Моноклинный упорядоченный субоксид ванадия V₁₄O₆

© Д.А. Давыдов, А.И. Гусев

Институт химии твердого тела Уральского отделения Российской академии наук, Екатеринбург, Россия

E-mail: gusev@ihim.uran.ru

(Поступила в Редакцию 18 февраля 2008 г.)

Методами ренттеновской дифракции и симметрийного анализа изучена моноклинная (пр. гр. C2/m) сверхструктура V₁₄O₆, образующаяся при атомно-вакансионном упорядочении тетрагонального твердого раствора кислорода в ванадии. Моноклинный субоксид V₁₄O₆ наблюдается в синтезированных при 1770 K образцах оксида ванадия VO_{0.57}, VO_{0.81} и VO_{0.86} и в образцах VO_y (0.87 $\leq y \leq$ 0.98), после синтеза дополнительно отожженных при температуре 1470 K. Установлено, что канал фазового перехода беспорядок–порядок, связанный с образованием моноклинного субоксида V₁₄O₆, включает шесть сверхструктурных векторов, принадлежащих трем нелифшицевским звездам одного типа {k₁}. Рассчитана функция распределения атомов кислорода в моноклинной сверхструктуре V₁₄O₆. Показано, что смещения атомов V искажают объемно центрированную тетрагональную металлическую подрешетку, подготавливая формирование гранецентрированной кубической подрешетки и переход от субоксида V₁₄O₆ к кубическому монооксиду ванадия со структурой *B*1.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 09-03-00010а).

PACS: 61.50.Ks, 61.66.Fn, 61.72.Ji, 64.70.Kb

Система V–O по разным данным содержит от 21 до 25 соединений и фаз [1–3], большинство из которых оксиды с высоким (60 аt.% и более) содержанием кислорода (V_nO_{2n-1} с n = 2, 3, 4, 5, 6, 7 и 8, VO₂, V_nO_{2n+1} с n = 2, 3 и 7). Эти оксиды хорошо изучены, поскольку во многих из них наблюдаются фазовые переходы металл–изолятор. Оксиды ванадия, содержащие 60 аt.% кислорода и более, как правило, не имеют областей гомогенности.

В отличие от них оксиды ванадия, содержащие менее 50–55 at.% кислорода, обладают широкими областями гомогенности и принадлежат к группе сильно нестехиометрических соединений [4,5]. Нестехиометрические оксиды ванадия граничат с твердым раствором кислорода в ванадии V(O), называемым в литературе β -фазой. В нестехиометрических оксидах ванадия и в β -фазе атомы кислорода O и структурные вакансии \Box (незаполненные узлы неметаллической подрешетки) образуют раствор замещения. Высокая концентрация вакансий является предпосылкой атомно-вакансионного упорядочения. Однако упорядочение нестехиометрических оксидных фаз ванадия изучено мало.

Представляет интерес упорядочение твердого раствора кислорода в ванадии, т.е. β -фазы, по составу близкой к V₂O (VO_{0.50}). Первоначально предполагалось [6], что при упорядочении β -фазы образуется моноклинная сверхструктура V₂O, включающая 125 элементарных ячеек базисной тетрагональной структуры. Однако по данным [7–10] упорядочение атомов кислорода O и вакансий \Box в тетрагональном твердом растворе V(O) приводит к образованию γ -фазы–упорядоченного субоксида V₁₄O₆ (V₁₄O₆ \Box_8). Формулу этого субоксида записывают также в виде V₇O₃ (V₇O₃ \Box_4) и

V₂O_{1+x} [8,9]. Исследования [7–10] подтвердили моноклинную симметрию упорядоченного субоксида ванадия. Параметры элементарной ячейки моноклинного субоксида VO_{0.44} равны $a_m = 0.9507$ nm, $b_m = 0.2935$ nm, $c_m = 0.7695 \,\mathrm{nm}$ и $\beta_m = 90.84^\circ$ [8], а по данным [9] параметры элементарной ячейки субоксида VO_{0.47} следующие: $a_m = 0.9501$ nm, $b_m = 0.2936$ nm, $c_m = 0.7753$ nm, $\beta_m = 90.44^{\circ}$. Согласно [8], моноклинный субоксид ванадия имеет область гомогенности от VO_{0.42} до VO_{0.54}, хотя по данным [9] верхней границе области гомогенности соответствует ~ VO_{0.49}. При большем содержании кислорода образцы являются двухфазными и наряду с субоксидом V₁₄O₆ содержат кубический монооксид ванадия V_xO_z, в котором вакансии присутствуют и в металлической, и в кислородной подрешетках сразу. Авторы работ [8,9] предложили одинаковое размещение атомов в элементарной ячейке идеальной сверхструктуры V₁₄O₆, но приводят разные координаты. Разница в атомных координатах вызвана тем, что авторы [8] за начало координат выбрали позицию 2(а) и поместили в нее атом ванадия, а в работе [9] в эту же позицию помещен атом кислорода; кроме того, в работах [8,9] направления оси а_m противоположены. Распределение атомов в сверхструктуре V₁₄O₆, предложенное в работе [10], отличается от описанного в работах [8,9]. Теоретический анализ превращения β -фаза VO_v $\rightarrow \gamma$ -фаза V₁₄O₆ никогда не проводился.

