Локализованные электронные возбуждения в кристаллах фенакита Be₂SiO₄

© А.Ф. Зацепин, А.И. Кухаренко, В.А. Пустоваров, В.Ю. Яковлев*, С.О. Чолах

Уральский государственный технический университет (УПИ), Екатеринбург, Россия * Томский политехнический университет, Томск, Россия E-mail: zats@dpt.ustu.ru

(Поступила в Редакцию 10 апреля 2008 г.)

Представлены результаты комплексных спектроскопических исследований природы и свойств электронных возбуждений, локализованных на регулярных и дефектных узлах кристаллической решетки Be₂SiO₄. Использованы методы импульсной абсорбционной спектроскопии при возбуждении электронным пучком, импульсной катодолюминесценции и низкотемпературной ВУФ-спектроскопии при селективном возбуждении синхротронным излучением.

Полосы в спектрах люминесценции Be₂SiO₄ при 2.7 и 3.15 eV приписаны $[AlO_4]^{5-}$ - и $[SiO_4]^{4-}$ -центрам, возникающим как при непосредственной релаксации электронных возбуждений на дефектных уровнях, так и за счет образования экситонно-дефектных комплексов. В качестве причин образования оптически-активных центров с характерными полосами поглощения в области 1.5-4.0 eV рассматриваются нарушения бериллий-кислородных связей (короткоживущие дефекты в виде вакансий бериллия V_{Be}^-). Собственная люминесценция кристалла Be₂SiO₄ при 3.6 и 4.1 eV отнесена к излучательному распаду двух типов автолокализованных экситонов. Предложен механизм автолокализации экситонов на тетраэдрических группах [SiO₄] и [BeO₄] за счет передачи возбуждения от трехкоординированного атома кислорода на соседние атомы кремния или бериллия.

Работа поддержана РФФИ (гранты № 07-02-12015-офи и 08-02-01072).

PACS: 71.35.Aa, 78.60.Hk, 78.47.+p

1. Введение

В современной физике широкощелевых твердых тел значительное внимание уделяется изучению свободных и локализованных электронных возбуждений (ЭВ). До настоящего времени электронные возбуждения интенсивно исследовались в простых оксидах (BeO, MgO, Al_2O_3 , SiO₂). Несмотря на это, многие фундаментальные вопросы в этой области остаются нерешенными. Проблема еще более усложняется в случае поликомпонентных соединений, имеющих, как правило, несколько типов атомных подрешеток с достаточно низкой симметрией. Наличие в кристаллической решетке нескольких сортов атомов с разнотипными химическими связями, более сложная структура энергетических зон и другие особенности, характерные для сложных соединений, обеспечивают разнообразие типов собственных электронных возбуждений, вследствие чего усложняется идентификация и анализ их физичекой природы и механизмов возбуждения-релаксации.

В настоящей работе исследуются локализованные ЭВ в кристаллах фенакита Be₂SiO₄. К структурному классу фенакита относится ряд соединений типа силикатов, германатов, фосфатов и ванадатов [1,2]. Указанные материалы обладают необходимыми для новой техники оптическими, термическими, радиационными и другими свойствами, что обеспечивает широкие возможности их практического применения в качестве эффективных люминофоров и новых лазерных сред [3–5]. Совершенно очевидно, что для подобных целей необходима детальная информация о структуре, оптических и излучательных параметрах центров свечения, а также данные о физической природе, механизмах генерации и релаксации возбужденных состояний электронной подсистемы материала. До настоящего момента в спектроскопических исследованиях кристаллов фенакитного класса основное внимание уделялось изучению характеристик радиационных дефектов [6–9] и примесных центров свечения [10,11]. Вместе с тем фундаментальные закономерности и механизмы переноса и диссипации энергии, а также процессы локализации и распада ЭВ в кристаллах указанного класса детально не рассматривались.

Кристалл фенакита Be₂SiO₄ представляет собой бинарный оксид бериллия-кремния, который в известном смысле можно рассматривать в качестве модельного объекта при изучении особенностей поведения, природы и свойств ЭВ в сложных оксидах. Структура фенакита (точечная группа C_{3i}^2) представляет собой трехмерную вязь из разносортных тетраэдров (SiO₄ и BeO₄), размеры которых почти равны [12,13]. Эти тетраэдры объединяются в цепочки, ориентированные параллельно кристаллографической оси третьего порядка и образуют пустоты в виде широких гексагональных каналов. Важная особенность соединений типа Be₂SiO₄ состоит в том, что все атомы кислорода в кристаллической структуре фенакита являются трехкоординированными (2Be = O-Si) [12]. Кислород в структуре SiO₂ дважды координирован по кремнию (Si-O-Si), а в BeO -

Рис. 1. Спектры катодолюминесценции кристалла Be₂SiO₄, измеренные при T = 80 (*a*, *c*) и 295 K (*b*, *d*) и энергиях возбуждающего пучка электрона 180 (*a*, *b*) и 250 keV (*c*, *d*). Штриховыми линиями показано разложение на гауссовы составляющие.

