Микрорамановский отклик и осцилляторные параметры фононов в твердых растворах $Pb_{1-x}Ca_xTiO_3$ (0.40 < x < 0.62)

© А.Н. Чабанюк, В.И. Торгашев, Ю.И. Юзюк, В.В. Леманов*, Р. Simon**

Южный федеральный университет, Ростов-на-Дону, Россия * Физико-технический институт им. А.Ф. Иоффе Российской академии наук, Санкт-Петербург, Россия ** CEMHTI — Conditions Extrêmes et Matériaux: Haute Température et Irradiation UPR3079 CNRS, Orléans, France E-mail: vitorgashev@rambler.ru

(Поступила в Редакцию 29 апреля 2008 г.)

Посредством температурных (295 < T < 650 K) исследований поляризованных спектров комбинационного рассеяния света в области частот $10 < v < 1200 \text{ cm}^{-1}$ на монокристаллическом образце твердого раствора Pb_{0.54}Ca_{0.46}TiO₃ установлено существование по крейней мере одной особой температурной точки ($T_c \approx 392 \text{ K}$), в которой наблюдаются заметные аномалии осцилляторных параметров фононных мод. Аналогичные явления имеют место в растворах с 0.4 < x < 0.5. Резкий рост интенсивности спектральных линий, соответствующих волнам поляризации, при температурах сразу ниже T_c позволяет сделать вывод о трансформации Pb_{1-x}Ca_xTiO₃ (0.4 < x < 0.5) в полярное состояние, которое отсутствует в системе при концентрациях x > 0.5.

Работа проводилась при финансовой поддержке РФФИ (грант № 06-02-16271).

PACS: 64.70.Kb, 77.84.Dy, 78.30.Hv

1. Введение

Замещение Pb²⁺ ионами Ca²⁺ в твердых растворах $Pb_{1-x}Ca_x TiO_3$ (РСТ-X, где $X = x \cdot 100\%$) модифицирует свойства титаната свинца. Об особенностях диэлектрических характеристик керамики РСТ-Х впервые сообщено в работе [1]. Дальнейшие исследования [2–11] привели к выводу, что количество Ca²⁺ в этих твердых растворах оказывает критическое влияние как на структурные, так и на оптические свойства, особенно в области средних концентраций. Динамические же свойства РСТ-Х до сих пор изучены явно недостаточно, хотя они дают важную информацию об изменении микроскопической структуры и механизме фазовых превращений. Недавно в наших работах [12-14] методами инфракрасной (ИК) спектроскопии и комбинационного рассеяния света (КРС) на качественном уровне установлено сложное концентрационное и температурное поведение спектрального отклика твердых растворов РСТ-Х.

В работе [12] методом ИК-спектроскопии доказана аналогия динамического поведения керамики РСТ-*X* (0.65 < x < 1) со статическим, что позволило подтвердить предположение [10] о трансформации растворов в сегнетоэлектрическое состояние при увеличении концентрации свинца. Далее в [13] методом КРС при комнатной температуре установлено аномальное концентрационное поведение фононного спектрального отклика в диапазоне 0.38 < x < 0.40 и сделано предположение, что при x > 0.40 в РСТ-x реализуется новое фазовое состояние. Наконец, в [14] при проведении температурных КРС-измерений на монокристалле РСТ-45 были обнаружены аномалии интенсивностей спектрального отклика, что позволило утверждать наличие в системе PCT-*X* высокотемпературных фазовых переходов в неполярные состояния.

В настоящей работе приводятся результаты исследований поляризованных спектров КРС в диапазоне частот $10 < \nu < 1200 \,\mathrm{cm^{-1}}$ при температурах 296–640 К на монокристаллических образцах твердых растворов РСТ-X (0.4 < x < 0.62). Эти результаты относятся к не исследовавшейся в [12–14] области концентраций. Проведена компьютерная обработка эксперимента и получены температурные зависимости осцилляторных параметров фононных мод. Техника эксперимента, метод роста и аттестация наших образцов описаны ранее в [13].

