Оптические исследования фазовых переходов в кристалле (NH₄)₃VO₂F₄

© С.В. Мельникова, А.Г. Кочарова

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, Красноярск, Россия

E-mail: msv@iph.krasn.ru

(Поступила в Редакцию 7 мая 2008 г.)

Выращены кристаллы (NH₄)₃VO₂F₄, проведены поляризационно-оптические исследования и измерение двулучепреломления на кристаллических пластинках различных срезов в широком температурном интервале. Обнаружены фазовые переходы при температурах: $T_{1\uparrow} = 417$ K, $T_{3\uparrow} = 211$ K, $T_{4\uparrow} = 205$ K (нагрев); $T_{1\downarrow} = 413$ K, $T_{3\downarrow} = 210$ K, $T_{4\downarrow} = 200$ K (охлаждение), сопровождающиеся аномалиями двулучепреломления и двойникованием. Предполагается последовательность смены симметрии фаз: кубическая $Fm\bar{3}m \leftrightarrow$ ромбическая Immm ($I222_1$) \leftrightarrow моноклинная $112/m \leftrightarrow$ триклинная $P\bar{1}$. В области температур $T_2 \approx 240-250$ K наблюдается дополнительная аномалия двулучепреломления, при этом кристалл сохраняет ромбическую симметрию.

Работа выполнена при финансовой поддержке грантов Президента РФ (грант НШ-1011.2008.2) и РФФИ № 06-02-16 102.

PACS: 61.50.Ks, 64.70.K-, 61.72.Mm

1. Введение

Многочисленное семейство оксифторидов широко представлено неупорядоченными соединениями с криолито-эльпасолитоподобной структурой, анионный каркас которой образован фтор-кислородными октаэдрами [1-4]. Высокотемпературная кубическая фаза этих веществ имеет пространственную группу симметрии $O_h^5 - Fm\bar{3}m$, Z = 4, которая может изменяться при структурных фазовых переходах (ФП) (сегнетоэлектрических), обусловленных процессами упорядочения в анионной октаэдрической подрешетке. Несмотря на большое количество результатов и широкий спектр методов исследований, симметрия искаженных низкотемпературных фаз кристаллов в основном не установлена из-за сложного двойникования, сопровождающего понижение кубической симметрии. Среди аммонийных кристаллов известно, пожалуй, только одно соединение, в котором ФП из кубической фазы наблюдается при высокоих температурах — это (NH₄)₃VO₂F₄. Согласно [5,6], этот переход происходит при температуре 418 ± 3 К. Структура кристалла в высокотемпературной фазе имеет тип криолита с параметрами элементарной ячейки $a = 9.026 \text{ \AA}$, Z = 4 [7]. При комнатной температуре симметрия кристалла определена как ромбическая с пространственной группой *Immm* или $I222_1$ и параметрами a = 9.026 Å, b = 9.026 Å, c = 9.026 Å, Z = 6. Кроме того, в области температур 210-220 К обнаружен дополнительный ФП второго рода [7]. Симметрия кристалла в низкотемпературной области не установлена из-за появления различно ориентированных двойников, но параметры элементарной ячейки даются в ромбической установке: a = 9.161 Å, b = 18.71 Å, c = 6.202 Å, Z = 6.

Тот факт, что кристалл в области комнатных температур находится в искаженной фазе, является, несомненно, удачей для проведения исследований. Существует вероятность получить образцы в монодоменном состоянии, необходимые для кристаллооптических опытов, при выращивании из водного раствора вблизи комнатной температуры. В настоящей работе выполнены поляризационно-оптические исследования и измерение двулучепреломления кристалла $(NH_4)_3VO_2F_4$ в широком интервале температур (150-450 K) с целью поиска и изучения ФП, а также определения симметрии фаз.

2. Экспериментальные результаты

Синтез (NH₄)₃VO₂F₄ выполнялся при смешеивании горячего водного раствора аммония ванадиевокислого и плавиковой кислоты с добавлением аммиака

 $NH_4VO_3 + 2NH_4OH + 4HF = (NH_4)_3VO_2F_4 + 3H_2O.$

Кристаллизация осуществлялась в процессе медленного охлаждения раствора до комнатной температуры. Выпавший осадок состоял из мелких (~ 1 mm³) хорошо ограненных оранжевых октаэдров, а также содержал тонкие (~ 50 μ m) пластинки. На ростовых монокристаллических пластинках срезов (110)_с и (111)_с проведены поляризационно-оптические исследования с помощью микроскопа Axiolab и измерение двулучепреломления по методу компенсатора Берека с точностью ±0.0001.