характеризуется координационным числом 4. Учитывая тот факт, что в оксидно-силикатных материалах высокоэнергетические валентные состояния сформированы преимущественно несвязывающими 2p-орбиталями кислорода [14,15], можно полагать, что природа низкоэнергетических собственных ЭВ в кристаллах фенакита также должна быть связана с кислородными состояниями. В то же время процессы генерации-релаксации ЭВ в сложном оксиде Be₂SiO₄ могут существенно отличаться от аналогичных процессов в простых соединениях SiO₂ и BeO.

В этой связи необходимо отметить, что в спектрах люминесцении некоторых простых оксидов (BeO, Al₂O₃) наблюдается несколько полос собственного свечения, природа которых обусловлена излучательным распадом разных конфигураций автолокализованных экситонов (АЛЭ). Если в простых оксидах существование нескольких типов АЛЭ объясняется неоднородностью структуры валентной зоны [16], то главной причиной многообразия локализованных ЭВ в сложных оксидных кристаллах может быть наличие несколько подрешеток и соответствующих структурных фрагментов разного типа.

Основная цель настоящей работы заключалась в изучении природы, свойств и особенностей локализации ЭВ на дефектных и регулярных узлах решетки в кристаллах Ве₂SiO₄. Исследование быстропротекающих процессов релаксации электронных возбуждений в широкозонных оксидах требует применения комплекса экспериментальных методов, позволяющих сочетать временное разрешение в нано-, микро- и миллисекундном диапазонах. Указанная задача решается посредством реализации импульсных режимов с использованием источников, обеспечивающих достаточный уровень мощности для создания высокой плотности короткоживущих возбужденных состояний. В работе (для этих целей) при детектировании быстропротекающих процессов генерации и излучательной релаксации ЭВ использованы современные методы люминесцентно-оптической спектроскопии с наносекундным временным разрешением, включая абсорбционную спектроскопию при возбуждении электронным пучком, импульсную катодолюминесценцию (КЛ) и люминесцентную ВУФ-спектроскопию при селективном возбуждении синхротронным излучением.

2. Образцы, техника эксперимента

Образцы представляли собой монокристаллы гидротермального происхождения. По данным эмиссионного спектрального анализа в исследуемых кристаллах Be₂SiO₄ установлено присутствие примеси Li

439

 (10^{-4} wt.\%) , Na (10^{-4} wt.\%) , Al (10^{-4} wt.\%) . Исследуемые образцы вырезались перпендикулярно кристаллографическому направлению $[10\bar{1}0]$ (параллельно оси третьего порядка C_3) в виде плоскопараллельных пластин размером $0.5 \times 10 \times 10$ mm.

Спектры КЛ регистрировались на экспериментальной установке импульсной катодолюминесцентной спектроскопии в области 3.0–6.0 eV при температурах 80 и 295 К. Для возбуждения КЛ применялся малогабаритный импульсный ускоритель электронов с параметрами пучка: энергией электронов E = 180 keV, плотностью тока $J = 800 \text{ A} \cdot \text{cm}^{-2}$, длительностью импульса $\Delta t = 3 \cdot 10^{-9}$ s. В состав спектрометрического комплекса входили решеточный монохроматор VMN-3M, фотоэлектронный умножитель ФЭУ-39А и цифровой осциллограф Tektronix TDS 1012, связанный с ПЭВМ.

Измерения спектров короткоживущего оптического поглощения (КОП) и КЛ в области 1–5 eV выполнены на установке импульсной абсорбционной и люминесцентной спектроскопии с наносекундным разрешением при температурах 80 и 295 К [17]. Спектры КОП регистрировались непосредственно в момент окончания действия импульса и с временной задержкой 4 μ s. Для возбуждения КЛ и КОП использовался импульсный ускоритель электронов ГИН-600 с параметрами пучка: энергией электронов E = 250 keV, плотностью тока $J = 2000 \text{ A} \cdot \text{cm}^{-2}$, длительностью импульса $\Delta t = 10^{-8}$ s. Измерения спектров оптического поглощения в поляризованном свете осуществлялись с помощью призмы Рошона.

Измерения спектров фотолюминесценции (ФЛ) и спектров возбуждения ФЛ при температуре 9 К выполнены на станции SUPERLUMI (лаборатория HASYLAB, DESY, Гамбург) [18] с использованием синхротронного излучения. Спектры возбуждения ФЛ измерялись в области $5-12 \, \mathrm{eV}$ и нормировались на равное число падающих на образец фотонов с использованием салицилата натрия. Спектры ФЛ в области $2-6 \, \mathrm{eV}$ регистрировали с помощью 0.3 m монохроматора ARC Spectra Pro-308i и фотоэлектронного умножителя R 6358 P(Hamamatsu).

3. Экспериментальные результаты

3.1. Импульсная катодолюминесценция. Спектры импульсной КЛ, измеренные при различных энергиях возбуждения, представлены на рис. 1. При воздействии на кристалл Be₂SiO₄ импульсными пучками электронов с энергией 180 keV наблюдается люминесценция в широком спектральном диапазоне 3-5 eV(рис. 1, *a*, *b*). Спектр КЛ при T = 80 K представляет собой широкую полосу с максимумом при 4.1 eV (*FWHM* \approx 1.7 eV) (рис. 1, *a*). С повышением температуры наблюдаются увеличение интенсивности КЛ и небольшой сдвиг максимума полосы, который при T = 295 K находится при 4.3 eV (рис. 1, *b*).