В настоящей работе впервые определен канал структурного фазового перехода беспорядок–порядок, связанного с образованием сверхструктуры $V_{14}O_6$, найдено распределение атомов О и V в решетке идеальной сверхструктуры и на основе экспериментальных данных с учетом смещений установлены координаты

Образцы VO_v $(0.43 \le y \le 1.11)$ получены твердофазным спеканием смеси порошков гидрида VH_{1.5} и оксида V_2O_3 в вакууме 0.0013 Ра (10⁻⁵ mm Hg) при температуре 1770 К в течение 10 h с промежуточным перетиранием продуктов спекания через 5 h. Затем синтезированные образцы VO_v с составами y = 0.43, 0.57, 0.86 и 0.96 дополнительно отожгли в течение 2h при температуре 1470 К с последующим быстрым охлаждением (закалкой) до температуры 300 К. Образец VO_{0 57} отжигали также при температуре 1070 К в течение 1000 h с последующей закалкой до 300 К. Образцы VO_{0.81}, VO_{0.87}, VO_{0.98} и VO_v с y > 0.98 отжигали при медленном охлаждении от температуры синтеза 1770 до 1070 К со скоростью 25 K · h⁻¹. Отжиг всех образцов проводили в кварцевых ампулах, вакуумированных до 10^{-5} Pa. Относительное содержание кислорода в образцах определяли методом термогравиметрии по величине привеса после полного окисления образца до высшего оксида V₂O₅.

Фазовый состав образцов и параметры кристаллической решетки различных фаз определяли методом рентгеновской дифракции на автодифрактометре ДРОН-УМ1. Дифракционные измерения проводили методом Брэгга–Брентано в Си $K\alpha_{1,2}$ -излучении в интервале углов 2θ от 10 до 140° с шагом $\Delta 2\theta = 0.03^{\circ}$ и временем сканирования 2 s в точке. Окончательное уточнение структуры выполняли с помощью программного пакета GSAS [11]. Фон описывали полиномом Чебышева пятого порядка, а для описания профиля дифракционных отражений использовали функцию псевдо-Фойгта.

Рентгеновская дифракция показала, что в синтезированных образцах с содержанием кислорода у > 0.87 присутствовал только кубический (пр. гр. Fm3m) монооксид ванадия, образец VO_{0.43} содержал только упорядоченную моноклинную субоксидную у-фазу, а в образцах VO_{0.57}, VO_{0.81} и VO_{0.86} помимо кубического монооксида содержался упорядоченный моноклинный (пр. гр. C2/m) субоксид ванадия V₁₄O₆ в количестве 86, 30 и 13 wt.% соответственно. Низкотемпературный отжиг привел к росту количества фазы V14O6 в образцах VO_{0.81} и VO_{0.86} (рис. 1) и появлению этой же фазы в образцах VO_v $(0.87 \le y \le 0.98)$, которые до отжига содержали только кубический монооксид V_xO_z. Период решетки *а*_{*B*1} кубического монооксида ванадия после отжига образцов VO_v с $y \le 0.98$ увеличился. Тетрагональная (пр. гр. I4/mmm) *β*-фаза в синтезированных и отожженных образцах не обнаружена. Количество появившейся фазы $V_{14}O_6$ составляло от $\sim 33\,wt.\%$ в $VO_{0.87}$ до $\sim 20\,wt.\%$ в $VO_{0.96}$ и $\sim 3\,wt.\%$ в $VO_{0.97};$ в образце $VO_{0.57}$, отожженном в течение 1000 h, количество *v*-фазы достигло 90 wt.%.

Означает ли наличие γ -фазы V₁₄O₆ в образцах VO_{0.81} и VO_{0.86}, синтезированных при 1770 K, что ее образование начинается при этой температуре? После прекращения нагрева синтезированные образцы остывали вместе с печью, причем температура быстро снижалась

Д.А. Давыдов, А.И. Гусев

Рис. 1. Рентгенограммы образца VO_{0.86}: синтезированный образец VO_{0.86} содержал 13 wt.% фазы V₁₄O₆ и ~ 87 wt.% кубического монооксида ванадия V_xO_z; после отжига при температуре 1070 К количество фазы V₁₄O₆ выросло до ~ 32 wt.%. Длинные и короткие штрихи соответствуют дифракционным отражениям упорядоченного субоксида V₁₄O₆ и кубического монооксида ванадия соответственно. Излучение CuK_{a1,2}.

до ~ 1400–1500 K, а дальнейшее остывание происходило в течение примерно 2 h. Таким образом, при остывании синтезированных образцов происходил их частичный отжиг. Наибольшая температура, от которой закаливали образцы в кварцевых ампулах, составляет 1470 К. После таких отжига и закалки содержание γ -фазы выросло в образцах VO_{0.81} и VO_{0.86}, а в образцах VO_y (0.87 $\leq y \leq$ 0.98) она появилась. Таким образом, γ -фаза в образцах VO_y возникает при температуре выше 1470 К и ниже 1770 К. С учетом точных условий синтеза и отжига можно полагать, что образование γ -фазы начинается при температуре ~ 1620 К, которая на 150–200 К выше, чем предполагаемая в [2,3,12,13] температура (~ 1430–1460 К).