2. Спектры КРС монокристалла РСТ-46 и их температурная эволюция

В работе [14] было обращено внимание на нетривиальную особенность образцов РСТ-45. Она заключалась в том, что при сканировании поверхности образца лучом лазера и его фокусировке в образец на незначительную глубину (десятые доли микрометра) в КРС можно получить несколько типов спектрального отклика. Сравнение вида спектров из разных областей одного и того же образца позволило нам выдвинуть гипотезу о том, что вблизи его поверхности имеют место флуктуации состава. В рассматриваемых в настоящей работе твердых растворах наблюдается похожая картина. Рис. 1 демонстрирует поведение спектров КРС в РСТ-46 при изменении положения фокусируемого луча лазера относительно края образца. Здесь спектры с

Рис. 1. Поведение спектров КРС при изменении положения фокусируемого луча вдоль образца $Pb_{0.54}Ca_{0.46}TiO_3$. Числа от 1 до 8 соответствуют спектрограммам, снятым с шагом 5 μ m при движении пятна лазера от края образца к его центру. Точка *I* находится на самом краю образца.

номерами от 1 до 8 соответствуют спектрограммам, снятым с шагом 5 μ m при движении пятна лазера от края образца к его центру. Точка 1 находится на самом краю образца. Очевидно, содержание Са в этой области образца невелико, поскольку спектральное распределение КРС близко к тому, что наблюдается в растворах РСТ-X при малых значениях x [13]. В точке 8 имеем спектр, соответствующий номинальному составу РСТ-46. Именно из этой зоны были получены спектры при последующих температурных измерениях. Аналогичным образом нами выбиралась область образца и для других составов РСТ-X, чтобы избежать попадания на участки, не соответствующие номинально заявленному составу раствора.

Для получения количественной информации об осцилляторных параметрах отдельных фононных мод была выполнена процедура подгонки спектров по методу наименьших квадратов с коррекцией спектров на температурный фактор Бозе-Эйнштейна [13]. Результат представлен на рис. 2 в виде отдельных контуров модовых мультиплетов наряду со структурированным фоном. Подобная подгонка сделана для нескольких температур. В результате получены данные о температурном поведении осцилляторных параметров (собственных частотах v_i , константах затухания γ_i и интенсивностях $C\Delta\varepsilon_i$; здесь C — константа, $\Delta\varepsilon_i$ — вклад полярной колебательной моды в статическую диэлектрическую проницаемость) характерных поперечных ТО_{*i*} (j = 1-4) полярных мод (рис. 3 и 4). Спектры исследовались в поляризациях, отвечающих компонентам α_{XX}

и α_{YX} рамановского тензора. Отнесение мод сделано ранее [13].

Приведенные зависимости позволяют выделить области существенного изменения параметров фононов, на основании чего можно определить температуру фазового перехода, отмеченную штриховыми линиями на рис. 3 и 4. Очевидно, что вблизи 390 К имеют место очень сильные аномалии на всех графиках. Данная температурная точка соответствует температуре $T_1 \approx 392$ К, при которой в [14] наблюдались аномалии интенсивностей спектров КРС раствора РСТ-45 (т. е. близкого к исследованному в настоящей работе составу РСТ-46).

В качестве дополнительного аргумента происходящих в образце структурных изменений на рис. 5 приводятся графики температурной зависимости интегральной интенсивности спектров КРС для полярных мод TO1 и TO4. Значения I_0 и I_1 отвечают интегрированию по спектральным диапазонам $12 \le \nu \le 1200 \, {\rm cm}^{-1}$ (для

Рис. 2. Моделирование спектров КРС монокристалла $Pb_{0.54}Ca_{0.46}TiO_3$ при температуре T = 296 К. a — спектральный диапазон, соответствующий мягкой моде TO1 (α_{YX} -компонента рамановского тензора); b — результат подгонки полного спектра независимыми лоренцианами (α_{XX} -компонента рамановского тензора). Штрихпунктирная линия моделирует спектр второго порядка.

Рис. 3. Температурные зависимости осцилляторных параметров TO1-фононов в кристалле $Pb_{0.54}Ca_{0.46}$ TiO₃. Спектральный контур смоделирован четырьмя независимыми лоренцианами. Штриховыми линиями показана температура (T_c) предполагаемого фазового перехода.