Возбуждение КЛ кристалла Be₂SiO₄ в более широком спектральном диапазоне 2–5 eV импульсным пучком

Рис. 2. Кинетика затухания катодолюминесценции кристалла Be_2SiO_4 в области 2.65 (*a*); 3.4 (*b*) и 4.1 eV (*c*).

электронов с энергией 250 keV показало, что спектр имеет более сложную структуру (рис. 1, c, d). При $T = 80 \,\mathrm{K}$ наблюдаются два максимума при 3.5 и 4.1 eV (рис. 1, c), а повышение температуры до 295 K приводит к уменьшению интенсивности свечения 3.5 eV и увеличению интенсивности свечения в области 4.1 eV (рис. 1, d). Кроме того, в спектре КЛ четко проявляется полоса с максимумом в области 2.5-2.7 eV. Сложный вид и существенное изменение профиля спектра при различных температурах и энергиях возбуждения указывают на то, что в КЛ кристаллов Be₂SiO₄ принимают участие несколько центров свечения. Для определения спектрального состава спектров КЛ нами были изучены кинетические кривые затухания КЛ в точках предполагаемых максимумов элементарных полос при 2.65, 3.4 и 4.1 eV.

Кинетика затухания КЛ Be_2SiO_4 в области 4.1 eV при возбуждении пучком электронов с энергией 180 keV приведена на рис. 2, *с*. При T = 80 K закон затухания люминесценции в этой области может быть опи-

Рис. 3. Времяразрешенные спектры короткоживущего оптического поглощения Be₂SiO₄ при T = 295 K, поляризации света E || C₃ (*a*, *b*) и E \perp C₃ (*c*, *d*) в момент окончания воздействия пучка электронов (*a*, *c*) и с задержкой 4 µs (*b*, *d*).

сан суммой двух экспонент с постоянными времени $\tau_1 = 0.15 \,\mu$ s и $\tau_2 = 10.5 \,\mu$ s. При T = 295 К кинетика КЛ при 4.1 eV описывается одной единственной экспонентой с постоянной времени $\tau = 0.7 \,\mu$ s. Кинетические кривые затухания КЛ Be₂SiO₄ в области 2.65 и 3.4 eV получены при возбуждении пучком электронов с энергией 250 keV и T = 295 K. Затухание КЛ кристалла Be₂SiO₄ в области 2.65 eV описывается экспонентой с параметром $\tau = 270 \,\mu$ s (рис. 2, *a*). КЛ при 3.4 eV затухает также по экспоненциальному закону ($\tau = 0.4 \,\mu$ s). Анализ кинетики затухания свечения и характера поведения спектров КЛ при изменении условий возбуждения показывает, что спектр КЛ Be₂SiO₄ состоит из пяти элементарных полос с максимумами при 2.7, 3.15, 3.6, 4.1 и 4.7 eV.

Результаты разложения спектров КЛ на гауссовы составляющие представлены штриховыми линиями на рис. 1. Спектры КЛ присталлов Be₂SiO₄ при увеличении энергии электронного пучка от 180 до 250 keV обладают одинаковым спектральным составом с доминирующей полосой в области 4.1 eV. Более того, совпадение результатов анализа спектров КЛ, полученных на двух различных экспериментальных установках, подтверждает корректность сделанных разложений.

3.2. Короткоживущее оптическое поглощение. Для определения особенностей формирования и распада короткоживущих состояний, возникающих в кристалле фенакита при облучении короткими импульсами быстрых электронов, были изучены спектры КОП Be₂SiO₄, измеренные при T = 295 К в спектральном диапазоне 1-5 eV (рис. 3). В неполяризованном свете спектры КОП зависят от ориентации оси С3 кристалла относительно направления распространения зондирующего света Е. Ориентационная зависимость спектров КОП более детально исследована в экспериментах с поляризованным светом (рис. 3, а, с). При поляризации Е || С₃ в спектре КОП наблюдаются интенсивная полоса 4.0 eV и плечо в области 2.5 eV (рис. 3, *a*). Через 4 µs в спектре практически исчезает плечо при 2.5 eV, а интенсивность полосы при 4.0 eV снижается в 2 раза. Спектр КОП при **E** \perp **C**₃ характеризуется двумя полосами 2.4 и 4.0 eV одинаковой интенсивности (рис. 3, c). Измерения КОП в поляризованном свете указывают на то, что наведенное поглощение в области 2 eV является сильно анизотропным и быстро затухающим относительно других полос. Через 4 µs после окончания электронного импульса интенсивность поглощения в области 2.4 eV (при **E** \parallel **C**₃) снижается в 2 раза, тогда как интенсивность полосы поглощения 4.0 eV практически не изменяется (рис. 3, d). Таким образом, экспериментальные спектры могут быть описаны набором полос гауссовой формы с максимумами при 2.1 (при $\mathbf{E} \perp \mathbf{C}_3$), 2.4 (при $\mathbf{E} \parallel \mathbf{C}_3$), 3.3 и 4.0 eV (рис. 3, штриховые линии).