Рост содержания или появление моноклинного субоксида $V_{14}O_6$ после отжига образцов VO_y ($0.81 \le y \le 0.98$) являются следствием перитектоидной реакции β -фаза + $V_xO_z \rightarrow V_{14}O_6$. Концентрация кислорода в моноклинном субоксиде $V_{14}O_6$ меньше, чем в кубическом монооксиде ванадия, поэтому появление субоксида $V_{14}O_6$ после отжига образцов сопровождается ростом содержания кислорода в монооксиде V_xO_z и, как следствие, увеличением периода решетки a_{B1} кубического монооксида.

Минимизация рентгенограммы отожженного образца $VO_{0.86}$ (рис. 2) показала, что он содержит ~ 32 wt.% субоксида $V_{14}O_6$ и ~ 68 wt.% кубического монооксида ванадия $V_{0.75}O_{0.78}$; для субоксида $V_{14}O_6$ фактор достоверности $R_I = 0.105$, для монооксида $R_I = 0.081$. Согласно уточнению рентгенограммы с помощью программы GSAS [11], параметры элементарной ячейки моноклинного (пр. гр. C2/m) упорядоченного субоксида $V_{14}O_6$ равны $a_m = 0.95536(6)$ nm, $b_m = 0.29184(2)$ nm,

Рис. 2. Экспериментальная (1) и расчетная (2) рентгенограммы образца VO_{0.86}, отожженного при температуре 1070 К и содержащего ~ 32 wt.% упорядоченного моноклинного (пр. гр. C2/m) субоксида ванадия V₁₄O₆ и ~ 68 wt.% кубического (пр. гр. $Fm\bar{3}m$) монооксида ванадия V_{0.75}O_{0.78}. Длинные и короткие штрихи соответствуют дифракционным отражениям упорядоченного субоксида V₁₄O₆ и кубического монооксида ванадия соответственно. Внизу показана разность ($I_{obs}-I_{calc}$) экспериментальной и расчетной рентгенограмм. Излучение Cu $K_{\alpha_{1,2}}$.

 $c_m = 0.77622(9) \ {
m nm}$ и $eta_m = 90.32(4)^\circ,$ что хорошо согласуется с данными [8,9]. Параметры элементарной ячейки этого же субоксида V₁₄O₆, найденные минимизацией рентгенограммы образца VO_{0.81}, почти такие же: $a_m = 0.95538(7)$ nm, $b_m = 0.29214(6)$ nm, $c_m = 0.77690(2) \text{ nm}$ и $\beta_m = 90.26(4)^\circ$. Параметры элементарной ячейки у-фазы, содержащейся в образце VO_{0.57}, отожженном при 1070 К в течение 1000 h, равны $a_m = 0.95431(0), \ b_m = 0.29347(8), \ c_m = 0.77019(0)$ и $\beta_m = 89.69(2)^\circ$. Малое различие параметров лежит в пределах ошибки определения. Но моноклинный субоксид имеет узкую область гомогенности [8,9], и различие параметров решетки может быть следствием отклонения его состава в изученных образцах от стехиометрического состава V₁₄O₆ идеальной упорядоченной фазы. С учетом параметров решетки $a \approx b = 0.299 - 0.292 \,\mathrm{nm}$ и c = 0.327 - 358 nm базисной неупорядоченной тетрагональной β-фазы и геометрии моноклинной фазы V₁₄O₆ трансляционные векторы элементарной ячейки V₁₄O₆ равны $\mathbf{a}_m = [3 \ 0 \ -1]_{\text{bct}}, \ \mathbf{b}_m = [0 \ 1 \ 0]_{\text{bct}}$ и $\mathbf{c}_m = [1 \ 0 \ 2]_{\text{bct}}.$ В идеальной моноклинной структуре V₁₄O₆ атомы V занимают позицию 2(d) с координатами (0, 1/2, 1/2)и три позиции 4(i) с координатами (9/14, 0, 1/14), (11/14, 0, 9/14) и (13/14, 0, 3/14), атомы О находятся в позициях 2(a) с координатами (0, 0, 0) и 4(i) с координатами (2/7, 0, 1/7), а две позиции 4(i) с координатами (6/7, 0, 3/7) и (4/7, 0, 2/7) вакантны. Положение элементарной ячейки идеального моноклинного (пр. гр. C2/m) субоксида V₁₄O₆ в базисной тетрагональной решетке показано на рис. 3.