полного спектра), $12 \le \nu \le 90 \text{ cm}^{-1}$ (для ТО1-моды) и $480 \le \nu \le 610 \text{ cm}^{-1}$ (для ТО4-моды) соответственно. Рис. 5, *a*, *b* демонстрирует температурное поведение относительных интегральных интенсивностей I_1/I_0 , а рис. 5, *c*, *d* — абсолютных. Как видно из рисунка, резкий спад интенсивности наблюдается при тех же

значениях температуры, при которых происходят значительные изменения и для осцилляторных параметров. Поскольку моды ТО1 и ТО4 в перовскитах соответствуют волнам поляризации и они не активны в спектрах КРС первого порядка при наличии центросимметричной структуры, их сильный рост при темпе-

Рис. 4. Температурные зависимости осцилляторных параметров TO4-фононов в кристалле $Pb_{0.54}Ca_{0.46}$ TiO₃. Спектральный контур смоделирован тремя независимыми лоренцианами. Штриховыми линиями показана температура (T_c) предполагаемого фазового перехода.

ратурах ниже $T_1 \approx 392$ K, очевидно, свидетельствует о трансформации структуры в полярное состояние (центр инверсии исчезает, и моды становятся КР-активными). Отметим, однако, что и выше T_1 эти моды полностью

не исчезают из спектров вплоть до 450 К. Поэтому состояние кристалла в температурном диапазоне 392 < T < 450 К с точки зрения спектроскопии КРС можно рассматривать как слабополярное. С другой сто-

Рис. 5. Температурные зависимости интегральных интенсивностей спектров КРС для монокристалла $Pb_{0.54}Ca_{0.46}TiO_3$. Значения I_0 и $I_1^{TO_j}$ соответствуют интегрированию по спектральным диапазонам $12 \le \nu \le 1200 \text{ cm}^{-1}$ (для полного спектра), $12 \le \nu \le 90 \text{ cm}^{-1}$ (для TO1 мод) и $480 \le \nu \le 610 \text{ cm}^{-1}$ (для TO4 мод). Очевиден резкий рост интенсивностей обеих полярных мод при T < 400 K.

роны, судя по крайне низкой величине интенсивностей мод TO1 и TO4, фазовое состояние образца выше примерно 450 К полярным не является. Отметим, что,

согласно оптическим данным [6,7], вторая особая точка для состава РСТ-46 должна наблюдаться в окрестности 460 К.

Рис. 6. Температурная эволюция спектров КРС в низкочастотной области в монокристалле $Pb_{0.5}Ca_{0.5}TiO_3(a, b)$ и температурные зависимости собственных частот (*c*) двух наиболее низкочастотных осцилляторов. Вблизи $T \approx 355$ К моды исчезают из спектров из-за изменения правил отбора при фазовом переходе.

3. Температурная эволюция спектров КРС монокристалла РСТ-50

Согласно исследованиям [6,7], фазовое состояние PCT-50 при комнатной температуре должно отличаться от состояния с меньшим значением концентрации кальция. Однако сравнение спектров КРС кристаллов PCT-46 и PCT-50 показывает, что фононные спектральные распределения для них похожи. Это позволяет сделать вывод, что образец PCT-50 при комнатной температуре также находится в полярном состоянии. Действительно, как показал анализ спектров КРС PCT-46 и PCT-50, подогнанных независимыми лоренцианами, спектральные линии, соответствующие *E*-модам тетрагональной полярной фазы *P4mm* (для x < 0.4), в обоих случаях расщеплены на компоненты (рис. 2). Данный факт указывает на более низкую, чем тетрагональная, симметрию

этого фазового состояния. Мы полагаем, что его класс симметрии отвечает точечной группе C_{2v} .

При повышении температуры низкочастотные линии спектров понижают свою частоту (рис. 6), причем вблизи 345 К все компоненты отдельных мод становятся квазивырожденными (их частоты совпадают в пределах точности эксперимента). Рис. 6, с демонстрирует этот эффект на примере двух линий мультиплета моды ТО1. Выше примерно 355 К все полярные моды исчезают из спектров КРС, что свидетельствует о переходе кристалла в неполярное состояние. В спектрах, однако, все еще присутствует довольно сильная центральная компонента, интенсивность которой резко падает лишь при температурах выше 500 К. Можно полагать, что в этой области температур имеет место фазовый переход между двумя неполярными состояниями кристалла. Согласно оптическим данным [6,7], здесь действительно должен наблюдаться фазовый переход.