На рис. 4 показано изменение спада оптической плотности полос 2.4 и 3.6 eV при T = 295 K и различной поляризации света с течением времени. Затухание наведенной оптической плотности в области 2.4 eV при $\mathbf{E} \perp \mathbf{C}_3$ описывается суммой двух экспонент с постоянными времени $\tau_1 = 0.7 \, \mu$ s и $\tau_2 = 71 \, \mu$ s. При этом вклад медленного компонента сказывается на скорости затухания для данной области в меньшей степени, чем в области

Рис. 4. Кинетика короткоживущего оптического поглощения Be₂SiO₄ при T = 295 K в полосах 3.6 (1, 2) и 2.4 eV (3) при поляризации света **E** || **C**₃ (2) и **E** \perp **C**₃ (1, 3).

3.6 eV. Тем не менее временна́я зависимость оптического поглощения 3.6 eV при $\mathbf{E} \perp \mathbf{C}_3$ также состоит из двух экспоненциальных стадий с $\tau_1 = 0.7 \, \mu$ s и $\tau_2 = 43 \, \mu$ s. Кинетика КОП в области 3.6 eV при $\mathbf{E} \parallel \mathbf{C}_3$ раскладывается на две экспоненты с временами $\tau_1 = 0.7 \, \mu$ s и $\tau_2 = 71 \, \mu$ s.

Совпадение быстрых компонентов кинетик спада КОП при 2.4 и 3.6 eV ($\tau_1 = 0.7 \mu s$) и затухания КЛ в области 3.0–5.0 eV ($\tau = 0.7 \mu s$) указывает на взаимосвязь процессов возникновения короткоживущих центров оптического поглощения и центров люминесцении. Поскольку эти центры обнаруживаются в результате воздействия импульсов ускоренных электронов, представляло интерес сравнить указанные выше результаты измерений с данными, полученными при селективном фотонном возбуждении кристалла.

3.3. Фотолюминесценция. Спектры ФЛ, измеренные в спектральном диапазоне 2.2-5.0 eV при T = 9 K и селективном возбуждении фотонами, представлены на рис. 5, из которого хорошо видно, что структура спектров существенно зависит от энергии возбуждения. Если при возбуждении фотонами с энергией 6.0 eV регистрируется полоса свечения с максимумом 3.0 eV (рис. 5, *a*), то при возбуждении в области 8.2 eV спектр ФЛ имеет уже два максимума при 3.2 и 3.6 eV (рис. 5, *b*).

Разложение спектра ФЛ на гауссовы составляющие позволяет выделить индивидуальные полосы с максимумами при 2.7, 3.15, 3.6 и 4.1 eV, что вполне согласуется с данным КЛ. При возбуждении фотонами с энергией 6.0 eV в спектре ФЛ доминирует полоса 2.7 eV. При увеличении энергии возбуждающих фотонов до 8.2 eV интенсивность полосы 2.7 eV падает, а в спектре ФЛ кроме указанных выше полос 2.7 и 3.15 eV появляются дополнительные полосы при 3.6 и 4.1 eV. При этом наиболее интенсивными являются полосы с максимумами при 3.15 и 3.6 eV. Отметим, что по сравнению с КЛ отличительной особенностью спектра ФЛ является отсутствие полосы при 4.7 eV. На рис. 6 представлены спектры возбуждения ФЛ для полос излучения 3.1 и 3.7 eV. Данные спектры подтверждают возможность возбуждения полосы ФЛ 3.1 eV, как в зоне прозрачности кристалла ($E_{\rm exc} = 6.0$ eV), так и в области фундаментального поглощения ($E_{\rm exc} = 8.2$ eV), а также в области создания электронно-дырочных пар ($E_{\rm exc} > 8.2$ eV) (рис. 6, линия *I*). Наиболее эффективно свечение 3.1 eV возбужденся в области 8.19 eV. Полоса возбуждения ФЛ 3.7 eV по своему спектральному положению близка к полосе возбуждения ФЛ 3.1 eV, однако несколько смещена в область более высоких энергий на ~ 0.1 eV.

Рис. 5. Спектры фотолюминесценции Be_2SiO_4 при возбуждении 6.0 (*a*) и 8.2 eV (*b*) при T = 9 K.

Рис. 6. Спектры возбуждения полос фотолюминесценции 3.1 (1) и 3.7 eV (2) кристалла $\text{Be}_2 \text{SiO}_4$ при T = 9 K.

