-B. Ming, X.Q. Pan. Appl. Phys. Lett. 88, 162 901 (2006).

- [10] G.L. Yuan, S.W. Or, J.M. Liu, Z.G. Liu. Appl. Phys. Lett. 89, 052 905 (2006).
- [11] G.L. Yuan, S.W. Or, H.L.W. Chan. J. Appl. Phys. 101, 064 101 (2007).
- [12] G.L. Yuan, S.W. Or. Appl. Phys. Lett. 88, 062 905 (2006).
- [13] D.I. Woodward, I.M. Reaney, R.E. Eitel, C.A. Randall. J. Appl. Phys. 94, 3313 (2003).
- [14] J. Cheng, Sh. Yu, J. Chen, Z. Meng, L.E. Cross. Appl. Phys. Lett. 89, 122911 (2006).
- [15] N. Wang, J. Cheng, A. Pyatakov, A.K. Zvezdin, J.F. Li, L.E. Cross, D. Viehland. Phys. Rev. B 72, 104 434 (2005).
- [16] B. Ruette, S. Zvyagin, A.P. Pyatakov, A. Bush, J.F. Li, V.I. Belotelov, A.K. Zvezdin, D. Vienhland. Phys. Rev. B 69, 064 114 (2004).
- [17] R. Blinc, P. Cevc, A. Zorko, J. Holc, M. Kosec, Z. Trontelj, J. Pirnat, N. Dalal, V. Ramachandran, J. Krzystek. J. Appl. Phys. **101**, 033 901 (2007).
- [18] Y. Yang, J.-M. Liu, H.B. Huang, W.Q. Zou, P. Bao, Z.G. Liu. Phys. Rev. B 70, 132 101 (2004).
- [19] J.T. Wang, C. Zhang, Z.X. Shen, Y. Feng. Ceram. Int. 30, 1627 (2004).
- [20] Y. Yang, S.T. Zhang, H.B. Huang, Y.F. Chen, Z.G. Liu, J.-M. Liu. Mater. Lett. 59, 1767 (2005).
- [21] X.S. Gao, X.Y. Chen, J. Vin, J. Wu, Z.G. Liu, M. Wang. J. Mater. Sci. 35, 5421 (2000).
- [22] A. Falqui, N. Lampis, A. Geddo-Lehmann, G. Pinna. J. Phys. Chem. B 109, 22 967 (2005).
- [23] N. Rama, J.B. Philipp, M. Opel, K. Chandrasekaran. J. Appl. Phys. 95, 7528 (2004).
- [24] A.R. Chakhmouradian, R.H. Mitchell. J. Solid State Chem. 138, 272 (1998).