Для понимания сверхструктуры $V_{14}O_6$ обсудим, как искажается решетка ванадия при внедрении кислорода

Ванадий имеет объемно центрированную кубическую (ОЦК, пр. гр. $Im\bar{3}m$) решетку (рис. 3, *a*), в которой на каждую элементарную ячейку приходится три октаэдрических междоузлия (или полтора междоузлия на один атом ванадия). Центры октаэдрических междоузлий, заполняющих весь объем ОЦК-решетки, совпадают или только с центрами граней, или только с серединами ребер ОЦК-элементарных ячеек. При образовании β -фазы (неупорядоченного твердого раствора кислорода в ванадии) металлическая ОЦК-решетка искажается и становится объемно центрированной тетрагональной (ОЦТ) с пространственной группой І4/тт. Но угол β_{tetr} между осями *a* и *c* немного отличается от 90°, поэтому более верно называть решетку псевдотетрагональной. В неупорядоченном твердом растворе октаэдрические междоузлия, в которых могут размещаться атомы кислорода О, также образуют ОЦТ-подрешетку с расстоянием $d \ge (a^2/2 + c^2/4)^{1/2}$ между ближайшими атомами О ($a \approx b$ и c — периоды тетрагональной решетки). Однако расстояния между центрами ближайших октаэдрических междоузлий меньше и равны $(a^2/2)^{1/2}$ и $(a^2/4 + c^2/4)^{1/2}$. Это значит, что ближайшие атомы О заполняют октаэдрические междоузлия, центры которых смещены друг относительно друга не менее чем на вектор (1/2, 1/2, 1/2). Иначе говоря, если один атом кислорода находится в центре грани ОЦТ-ячейки, то ближайший к нему атом О расположен на расстоянии $d = (a^2/2 + c^2/4)^{1/2}$ на середине ребра ОЦТ-ячейки (рис. 3, b). Эта система центров октаэдрических междоузлий тоже является ОЦТ и смещена относительно ОЦТ-подрешетки ванадия на вектор (1/2, 0, 0) (или (0,1/2,0) или (0,0,1/2)) (рис. 3, b). Согласно [14–17], в сильно нестехиометрических соединениях MX_v (M = Ti, Zr, Hf, V, Nb, Ta; X = C, N, O; y < 1.3), включая оксидные фазы ванадия VO_v с y < 1.3 [18,19], максимум электронной плотности в области перекрытия 2p(X)- и d(M)-волновых функций смещен от атомов металла к атомам неметалла, причем наибольший перенос электронной плотности к неметаллическим атомам наблюдается в оксидах. Это значит, что кислород в β - и γ -фазах ванадия ионизирован и заряжен отрицательно. Отталкивание отрицательно заряженных кислородных ионов не позволяет занимать им октаэдрические междоузлия, расположенные на минимальных расстояниях $(a^2/2)^{1/2}$ и $(a^{2/4} + c^2/4)^{1/2}$ друг от друга. Таким образом, наблюдаемое заполнение октаэдрических междоузлий атомами кислорода обусловлено близкодействующими взаимодействиями. Между октаэдрическими междоузлиями подрешетки ванадия, расположенными указанным образом, появляются тетраэдрические пустоты. В результате на каждый атом V приходится только одно октаэдрическое междоузлие, и в пределе при заполнении всех таких октаэдрических междоузлий возможно образование монооксида ванадия VO ($V_x O_7$). Это дает основание

Рис. 3. Объемно центрированная кубическая (пр. гр. $Im\bar{3}m$) решетка ванадия (*a*), объемно центрированная псевдотетрагональная (пр. гр. I4/mmm) решетка β -фазы — неупорядоченного твердого раствора кислорода в ванадии V(O) (*b*) и положение идеальной моноклинной (пр. гр. C2/m) элементарной ячейки субоксида ванадия V₁₄O₆ (*c*) в базисной объемно центрированной псевдотетрагональной решетке. I — атомы ванадия, 2 — октаэдрические междоузлия ОЦК-решетки ванадия и ОЦТ-решетки твердого раствора V(O), 3 — атомы кислорода, 4 — вакансии.

полагать, что наличие отмеченного ближнего порядка в расположении атомов кислорода играет важную роль в образовании оксидных фаз ванадия вплоть до кубического монооксида. Система октаэдрических междоузлий при ее частичном или полном заполнении является неметаллической подрешеткой соответствующей фазы.

Неупорядоченный тетрагональный твердый раствор V(O) кислорода в ванадии, или β -фаза, существует при температуре T > 800 К и частичном заполнении кислорода октаэдрических междоузлий: согласно [2,3], максимальное содержание кислорода в однофазных образцах β -фазы достигает 25–28 at.%. Образование сверхструктуры V₁₄O₆ (рис. 3, *c*) происходит при понижении температуры в результате перераспределения атомов кислорода по узлам неметаллической подрешетки.

Зная трансляционные векторы $\mathbf{a}_m = [3 \ 0 \ -1]_{bct}, \mathbf{b}_m = [0 \ 1 \ 0]_{bct}$ и $\mathbf{c}_m = [1 \ 0 \ 2]_{bct}$ элементарной ячейки упорядоченной γ -фазы, можно найти векторы обратной решетки и далее сверхструктурные векторы, образующие канал перехода беспорядок–порядок.