4. Спектры КРС монокристаллов РСТ-*X* при 0.50 < *x* < 0.62

На рис. 7 показаны спектры твердых растворов РСТ в широкой области концентраций при комнатной температуре. Очевидно, что спектральное распределение по мере увеличения *x* качественно меняется при двух концентрациях.

При $0 \le x \le 0.39$ спектры КРС монокристаллических образцов РСТ качественно похожи на спектр

Рис. 7. Спектры КРС кристаллов твердых растворов $Pb_{1-x}Ca_xTiO_3$ при комнатной температуре. Имеют место резкие изменения спектрального распределения приблизительно при $x_1 \approx 0.39$ и $x_2 \approx 0.51$.

Рис. 8. Фрагмент фазовой диаграммы, полученной на основании оптических измерений в поляризационном микроскопе [6,7] (светлые кружки). Фазы, не отмеченные индексом пространственной группы (C_{4v} и C_{2v}), согласно [14], предположительно имеют тетрагональную и орторомбическую симметрию. Светлыми квадратами и штриховыми линиями отмечены уточненные положения линий фазовых переходов, полученные в настоящей работе. Темными кружками показаны мультикритические точки.

чистого титаната свинца, что с очевидностью следует из анализа их поляризованных спектров. На рис. 7 для наглядности приведены спектры лишь двух представителей из этой концентрационной области: РСТ-0 и РСТ-38. Более детальный анализ сделан в работе [13].

В области концентраций 0.38 < x < 0.51 спектральное распределение кардинально отличается от спектров образцов с $0 \le x \le 0.38$ (ср. спектры образцов РСТ-38 и РСТ-40 на рис. 7), причем теперь "бывшие" дважды вырожденные *E*-моды тетрагональной фазы расщеплены на компоненты. Данный факт с очевидностью свидетельствует о понижении симметрии системы до орторомбической или более низкой. При этом, поскольку полярные моды наблюдаются в спектрах КРС, можно утверждать, что класс симметрии — полярный.

При концентрациях $x_2 \approx 0.51$ картина спектрального распределения вновь кардинально меняется — из спектров образцов с x > 0.51 исчезают линии, соответствующие полярным модам. Поэтому мы утверждаем, что фазовое состояние для растворов с x > 0.51 является неполярным. Таким образом, анализ спектров КРС на изотерме T = 300 К и нормальном давлении позволяет утверждать, что в системе твердых растворов РСТ-*X* имеют место два концентрационных фазовых перехода (приблизительно при $x_1 \approx 0.39$ и $x_2 \approx 0.51$), как это показано на рис. 8.

5. Обсуждение экспериментальных результатов

В литературе существует определенное согласие в том, что структура твердых растворов РСТ-X в области концентраций $0 \le x < 0.4$ является простой тетрагональной, близкой к чистому титанату свинца [2,3,8,9]. Однако, что касается структуры в области промежуточных концентраций, то здесь версии весьма разнообразны, и они детально обсуждались ранее в [13,14]. Поэтому не будем повторяться, а проанализируем работы, которые появились недавно [15–20].

В работах [15,17,18] исследовалась керамика РСТ-Х, приготовленная золь-гель-методом. Подтверждены ранее известные результаты, свидетельствующие о том, что увеличение концентрации кальция в области *x* < 0.35 не меняет тетрагональную структуру, свойственную титанату свинца, несмотря на существенное уменьшение численного значения c/a, характеризующего величину тетрагональности кристаллической решетки. Однако при $x \ge 0.35$, по мнению авторов, структура становится псевдокубической. Но при этом в спектрах КРС образцов с x > 0.35 наблюдались линии, соответствующие полярным модам (отметим, что отнесение линий в [18] как A_1 (TO1) на 55 cm⁻¹ и E(TO1) на 104 cm⁻¹, по нашему мнению, ошибочно). Кроме того, диэлектрическая проницаемость, измеренная на частоте 1 kHz, резко повышалась (более чем в 2 раза) в диапазоне $0.25 \le x \le 0.35$, а на образце РСТ-35 наблюдалась диэлектрическая дисперсия. Несоответствие рентгеновских и спектральных результатов авторы работ [15,17,18] объяснили характером методик, считая, что рентгенография определяет макроскопическую (т.е. среднюю) структуру, тогда как спектральные методы позволяют охарактеризовать локальную структуру решетки (близкодействие).