Исследования в поляризованном свете показали, что при комнатной температуре кристалл действительно принадлежит ромбической симметрии. В пластинке (110)_с наблюдается хорошее погасание, а также коноскопическая картина с выходом "острой биссектрисы" угла оптических осей и плоскостью оптических осей (100)_с = (100)_{ог} (рис. 1, *a*). Рентгеновские отражения от этой пластинки соответствуют параметру c = 6.264 Å. Таким образом, кристаллографические направления кубической и ромбической фаз кристалла (NH₄)₃VO₂F₄

Рис. 1. Исследование пластинки роста $(110)_c = (001)_{or}$ кристалла $(NH_4)_3 VO_2 F_4$ в поляризованном свете. *а* — форма пластинки и расположение коноскопической фигуры при комнатной температуре; *b* — пятнистая картина погасания в фазах *G*₃ и *G*₄.

соотносятся следующим образом: $(100)_c = (100)_{or}$, $(110)_c = (001)_{or}$, $(110)_c = (010)_{or}$.

В процессе охлаждения пластинки $(110)_c = (001)_{or}$ хорошее погасание сохраняется только до 210 К, ниже и вплоть до температуры жидкого азота кристалл погасает неровно. Появляются неясные пятна с плывущим погасанием, размазанным на $1-2^{\circ}$ (рис. 1, *b*). При нагревании хорошее погасание восстанавливается при 211 К. Выше комнатной температуры оптическая анизотропия сохраняется до $T_{1\uparrow} = 417$ К, затем происходит ФП в изотропное состояние. В процессе охлаждения этот ФП затягивается и осуществляется при $T_{1\downarrow} = 413$ К. Кристалл становится анизотропным и разбивается на двойники.

Результаты наблюдений за монодоменными пластинками $(111)_c$ оказались различными. В одних образцах (A)хорошее погасание сохраняется от 417 К до температуры жидкого азота, в других (B) оно полностью нарушается ниже 200 К. Появляются яркие размытые цветные полосы и сетка пересекающихся 120° и 60° границ (рис. 2, *a*, *b*). В процессе нагревания температурная область с такими оптическими неоднородностями сохраняется до 205 К, затем погасание восстанавливается.

Результаты измерения двулучепреломления на различных образцах приведены на рис. 3. Кривая I получена на пластинке $(110)_c$ в выходом острой биссектрисы угла оптических осей. Двулучепреломление (Δn_c) в процессе охлаждения скачком возникает при $T_{1\downarrow} = 413$ К, постепенно нарастает, а затем начинает уменьшаться ниже ~ 240 К, приближается к нулю и изменяет знак. Двулучепреломление в пластинках A и B представлено кривыми 2 и 3. Заметно, что величина Δn в пластин

ке *В* значительно больше, чем в *А*. В то же время температурное поведение двулучепреломления в высокотемпературной области всех образцов приблизительно одинаково: скачок при температуре $T_{1\downarrow} = 413$ K, медленное возрастание и перегиб зависимости $\Delta n(T)$ в области $\sim 240-250$ K. В низкотемпературной области в режиме охлаждения, особенно на кривой 2, отчетливо видны две температуры, где кривые $\Delta n(T)$ изменяют наклон: 210

Рис. 2. Фотографии пластинки среза $(111)_c$ (*B*) в разных фазах кристалла $(NH_4)_3VO_2F_4$. *a* — хорошее погасание в фазах G_1 , G_2 и G_3 ; *b* — двойникование в фазе G_4 .

Рис. 3. Температурная зависимость двулучепреломления в пластинках роста $(NH_4)_3VO_2F_4$ в процессе охлаждения. $1 - \Delta n_c(T), 2 - для$ образца *A*, 3 - для образца *B*.

Рис. 4. Зависимость двулучепреломления образца A от температуры в режимах охлаждения (1) и нагрева (2). Стрелками указаны переходы при $T_{3\downarrow}$ и $T_{4\downarrow}$.

и 200 К. Измерение двулучепреломления в образце *В* ниже 200 К оказалось невозможным из-за описанных выше оптических неоднородностей, проявляющихся в низкотемпературной области. На рис. 4 показано температурное поведение двулучепреломления образца *А* в процессах нагревания и охлаждения. Видны гистерезисные явления в области температур 190–210 К.