4. Обсуждение результатов

4.1. Экситонно-дефектные комплексы. Наблюдаемые в спектрах КЛ и ФЛ исследуемых кристаллов Be₂SiO₄ полосы 2.7 и 3.15 eV (рис. 1 и 5), характерные для люминесценции многих силикатов, обычно связываются с излучением дефектных центров $[AlO_4]^{5-}$ и $[SiO_4]^{4-}$, обусловленных присутствием примесей алюминия и локальными искажениями кремнийкислородных тетраэдров [10,11,19]. Центр [AlO₄]⁵⁻ образуется при замещении в регулярной тетраэдрической позиции кремния атомом алюминия. Центр [SiO₄]⁴⁻ возникает при нарушении симметрии кремне-кислородного тетраэдра из-за близкорасположенного дефекта. В формировании указанных центров и их метастабильных состояний важную роль играют одновалентные примеси M^+ (H⁺, Na⁺, Li⁺), которые в случае [AlO₄]⁵⁻ выступают в качестве зарядовых компенсаторов центра, а в случае [SiO₄]⁴⁻ являются фактором искажения распределения электронной плотности в кремнийкислородном тетраэдре. Люминесценция возбужденных [AlO₄]⁵⁻- и [SiO₄]⁴⁻-центров определяется внутрицентровыми излучательными переходами, хотя процесс генерации возбужденных состояний может осуществляться различными способами, включая их ионизацию с образованием соответствующих дырочных центров и последующую рекомбинацию на них зонных электронов.

Наблюдение полос излучения центров [AlO₄]⁵⁻ и [SiO₄]⁴⁻ в спектрах КЛ (рис. 1) подтверждает возникновение под импульсным пучком электронов промежуточных состояний $[AlO_4]^{5-}/h^+$ и $[SiO_4]^{3-}/h^+$, аналогичных стабильным центрам O_{A1} и O_{Si}, образующихся при захвате дырки на атомах кислорода в дефектных тетраэдрах [20-22]. Изменение зарядовых состояний дефектных центров в цикле возбуждение-релаксация может приводить к диффузии одновалентных ионовкомпенсаторов М⁺ [23]. В этой связи следует отметить, что характерное время затухания [SiO₄]⁴⁻-центров составляет $0.4 \mu s$ (рис. 2, b), тогда как время жизни возбужденного состояния [AlO₄]⁵⁻-центров имеет значение $270\,\mu$ s (рис. 2, *a*). Такое сильное различие кинетик свечения указанных центров позволяет предположить, что процесс излучательной рекомбинации алюминиевого центра не является чисто электронным и определенным образом зависит от миграции ионов M^+ .

При селективном возбуждении центров $[AlO_4]^{5-}$ и $[SiO_4]^{4-}$ фотонами с энергией 6.0 eV (рис. 5, *a*) реализуются внутрицентровые переходы. Величина стоксова сдвига рассматриваемых центров примерно одинакова и составляет ~ 3 eV. Это дает основание полагать, что в процессах возбуждения-релаксации конфигурационные преобразования атомной структуры центров в обоих случаях близки, при этом степень нарушения локальной симметрии узла решетки и размеры искажения дефектной области значительны.

Тот факт, что люминесценция [SiO₄]⁴⁻- и [AlO₄]⁵⁻центров наиболее эффективно возбуждается фотонами 8.19 eV вблизи границы фундаментального поглощения кристалла (рис. 6), позволяет отнести указанную особенность к экситонным эффектам [24]. Фотовозбуждение дефектных центров в высокоэнергетической части спектра свидетельствует о передаче энергии возбуждения от экситонов и возможности образования в искаженной присутствием дефектов решетке Be₂SiO₄ особых возбужденных состояний. Такие сложные возбуждения можно представить как экситонно-дефектные комплексы (связанные на дефектах экситоны), которые должны отличаться по энергетике от собственных электронных возбуждений, генерируемых в идеальной решетке кристалла. Рис. 6 показывает, что интенсивная высокоэнергетическая полоса спектра возбуждения $[SiO_4]^{4-}$ и $[AlO_4]^{5-}$ -центров, действительно, характеризуется низкоэнергетическим (~ 0.1 eV) сдвигом максимума относительно полосы автолокализованных экситонов. Причина наблюдаемого смещения заключается в том, что генерация такого экситонного возбуждения e_{d}^{0} происходит непосредственно в искаженных присутствием дефекта участках решетки, а его безызлучательная релаксация осуществляется преимущественно с участием локальных колебаний дефектного центра. Процессы генерации и релаксации комплексных возбуждений можно представить схемой

$$\begin{split} ([\mathrm{SiO}_4]^{4-}/e_d^0) &\to ([\mathrm{SiO}_4]^{4-})^* \to [\mathrm{SiO}_4]^{4-} + h\nu(3.15\,\mathrm{eV}), \\ ([\mathrm{AlO}_4]^{5-}/e_d^0) &\to ([\mathrm{AlO}_4]^{5-})^* \to [\mathrm{AlO}_4]^{5-} + h\nu(2.7\,\mathrm{eV}). \end{split}$$

В соответствии с предлагаемой схемой образование экситонно-дефектных комплексов $([RO_4]/e_d^0)$, (R = Si, Al) предшествует возникновению возбужденных состояний центров свечения $([RO_4])^*$, дальнейшая релаксация которых сопровождается их характерной люминесценцией. Измерения кинетики затухания ФЛ показывают, что радиационные времена жизни указанных центров свечения при селективном возбуждении фотонами 8.2 и 6.0 eV характеризуются значениями в микросекундном временном диапазоне. Это может означать, что процесс релаксации экситонно-дефектных комплексов ($[RO_4]/e_d^0$) лимитируется стадией дезактивации возбужденных состояний дефектных центров ([RO₄])*. Можно также предполагать, что возникновение подобных комплексных возбуждений характерно и для других ортосиликатов с изолированными структурными единицами $[RO_4]$, что способствует их эффективной локализации в отличие от силикатных соединений других классов.