Из наших измерений, однако, следуют иные выводы. Во-первых, в растворах РСТ-Х при T = 300 К и $x_1 \approx 0.39$ реально имеет место структурный фазовый переход, причем не в тригональную (на локальном уровне) структуру, как предполагалось в [18], а в полярную орторомбическую, поскольку в ней наблюдается снятие вырождения с *E*-мод. Во-вторых "размытие" этого фазового перехода по концентрации с $\Delta x \approx 0.02$ на наших монокристаллических образцах до $\Delta x \approx 0.1$ на керамиках в [15,17,18] можно объяснить как флуктуациями состава (рис. 1), так и влиянием морфических эффектов, неминуемо имеющих место в керамике (механическая напряженность границ зерен, сегрегация дефектов вблизи них и т.д.).

Авторы работы [17] на основании только "линейности" графика зависимости квадрата частоты мягкой моды от концентрации (рис. 6 в [17]) считают, что при дальнейшем увеличении концентрации кальция тригональная структура при $x_0 \approx 0.60$ полностью становится центросимметричной кубической. Отметим, однако, что из нашего анализа осцилляторных параметров полярных фононных мод (в том числе и мягкой моды TO1) с

очевидностью следует, что описывать поведение частоты в едином концентрационном диапазоне $0 \le x < 0.6$ неправомерно, поскольку при обоих концентрационных фазовых переходах имеют место скачки осцилляторных параметров мод. Более того, авторы работы [17] подчеркивают, что при комнатной температуре в их спектрах КРС мягкая мода реально не наблюдалась при концентрациях x > 0.5. Но, как уже обсуждалось выше, в растворах РСТ-Х при $x_2 \approx 0.51$ имеет место второй структурный концентрационный фазовый переход, но не в кубическую фазу, а, возможно, в фазу, структурно близко связанную с ромбической структурой титаната кальция, симметрия которого при комнатной температуре описывается пространственной группой Рпта. К сожалению, только на основании спектров КРС, приведенных на рис. 7 для образцов с $0.52 \le x \le 0.62$, указать класс симметрии нельзя. Однако измерения на образце $x \approx 0.52$ показали, что при высоких температурах интенсивность рэлеевского крыла падает, и, по-видимому, только тогда симметрия повышается до более высокой, нежели центросимметричная ромбическая.

Также отметим, что совсем недавно критика наличия кубической фазы для растворов с 0.40 < x < 0.56 была приведена в работе [20]. Однако в ней утверждается, что состояние в области средних концентраций является гетерофазным, с чем мы также не можем согласиться, основываясь на приведенных выше результатах и обсуждении.

Полученное нами значение $x_2 \approx 0.51$ для второй критической концентрации в растворах РСТ-Х несколько выше (рис. 8) предполагавшегося ранее в [6,7,13]. Мы не обсуждаем здесь высокотемпературные фазовые состояния, поскольку считаем, что картина в целом укладывается в схему, описанную в работах [13,21]. Поэтому на данном этапе исследований следует считать, что при высоких температурах в твердых растворах РСТ-Х фазовая диаграмма имеет сложную структуру, обусловленную конкуренцией разных неустойчивостей решетки (полярных, характерных для титаната свинца, с одной стороны, и ротационной природы, реализующейся в титанате кальция, с другой). Это в конечном итоге приводит к энергетически близким, но разным по типу искажениям структуры и, как следствие, к сложной фазовой диаграмме в области средних концентраций РСТ-Х (рис. 8).

6. Заключение

В настоящей работе в отличие от [13] впервые получена количественная информация о фононном микрорамановском спектральном отклике системы $Pb_{1-x}Ca_xTiO_3$ (0.4 < x < 0.62) на монокристаллических образцах. Обнаружены аномалии осцилляторных параметров полярных мод, которые обусловлены структурными фазовыми переходами. С помощью высокотемпературных исследований достоверно установлено существование фазового перехода первого рода при $T_1 \approx 392$ К для состава Pb_{0.54}Ca_{0.46}TiO₃. Эта особая температурная точка на фазовой диаграмме согласуется с температурой, приведенной ранее в работе [14]. Ниже $T_1 \approx 392$ К фазовое состояние является полярным, а выше — слабо полярным. Температура второго фазового перехода в неполярную фазу находится предположительно вблизи 450 К. Становится ли при этом структура центросимметричной тетрагональной, только на основании КРС-исследований сказать затруднительно.