Векторы \mathbf{b}_i^* обратной решетки определяются через трансляционные векторы \mathbf{a}_i по формуле

$$\mathbf{b}_i^* = 2\pi \, \frac{\mathbf{a}_j \times \mathbf{a}_k}{\mathbf{a}_1(\mathbf{a}_2 \times \mathbf{a}_3)} \equiv \frac{2\pi}{V} \, \mathbf{a}_j \times \mathbf{a}_k, \tag{1}$$

где *i*, *j*, *k* = 1, 2, 3; $\mathbf{a}_1 \equiv \mathbf{a}_m$, $\mathbf{a}_2 \equiv \mathbf{b}_m$ и $\mathbf{a}_3 \equiv \mathbf{c}_m$; $\mathbf{b}_1^* \equiv \mathbf{a}^*$, $\mathbf{b}_2^* \equiv \mathbf{b}^*$ и $\mathbf{b}_3^* \equiv \mathbf{c}^*$. Геометрически смешанное векторное произведение $\mathbf{a}_1(\mathbf{a}_2 \times \mathbf{a}_3) = V$ есть объем элементарной ячейки, построенной на векторах \mathbf{a}_1 , \mathbf{a}_2 и \mathbf{a}_3 .

По расчету векторы обратной решетки упорядоченного субоксида равны $\mathbf{a}^* = (2/7, 0, -1/7), \mathbf{b}^* = (0, -1, 0)$ и $\mathbf{c}^* = (1/7, 0, 3/7)$. Комбинирование и трансляция этих векторов показали, что в пер-

вой зоне Бриллюэна неупорядоченной базисной объцентрированной тетрагональной неметалличеемно ской подрешетки находятся шесть неэквивалентных сверхструктурых векторов. Они принадлежат трем нелифшицевским восьмилучевым звездам $\{k_{1-1}\},$ $\{\mathbf{k}_{1-2}\}$ и $\{\mathbf{k}_{1-3}\}$ одного типа $\{\mathbf{k}_1\}$. Для звезды {k₁} ОЦТ-решетки вектор-представитель имеет вид $\mathbf{k}_1^{(1)} = \nu \mathbf{b}_2 + \mu (\mathbf{b}_3 - \mathbf{b}_1)$, где $\mathbf{b}_1 = (0, \pi/a, \pi/c)$, $\mathbf{b}_2 = (\pi/a, 0, \pi/c)$ и $\mathbf{b}_3 = (\pi/a, \pi/a, 0)$ — структурные векторы обратной решетки базисной тетрагональной фазы [20]. Звезды, которым принадлежат сверхструктурные векторы, различаются только длиной лучей, т.е. численными значениями текущих параметров v и μ . Звезда {**k**₁₋₁} имеет параметры $v_1 = 2/7$ и $\mu_1 = -1/7$, для звезды $\{\mathbf{k}_{1-2}\}$ $\nu_2 = 1/7$ и $\mu_2 = 3/7$; звезда {k₁₋₃} имеет самые длинные лучи, поскольку $v_3 = 4/7$ и $\mu_3 = -2/7$. Шесть сверхструктурных векторов, образующих канал перехода беспорядокпорядок β -фаза VO_v $\rightarrow \gamma$ -фаза V₁₄O₆, соответствуют лучам $\mathbf{k}_{1-1}^{(1)} = 2\mathbf{b}_2/7 - (\mathbf{b}_3 - \mathbf{b}_1)/7 = \mathbf{c}^* = (1/7, 0, 3/7)$ и $\mathbf{k}_{1-1}^{(2)} = -\mathbf{k}_{1-1}^{(1)}$ звезды { \mathbf{k}_{1-1} }, лучам $\mathbf{k}_{1-2}^{(1)} = \mathbf{b}_2/7$ + 3($\mathbf{b}_3 - \mathbf{b}_1$)/7 = 2 $\mathbf{a}^* = (4/7, 0, -2/7)$ и $\mathbf{k}_{1-2}^{(2)} = -\mathbf{k}_{1-2}^{(1)}$ звезды $\{\mathbf{k}_{1-2}\}$ и лучам $\mathbf{k}_{1-3}^{(1)} = 4\mathbf{b}_2/7 - 2(\mathbf{b}_3 - \mathbf{b}_1)/7$ = $2\mathbf{c}^* = (2/7, 0, 6/7)$ и $\mathbf{k}_{1-3}^{(2)} = -\mathbf{k}_{1-3}^{(1)}$ звезды $\{\mathbf{k}_{1-3}\}$. Наличие в канале перехода лучей нескольких нелифшицевских звезд однозначно указывает на первый род обсуждаемого фазового перехода β -фаза VO_v $\rightarrow \gamma$ -фаза $V_{14}O_6$. Заметим, что до сих пор в литературе никогда не был описан фазовй переход беспорядок-порядок, в котором искажение симметрии происходит по нескольким звездам одного типа. Переходы же беспорядок-порядок, происходящие с участием разных звезд волновых векторов, — довольно обычное явление в нестехиометрических соединениях, таких переходов известно не менее десяти [4,5,21].