4.2. Короткоживущие дефекты. Центры оптического поглощения, формирующиеся под действием электронных импульсов, характеризуются полосами 1.5-4.0 eV (рис. 3). Совпадение времени жизни $0.7 \mu \text{s}$ поглощающих центров с аналогичными параметрами центров собственной люминесценции (3.6 и 4.1 eV) указывает на то, что природа КОП связана с генерацией короткоживущих дефектов в регулярных узлах решетки кристалла Be₂SiO₄.

Электронно-индуцированное короткоживущее поглощение наблюдалось в простых оксидах ВеО и SiO₂ [25,26]. Диоксид кремния характеризуется полосами КОП при 4.75 и 5.75 eV. Соответствующие центры поглощения (немостиковый кислород — NBOHC; трехкоординированный кремний — Е'-центр) возникают при разрыве Si-O связей. В оксиде бериллия при разрыве связи Ве-О образуются короткоживущие комплементарные дефекты в виде вакансий $V_{\rm Be}^-$ и междоузельных ионов Ве+ [25]. Наблюдаемые в спектрах КОП фенакита полосы 2.1; 3.3 и 4.0 eV практически совпадают с аналогичными полосами в окиси бериллия (2.1; 2.9 и 4.0 eV). В этой связи необходимо подчеркнуть, что на уровне ближнего порядка бериллий-кислородная подрешетка как в фенаките, так и простом оксиде ВеО содержит идентичные структурные единицы — тетраэдры BeO₄. Эта особенность позволяет предполагать аналогию энергетического строения бериллий-кислородных подрешеток в указанных соединениях. На этом основании наблюдаемая в наших экспериментах трехполосная структура спектра КОП кристалла Be₂SiO₄ может быть приписана короткоживущим дефектам, образующимся при разрыве связи Ве-О. Заметим, что аналогичная структура спектра КОП ВеО интерпретирована как оптические переходы в V_{Be}^- -центре [25].

Значения времен спада (0.7 и 71 µs) и анизотропия полос КОП фенакита (рис. 3 и 4) указывают на то, что процесс разрыва бериллий-кислородной связи носит неэлементарный характер. Нарушение химической связи Ве-О предполагает увеличение расстояния между атомами, предельным случаем которого (по аналогии с ВеО) является смещение иона Ве с образованием V_{ве}-центра. Процесс восстановления разорванной связи Ве-О включает как минимум два этапа, первый из которых предполагает снятие малых искажений бериллийкислородного тетраэдра, а второй отвечает восстановлению связи из метастабильного состояния V_{Be}-центра. В нашей интерпретации бериллиевая вакансия характеризуется по данным КОП значением времени жизни 71 µs и отсутствием соответствующей полосы свечения. В то же время относительно "быстрая" $(0.7 \,\mu s)$ релаксация нарушенной связи Ве-О сопровождается аннигиляцией короткоживущих дефектов и появлением доминирующей в КЛ полосы 4.1 eV (рис. 1).

Регенерация связи Ве-О является быстропротекающим процессом, что вполне согласуется с данными об отсутствии стабильных дефектов в бериллийкислородной подрешетке Be_2SiO_4 [27,28] и возникновении радиационных повреждений в основном в кремнийкислородной составляющей кристалла [6–9,27,28]. Собственные дефекты в фенаките представляют собой моно- и дивакансии кислорода, а по своей локальной структуре и энергетике являются аналогом известных E'-центров (трехкоординированный Si) и ODCII-центров (охудеп deficient center, двухкоординированный Si) в матрице SiO₂. В кристаллах фенакита указанные дефекты характеризуются полосами поглощения при 4.9 eV (ODC II) [28] и 5.6 eV (E'-центры) [27]. Отсутствие сведений о короткоживущих полосах поглощения Be₂SiO₄ в спектральной области 4.8–6.0 eV не позволяет в настоящий момент более детально проанализировать механизмы излучательной анигилляции короткоживущих дефектов, возникающих при нарушении связи Si–O. Тем не менее наблюдение в спектрах люминесценции собственной полосы 3.6 eV предположительно может быть объяснено восстановлением кремний-кислородной связи.

Таким образом, под воздействием импульсных электронных пучков в Be₂SiO₄ реализуются быстрые электронные релаксации с участием короткоживущих состояний атомной подсистемы кристалла за счет разрыва связей Si-O и Be-O. Подобные состояния могут возникать также и по экситонному механизму в процессах локализации и распада ЭВ.