Анализ спектров КРС на изотерме T = 300 К и нормальном давлении позволяет утверждать, что в системе твердых растворов РСТ-*X* имеют место два концентрационных фазовых перехода (приблизительно при $x_1 \approx 0.39$ и $x_2 \approx 0.51$).

Мы не обнаружили в фононном спектральном отклике каких-либо свидетельств релаксорного фазового состояния наших образцов. Возможной причиной наблюдения таких состояний для PCT-X в некоторых опубликованных ранее работах были значительные приповерхностные флуктуации состава, которые мы наблюдали в наших кристаллах и которые в еще большей мере должны присутствовать в керамике.

Список литературы

- [1] E. Sawaguchi, T. Mitsuma, Z. Ishii. J. Phys. Soc. Jpn. 11, 1298 (1956).
- [2] E. Sawaguchi, M.L. Charters. J. Am. Ceram. Soc. 42, 4, 157 (1959).
- [3] T. Yamamoto, M. Saho, K. Okazaki, E. Goo. Jpn. J. Appl. Phys. 26, Suppl-2, 57 (1987).
- [4] J. Mendiola, B. Jimenez, C. Alemany, L. Pardo, L. Del Olmo. Ferroelectrics 94, 1, 183 (1989).
- [5] G. King, E. Goo. J. Am. Ceram. Soc. 73, 6, 1534 (1990).
- [6] В.В. Еремкин, В.Г. Смотраков, С.И. Шевцова, А.Т. Козаков. ФТТ 36, 2, 349 (1994).
- [7] В.В. Еремкин, В.Г. Смотраков, Л.Е. Балюнис, С.И. Шевцова, А.Т. Козаков. Кристаллография **39**, 155 (1994).
- [8] R. Ganesh, E. Goo. J. Am. Ceram. Soc. 80, 3, 653 (1997).
- [9] R. Ranjan, N. Singh, D. Pandey, V. Siruguri, P.S.R. Krishna, S.K. Paranjpe, A. Banerjee. Appl. Phys. Lett. 70, 24, 3221 (1997).
- [10] V.V. Lemanov, A.V. Sotnikov, E.P. Smirnova, M. Weihnacht. Appl. Phys. Lett. 81, 5, 886 (2002).
- [11] A. Chandra, D. Pandey. J. Mater. Res. 18, 2, 407 (2003).
- [12] А.А. Волков, Г.А. Командин, Б.П. Горшунов, В.В. Леманов, В.И. Торгашев. ФТТ 46, 5, 899 (2004).
- [13] В.И. Торгашев, Ю.И. Юзюк, В.В. Леманов, С.А. Kuntscher. ФТТ 48, 4, 717 (2006).
- [14] В.И. Торгашев, Ю.И. Юзюк, В.Б. Широков, В.В. Леманов. ФТТ **48**, *5*, 864 (2006).
- [15] A.K.S. Chauhan, V. Gupta, K. Sreenivas. Mater. Sci. Eng. B 130, 81 (2006).

- [16] A. Chandra, R. Ranjan, D.P. Singh, N. Khare, D. Pandey. J. Phys.: Cond. Matter 18, 11, 2977 (2006).
- [17] A. Singh, K. Sreenivas, R.S. Katiyar, V. Gupta. J. Appl. Phys. 102, 7, 074 110 (2007).
- [18] A. Singh, V. Gupta, K. Sreenivas, R.S. Katiyar. J. Phys. Chem. Solids 68, 119 (2007).
- [19] S.R. de Lazaro, P.R. de Lucena, J.R. Sambrano, P.S. Pizani, A. Beltran, J.A. Valera, E. Longo. Phys. Rev. B 75, 144111 (2007).
- [20] A. Chandra. Phys. Rev. B 77, 017 101 (2008).
- [21] В.И. Торгашев, В.Б. Широков, А.С. Прохоров, Л.А. Шувалов. Кристаллография 50, 4, 689 (2005).