В неупорядоченном состоянии атомы однородно распределены по всем узлам $\mathbf{r} = (x_1, y_1, z_1)$ своей подрешетки, поэтому вероятность нахождения атома данного сорта в любом узле **r** равна $n(\mathbf{r}) = y$, т.е. относительной доле узлов подрешетки, занятых этими атомами. При переходе беспорядок-порядок однородное распределение атомов по узлам кристаллической решетки неупорядоченной фазы испытывает пространственнопериодическую модуляцию $\Delta n(\mathbf{r})$, в результате чего образуется упорядоченная фаза. Эта модуляция есть отклонение вероятности $n(\mathbf{r})$ от ее значения у в случае неупорядоченного (статического) распределения, т.е. $\Delta n(\mathbf{r}) = n(\mathbf{r}) - y$. Согласно [22], модуляцию можно представить как суперпозицию нескольких плоских концентрационных волн. Волновыми векторами этих концентрационных волн являются сверхструктурные векторы, образующие канал фазового перехода беспорядокпорядок. С учетом этого в методе статических концентрационных волн [22] вероятность нахождения атома данного сорта на узле **r** равна $n(\mathbf{r}) = y + \Delta n(\mathbf{r})$ и выражается в виде функции распределения

$$n(\mathbf{r}) = y + \frac{1}{2} \sum_{s} \sum_{j \in s} \eta_s \gamma_s \Big[\exp(i\varphi_s^{(j)}) \exp(i\mathbf{k}_s^{(j)}\mathbf{r}) + \exp(-i\varphi_s^{(j)}) \exp(-i\mathbf{k}_s^{(j)}\mathbf{r}) \Big],$$
(2)

где второе слагаемое есть модуляция $\Delta n(\mathbf{r}); \eta_s$ — параметр дальнего порядка, соответствующий звезде $\{\mathbf{k}_s\};$ $\mathbf{k}_s^{(j)}$ — сверхструктурный вектор $\mathbf{k}_s^{(j)}$ звезды $\{\mathbf{k}_s\}$, порождающий плоскую статическую концентрационную волну; $\eta_s \gamma_s$ и $\varphi_s^{(j)}$ — амплитуда и фазовый сдвиг концентрационной волны соответственно. Легко видеть, что число разных значений функции распределения на единицу больше числа параметров дальнего порядка.

В неупорядоченном твердом растворе кислорода в ванадии V(O) решеткой Изинга, в которой может происходить атомно-вакансионное упорядочение, является ОЦТ-подрешетка кислорода. Векторы, определяющие положение узлов упорядочивающейся неметаллической ОЦТ-подрешетки, имеют вид

$$\mathbf{r} = x_1 \mathbf{a} + y_1 \mathbf{b} + z_1 \mathbf{c},\tag{3}$$

где **a**, **b** и **c** — основные трансляции базисной ОЦТрешетки в направлениях [100], [010] и [001], причем $|a| = |\mathbf{b}| = a$, $|\mathbf{c}| = c$; x_1 , y_1 , z_1 — координаты узлов неметаллической ОЦТ-подрешетки. Трем звездам { \mathbf{k}_{1-1} }, { \mathbf{k}_{1-2} } и { \mathbf{k}_{1-3} }, лучи которых образуют канал перехода беспорядок-порядок, соответствуют параметры дальнего порядка η_{1-1} , η_{1-2} и η_{1-3} .

Решение уравнения (2) предполагает определение не только параметров дальнего порядка η_s , соответствующих звездам { \mathbf{k}_s }, но также коэффициентов

 $\gamma_s \exp(i\varphi_s^{(j)}) \equiv \gamma_s^{(j)}$. С учетом (2), (3) и сверхструктурных векторов, образующих канал перехода, функцию распределения атомов углерода в упорядоченном моноклинном (пр. гр. *C2/m*) субоксиде ванадия V₁₄O₆ можно записать в виде

$$n_{O}(x_{1}, y_{1}, z_{1}) = y$$

$$+ (\eta_{1-1}\gamma_{1-1}/2) \{ \exp(i\varphi_{1-1}^{(1)}) \exp[-i2\pi(x_{1} + 3z_{1})/7]$$

$$+ \exp(-i\varphi_{1-1}^{(1)}) \exp[i2\pi(x_{1} + 3z_{1})/7]$$

$$+ \exp(i\varphi_{1-1}^{(2)}) \exp[i2\pi(x_{1} + 3z_{1})/7]$$

$$+ \exp(-i\varphi_{1-2}^{(2)}) \exp[-i2\pi(x_{1} + 3z_{1})/7]$$

$$+ \exp(-i\varphi_{1-2}^{(1)}) \exp[i2\pi(4x_{1} - 2z_{1})/7]$$

$$+ \exp(-i\varphi_{1-2}^{(1)}) \exp[i2\pi(4x_{1} - 2z_{1})/7]$$

$$+ \exp(-i\varphi_{1-2}^{(2)}) \exp[-i2\pi(4x_{1} - 2z_{1})/7]$$

$$+ \exp(-i\varphi_{1-2}^{(2)}) \exp[-i2\pi(4x_{1} - 2z_{1})/7]$$

$$+ \exp(-i\varphi_{1-2}^{(2)}) \exp[-i2\pi(4x_{1} - 2z_{1})/7]$$

$$+ \exp(-i\varphi_{1-2}^{(2)}) \exp[i2\pi(2x_{1} + 6z_{1})/7]$$

$$+ \exp(-i\varphi_{1-3}^{(1)}) \exp[i2\pi(2x_{1} + 6z_{1})/7]$$

$$+ \exp(i\varphi_{1-3}^{(2)}) \exp[i2\pi(2x_{1} + 6z_{1})/7]$$

$$+ \exp(-i\varphi_{1-3}^{(2)}) \exp[i2\pi(2x_{1} + 6z_{1})/7]$$

$$+ \exp(-i\varphi_{1-3}^{(2)}) \exp[-i2\pi(2x_{1} + 6z_{1})/7]$$

Заменяя в (4) $\gamma_s \exp(i\varphi_s^{(j)})$ на $\gamma_s^{(j)}$ и переходя к тригонометрической форме записи уравнения (4), получим