4.3. Автолокализация электронных возбуждений. Из экспериментальных данных следует, что низкотемпературное собственное свечение фенакита характеризуется фотолюминесценцией при 3.6 и 4.1 eV (рис. 5, b) с полосой возбуждения 8.2 eV (рис. 6). Совпадение полос ФЛ и КЛ короткоживущих дефектов указывает на одинаковую природу центров свечения. Высокоэнергетический сдвиг (~0.1 eV) полосы возбуждения собственной ФЛ относительно полосы возбуждения 8.19 eV экситонно-дефектных комплексов позволяет интерпретировать указанные центры ФЛ как результат автолокализации ЭВ в бездефектных узлах решетки [29]. Кинетические параметры полос собственной люминесценции Be₂SiO₄ характеризуются временами затухания в микросекундном диапазоне, что не дает оснований предполагать реализацию двух мультиплетных состояний одного АЛЭ. В то же время данный факт указывает на существование в структуре фенакита двух различных конфигураций АЛЭ, каждой из которых можно приписать свой собственный спектр свечения.

Особенность зонного строения фенакита заключается в том, что потолок валентной зоны и дно зоны проводимости кристалла преимущественно образованы O2*p*-состояниями трехкоординированных атомов кислорода [15]. Перенос заряда между кислородными состояниями в Г-точке зоны Бриллюэна сопровождается генерацией нерелаксированных экситонов. Учитывая особенности координационного состояния и существенно ковалентный характер химических связей в Be₂SiO₄, процесс релаксации анионных экситонов можно представить передачей возбуждения с кислорода на соседние атомы кремния или бериллия. Другими словами, процесс автолокализации ЭВ может осуществляться по двум альтернативным каналам с образованием АЛЭ на тетраэдрах [SiO₄] и [BeO₄]

$$e^{0}(O^{*})$$
 $< e_{s}^{0}(O - Si)^{*} \rightarrow O \dots Si \rightarrow O - Si + h\nu(3.6 \text{ eV}),$
 $e_{s}^{0}(O - Be)^{*} \rightarrow O \dots Be \rightarrow O - Be + h\nu(4.1 \text{ eV}).$

На рис. 7 в конфигурационных координатах представлена схема процессов возбуждения и излучательной релаксации двух типов АЛЭ в кристалле Be₂SiO₄. В со-

Рис. 7. Конфигурационно-энергетическая диаграмма релаксации автолокализованных экситонов в кристалле Be₂SiO₄. Координата Q_0 соответствует энергетическим состояниям кристалла в невозбужденном состоянии (Ground state) и с нерелаксированным кислородным экситоном $e^0(Q^*)$. Координатами Q_1 и Q_2 обозначены конфигурации автолокализованных экситонов STE (Si–O) и STE (Be–O) соответственно. Соотношение барьеров автолокализации экситонов ($\Delta E_{\rm Si} < \Delta E_{\rm Be}$) показано с учетом оценки вероятностей p_1 и p_2 двух каналов релаксации экситона.

ответствии с данной схемой экспериментально наблюдаемое соотношение интенсивностей двух полос ФЛ АЛЭ объясняется различием барьеров ΔE локализации двух типов АЛЭ. Сравнительно большая величина энергетического барьера локализации возбуждения на бериллиевом тетраэдре обеспечивает более высокую вероятность излучательной релаксации по параллельному каналу с нарушением связи Si-O.

Оценка вероятностей автолокализации экситонов на кремний-кислородной и бериллий-кислородной связях дает значения $p_1 = 0.88$ и $p_2 = 0.12$ соответственно. Иначе говоря, эффективность канала автолокализации экситонов кремниевого типа АЛЭ (Si–O) в несколько раз превышает таковую для АЛЭ (Be–O). Указанные оценки сделаны с учетом того, что в условиях низкотемпературного эксперимента (T = 9 K) доминирует процесс излучательной релаксации, а вероятность безызлучательных переходов практически равна нулю. Интересно также заметить, что соотношение полученных вероятностей излучательной релаксации экситонов по двум каналам коррелирует с известными для простых оксидов значениями энергий разрыва химических связей: Si–O (8.2 eV) [30] и Be–O (14.4 eV) [31].

5. Заключение

На примере кристалла двойного оксида Be₂SiO₄ показано, что процессы излучательной релаксации носят сложный характер с образованием короткоживущих возбужденных состояний электронной и атомной подсистем, включая автолокализованные и связанные экситоны.

Обосновано предположение, что собственная люминесценция кристалла при 3.6 и 4.1 eV связана с излучательным распадом двух типов автолокализованных экситонов. Предложен двухканальный механизм локализации нерелаксированного кислородного экситона с передачей возбуждения от трехкоординированного атома кислорода на соседние атомы кремния или бериллия. Вывод о реализации двух альтернативных каналов релаксации вполне согласуется с результатами импульсной абсорбционно-люминесцентной спектроскопии. Согласно полученным данным, радиационные нарушения регулярных связей, инициируемые в бериллиевой и кремниевой подрешетках электронным пучком наносекундной длительности, приводят к возникновению короткоживущих оптически-активных дефектов. Предполагается, что рассмотренный механизм релаксации электронных возбуждений реализуется и в других сложных оксидах типа ортосиликатов.