3. Обсуждение результатов

Представленные в настоящей работе результаты оптических исследований (NH₄)₃VO₂F₄ свидетельствуют о существовании в кристалле четырех особых температурных точек: $T_1 = 413_{\downarrow}(417_{\uparrow})$ К, $T_2 = 240 - 250$ К, $T_3 \approx 210_{\perp}(211_{\uparrow})$ К, $T_4 \approx 200_{\perp}(205_{\uparrow})$ К. При этих температурах наблюдается или аномальное поведение двулучепреломления, или (и) появление двойниковой структуры, свидетельствующей об изменении сингонии кристалла. Сравнивая величины двулучепреломления при комнатной температуре в исследованных монодоменных пластинках роста, можно определить ориентацию образцов А и В относительно осей ромбической элементарной ячейки. Нормаль к пластинке (111)_с А расположена под углом 35° к направлению $[001]_{or}$, в то время как нормаль к В — под углом 35° к [010]or. Таким образом, при исследовании образца А наблюдаются процессы, происходящие вдоль вектора с ромбической ячейки, а при исследовании образца В — вдоль b. Хорошее погасание пластинки А во всей области температур согласуется с наблюдениями на образце $(110)_c = (001)_{or}$ (рис. 1). Пятнистая картина в нем с неясными границами и "мерцающим" погасанием создается переплетающимися двойниками малых размеров (< 1 µm), возникающими ниже 210 К в результате потери двух плоскостей. Эта слабая структура неразличима в пластинке А. В то же время хорошее погасание пластинки В вплоть до 200 К позволяет утверждать, что в области температур 210-200 К в кристалле реализуется моноклинная симметрия с особым направлением по [001]_{ог}. Наиболее вероятной группой симметрии этой области температур считаем центросимметричную 112/*m*, хотя есть возможность реализации полярных групп 112 и 11т. Появление двойников в пластинке В ниже 200 К свидетельствует о потере кристаллом оставшихся осей и плоскостей симметрии и переходе в триклинную фазу. Из двух пространственных групп триклинной сингонии останавливаемся на $C_i^1 - P\bar{1}$ с центром инверсии. Таким образом, полученные результаты указывают на существование в кристалле (NH₄)₃VO₂F₄ четырех ФП со следующей последовательностью симметрии фаз: кубическая $O_h^5 - Fm\bar{3}m\left(G_0
ight) \leftrightarrow$ ромбиче- $Immm(I222_1)(G_1) \leftrightarrow$ ромбическая $(G_2) \leftrightarrow$ моская ноклинная $112/m(G_3) \leftrightarrow$ триклинная $C_i^1 - P\bar{1}(G_4)$. $\Phi\Pi$ $G_0 \leftrightarrow G_1$ является ярко выраженным переходом первого рода. Наблюдаются скачки двулучепреломления, движение фазового фронта и температурный гистерезис $\delta T_1 \cong 4$ К. Переход $G_1 \leftrightarrow G_2$ второго рода сопровождается перегибом зависимости $\Delta n(T)$ с размытой температурой перехода, но не сопровождается изменением сингонии кристалла. При исследовании переходов $G_2 \leftrightarrow G_3$ и $G_3 \leftrightarrow G_4$ не обнаружено скачков двулучепреломления, однако наличие температурных гистерезисов $\delta T_3 \cong 1 \,\mathrm{K}$ и $\delta T_4 \cong 5 \,\mathrm{K}$ позволяет отнести эти структурные изменения к переходам первого рода.

4. Заключение

Проведенные в работе исследования подтвердили наличие найденного ранее [6,7] ФП в кубическую фазу. Кроме того, в области 210–220 К, в которой предполагался ФП второго рода, в настоящей работе обнаружена последовательность трех ФП. Вся совокупность наблюдаемых экспериментальных данных убедительно указывает на существование сложной последовательности ФП: кубическая (G_0) \leftrightarrow ромбическая (G_1) \leftrightarrow ромбическая (G_2) \leftrightarrow моноклинная (G_3) \leftrightarrow триклинная G_4 , происходящих в кристалле (NH₄)₃VO₂F₄ в области температур 420–200 К.

Список литературы

- G. Paradeau, J. Ravez, P. Hagenmüller, H. Arend. Solid State Commun. 27, 591 (1978).
- [2] J. Ravez, G. Paradeau, H. Arend, S.C. Abrahams, P. Hagenmüller. Ferroelectrics 28, 767 (1980).
- [3] И.Н. Флёров, М.В. Горев, В.Д. Фокина, М.С. Молокеев, Ф.В. Васильев, А.Ф. Бовина, Н.М. Лапташ, ФТТ 48, 8, 1473 (2006).
- [4] И.Н. Флёров, В.Д. Фокина, А.Ф. Бовина, Е.В. Богданов, М.С. Молокеев, А.Г. Кочарова, Е.И. Погорельцев, Н.М. Лапташ. ФТТ 50, 3, 498 (2008).
- [5] U.R.K. Rao, K.S. Venkateswarlu, B.R. Wani, M.D. Sastry, A.G.I. Dalvi, B.D. Joshi. Mol. Phys. 47, 3, 637 (1982).
- [6] B.R. Wani, U.R.K. Rao, K.S. Venkateswarlu, A.S. Gokhale. Thermochimica Acta, 58, 87 (1982).
- [7] M. Leimkühler, R. Mattes. J. Solid State Chem. 65, 260 (1986).