$$n_{O}(x_{1}, y_{1}, z_{1}) = y + \eta_{1-1} \{ \gamma_{1-1}^{(1)} \cos[2\pi(x_{1} + 3z_{1})/7] + \gamma_{1-1}^{(2)} \sin[2\pi(x_{1} + 3z_{1})/7] \} + \eta_{1-2} \{ \gamma_{1-2}^{(1)} \cos[2\pi(4x_{1} - 2z_{1})/7] + \gamma_{1-2}^{(2)} \sin[2\pi(4x_{1} - 2z_{1})/7] \} + \eta_{1-3} \{ \gamma_{1-3}^{(1)} \cos[2\pi(2x_{1} + 6z_{1})/7] + \gamma_{1-3}^{(2)} \sin[2\pi(2x_{1} + 6z_{1})/7] \}.$$
(5)

Дальнейший расчет функции распределения, описывающей сверхструктуру $V_{14}O_6$, сводится к определению численных значений коэффициентов $\gamma_s^{(j)}$ таким образом, чтобы полностью упорядоченному состоянию субоксида $V_{14}O_6$ соответствовали параметры дальнего порядка, равные единице, т.е. $\eta_{1-1} = \eta_{1-2} = \eta_{1-3} = 1$. При этом условии функция распределения $n_O(x_1, y_1, z_1)$ на всем множестве узлов идеальной упорядоченной подрешетки принимает только два разных значения: 1 на узлах, занятых атомами кислорода, и 0 на вакантных узлах.

Атом	Позиция и кратность	Атомные координаты в базисной неупорядоченной тетрагональной структуре (по рис. 3, с)			Атомные координаты в идеальной упорядоченной структуре			Значения функции распределения атомов кислорода $n_O(x_1, y_1, z_1)^*$
		$x/a_{\rm bct}$	$y/a_{\rm bct}$	$z/a_{\rm bct}$	x/a_m	y/b_m	z/c_m	
O1	2(a)	0	0	0	0	0	0	$n_{1(\mathrm{O})} = y + \gamma_{1-1}^{(1)} \eta_{1-1} + \gamma_{1-2}^{(1)} \eta_{1-2} + \gamma_{1-3}^{(1)} \eta_{1-3}$
O2	4(i)	1	0	0	2/7	0	1/7	$n_{2(0)} = y + \cos((2\pi/7)\gamma_{1-1}^{(1)}\eta_{1-1})$
ОЗ (вакансия)	4(<i>i</i>)	3	0	0	6/7	0	3/7	$\begin{aligned} &-\cos(\pi/7)\gamma_{1-2}^{(1)}\eta_{1-2} - \cos(3\pi/7)\gamma_{1-3}^{(1)}\eta_{1-3} \\ &n_{3(\mathrm{O})} = y - \cos(\pi/7)\gamma_{1-1}^{(1)}\eta_{1-1} \\ &-\cos(3\pi/7)\gamma_{1-2}^{(1)}\eta_{1-2} + \cos(2\pi/7)\gamma_{1-3}^{(1)}\eta_{1-3} \end{aligned}$
О4 (вакансия)	4(i)	2	0	0	4/7	0	2/7	$n_{4(\mathrm{O})} = y - \eta_{1-1}/7 - \eta_{1-2}/7 - \eta_{1-3}/7$
V1	2(d)	1/2	1/2	1	0	1/2	1/2	
V2	4(i)	2	0	-1/2	9/14	0	1/14	
V3	4(i)	3	0	1/2	11/14	0	9/14	
V4	4(i)	3	0	-1/2	13/14	0	3/14	

Таблица 1. Идеальный моноклинный (пр. гр. № 12– $C2/m(C_{2h}^3)$) упорядоченный субоксид V₁₄O₆: $\mathbf{a} = \langle 3 \ 0 \ -1 \rangle_{bct}$, $\mathbf{b} = \langle 0 \ 1 \ 0 \rangle_{bct}$, $\mathbf{c} = \langle 1 \ 0 \ 2 \rangle_{bct}$

*
$$\gamma_{1-1}^{(1)} = 1/[7\cos(3\pi/7)], \gamma_{1-2}^{(1)} = -1/[7\cos(2\pi/7)], \gamma_{1-3}^{(1)} = 1/[7\cos(\pi/7)]$$