Наблюдаемые в спектрах фотолюминесценции Be_2SiO_4 полосы 2.7 и 3.15 eV могут быть отнесены к излучательной релаксации возбужденных состояний дефектных центров $[AlO_4]^{5-}$ и $[SiO_4]^{4-}$. В случае возбуждения указанных дефектов фотонами с энергией в области межзонных переходов процесс их релаксации включает промежуточную стадию формирования экситонно-дефектных комплексов.

Список литературы

- Ч. Хан, М.А. Симонов, Н.В. Белов. Кристаллография 15, 3, 457 (1970).
- [2] X. Bu, T.E. Gier, G.D. Stucky. Acta Cryst. C 52, 1601 (1996).
- [3] Yan Hao, Yuhua Wang. J. Lumin. **122-123**, 1006 (2007).
- [4] Т.Ф. Веремейчик, Е.В. Жариков, К.А. Субботин. Кристаллография 48, 6, 1042 (2003).
- [5] L. El Mir, A. Amlouk, C. Barthou, S. Alaya. Physica B 388, 412 (2007).
- [6] А.Ф. Зацепин, В.С. Кортов, В.И. Ушкова. ЖТФ 51, 10, 2105 (1981).
- [7] V.S. Kortov, A.F. Zatsepin, V.I. Uschkova. Phys. Chem. Minerals 12, 114 (1985).
- [8] А.Ф. Зацепин, В.И. Ушкова, В.А. Калентьев. Поверхность. Физика, химия, механика 6, 100 (1990).
- [9] А.Ф. Зацепин, В.С. Кортов, В.И. Ушкова, В.А. Калентьев. Поверхность. Физика, химия, механика 4, 43 (1992).
- [10] А.С. Марфунин. Спектроскопия, люминесценция и радиационные центры в минералах. Недра. М. (1975). 327 с.
- [11] А.Н. Таращан. Люминесценция минералов. Наук. думка, Киев (1978). 296 с.
- [12] М.М. Асланукова, А.М. Хубиев, Е.Г. Семин. ЖПХ 53, 11, 2532 (1980).

- [13] R.M. Hazen, L.W. Finger. Phys. Chem. Minerals 14, 426 (1987).
- [14] Ю.П. Диков, И.А. Брытов, Ю.Н. Ромашенко, С.П. Долин. Особенности электронного строения силикатов. Наука, М. (1979). 128 с.
- [15] И.Р. Шеин, R. Wilks, A. Moewes, Э.З. Курмаев, Д.А. Зацепин, А.И. Кухаренко, С.О. Чолах. ФТТ 50, 4, 594 (2008).
- [16] M. Kirm, G. Zimmerer, E. Feldbach, A. Lushchik, Ch. Lushshik, F. Savikhin. Phys. Rev. B 60, 1, 502 (1999).
- [17] Б.П. Гриценко, В.Ю. Яковлев, Г.Д. Лях, Ю.Н. Сафонов. Тез. Всесоюз. конф. по метрологии быстропротекающих процессов. М. (1978). С. 61.
- [18] G. Zimmerer. Nucl. Instrum. Meth. Phys. Res. A 308, 178 (1991).
- [19] R. Kibar, J. Garcia-Guinea, A. Cetin, S. Selvi, T. Karal, N. Can. Rad. Meas. 42, 1610 (2007).
- [20] H. Lozykowski, R.G. Wilson, F. Holuj. J. Chem. Phys. 51, 6, 2309 (1969).
- [21] А.Н. Новожилов, М.И. Самойлович, А.Н. Карачковская. ЖСХ 11, 3, 428 (1970).
- [22] L. Tomaz Filho, G.M. Ferraz, S. Watanabe. Nucl. Instrum. Meth. Phys. Res. B 229, 2, 253 (2005).
- [23] Ш.А. Вахидов, З.М. Гасанов, М.И. Самойлович, У. Яркулов. Радиационные эффекты в кварце. Фан, Ташкент (1975). 188 с.
- [24] Ч.Б. Лущик, А.Ч. Лущик. Распад электронных возбуждений с образованием дефектов в твердых телах. Наука, М. (1989). 264 с.
- [25] С.В. Горбунов, В.Ю. Яковлев. ФТТ 47, 4, 603 (2005).
- [26] Б.П. Гриценко, В.М. Лисицын. ФТТ 27, 7, 2214 (1985).
- [27] А.Ф. Зацепин, В.С. Кортов, В.А. Калентьев, В.И. Ушкова. ФТТ **30**, *5*, 1305 (1988).
- [28] Л.А. Благинина, А.Ф. Зацепин, А.И. Кухаренко, В.А. Пустоваров, Ю.Н. Новоселов, С.О. Чолах, В.Ю. Яковлев. Изв. вузов. Физика **49**, *10* (Приложение), 378 (2006).
- [29] В.Ю. Иванов, В.А. Пустоваров, Е.С. Шлыгин, А.В. Коротаев, А.В. Кружалов. ФТТ **47**, *3*, 452 (2005).
- [30] А.Р. Силинь, А.Н. Трухин. Точечные дефекты и элементарные возбуждения в кристаллическом и стеклообразном SiO₂. Зинатне, Рига (1985). 244 с.
- [31] П.Б. Сорокин, А.С. Федоров, Л.А. Чернозатонский. ФТТ 48, 2, 373 (2006).