Для определения коэффициентов $\gamma_s^{(j)}$ нужно рассчитать значения функции распределения (5) на 14 узлах неметаллической подрешетки, входящих в элементарную ячейку упорядоченной фазы. Проведенный расчет показал, что коэффициенты $\gamma_{1-1}^{(2)}$, $\gamma_{1-2}^{(2)}$ и $\gamma_{1-3}^{(2)}$ равны нулю. С учетом этого оказывается, что достаточно рассмотреть значения функции распределения только на четырех узлах, соответствующих четырем разным кристаллографическим позициям (табл. 1). В сверхструктуре V₁₄O₆ это занятый атомом кислорода узел, находящийся в позиции (а), занятый атомом О узел, располагающийся в позиции (*i*), и два вакантных узла, находящихся в позициях (i). В базисной ОЦТ-структуре эти узлы имеют следующие координаты (x_1, y_1, z_1) : (000), (100), (300) и (200) соответственно (рис. 3, *c*, табл. 1). Последовательно подставляя в уравнение (5) координаты этих узлов, получим систему из четырех независимых уравнений

$$\begin{cases} y + \gamma_{1-1}^{(1)} + \gamma_{1-2}^{(1)} + \gamma_{1-3}^{(1)} = 1, \\ y + \cos(2\pi/7)\gamma_{1-1}^{(1)} - \cos(\pi/7)\gamma_{1-2}^{(1)} - \cos(3\pi/7)\gamma_{1-3}^{(1)} = 1, \\ y - \cos(\pi/7)\gamma_{1-1}^{(1)} - \cos(3\pi/7)\gamma_{1-2}^{(1)} + \cos(2\pi/7)\gamma_{1-3}^{(1)} = 0, \\ y - \cos(3\pi/7)\gamma_{1-1}^{(1)} + \cos(2\pi/7)\gamma_{1-2}^{(1)} - \cos(\pi/7)\gamma_{1-3}^{(1)} = 0. \end{cases}$$
(6)

Система уравнений (6) позволяет однозначно определить состав у идеальной полностью упорядоченной фазы субоксида ванадия и коэффициенты $\gamma_s^{(j)}$ и имеет следующее решение: y = 3/7, $\gamma_{1-1}^{(1)} = 1/[7\cos(3\pi/7)]$, $\gamma_{1-2}^{(1)} = -1/[7\cos(2\pi/7)]$, $\gamma_{1-3}^{(1)} = 1/[7\cos(\pi/7)]$. Таким образом, решение системы уравнений (6) дает стехиометрический состав упорядоченной фазы VO_{3/7} \equiv V₁₄O₆,

что согласуется с литературными данными [7,9,10]. В соответствии с найденным решением функция распределения атомов кислорода в моноклинной (пр. гр. C2/m) сверхструктуре типа $V_{14}O_6$ с любой степенью порядка имеет вид

$$n_{0}(x_{1}, y_{1}, z_{1}) = y + \frac{\eta_{1-1}}{7\cos(3\pi/7)} \cos[2\pi(x_{1} + 3z_{1})/7] - \frac{\eta_{1-2}}{7\cos(2\pi/7)} \cos[2\pi(4x_{1} - 2z_{1})/7] + \frac{\eta_{1-3}}{7\cos(\pi/7)} \cos[2\pi(2x_{1} + 6z_{1})/7].$$
(7)

При произвольной величине параметров дальнего порядка η функция распределения (3) принимает четыре разных значения (табл. 1). При максимальной величине параметров дальнего порядка $\eta_{1-1} = \eta_{1-2} = \eta_{1-3} = 1$ четыре значения функции (7) вырождаются в два: $n_{1(O)} = n_{2(O)} = 1$ и $n_{3(O)} = n_{4(O)} = 0$.

Точечная группа симметрии $2/m(C_{2h})$ моноклинного субоксида $V_{14}O_6$ включает четыре элемента симметрии h_1 , h_4 , h_{25} и h_{28} , а в точечную группу 4/mmm (D_{4h}) базисной тетрагональной неупорядоченной β -фазы V(O) входят 16 элементов h_1-h_4 , $h_{13}-h_{16}$, $h_{25}-h_{28}$ и $h_{37}-h_{40}$ [4,5,20], поэтому поворотное снижение симметрии равно 4. Понижение трансляционной симметрии равно отношению объемов элементарных ячеек упорядоченной и неупорядоченной фаз или отношению количества узлов в этих ячейках. При переходе от неупорядоченного тетрагонального твердого раствора кислорода в ванадии V(O) к моноклинному субоксиду $V_{14}O_6$ объем элементарной ячейки увеличивается в 7 раз, поэтому понижение трансляционной симметрии равно 7.

• 1 • 2 • 3 \Box 4

Рис. 4. Элементарная ячейка упорядоченного моноклинного (пр. гр. C2/m) субоксида ванадия $V_{14}O_6$. a — идеальная ячейка, b — размещение атомов V с учетом их смещений в реальной решетке субоксида $V_{14}O_6$. В реальной решетке субоксида выделена ячейка сильно искаженной формирующейся ГЦК-подрешетки ванадия с атомом кислорода в центре октаэдрического междоузлия. 1 — атомы ванадия, 2 — атомы ванадия, находящиеся за пределами объемно центрированной тетрагональной решетки, 3 — атомы кислорода, 4 — вакансии.

Общее понижение симметрии N равно произведению поворотного понижения симметрии на понижение трансляционной симметрии, т. е. отношению $n(G)/n(G_D)$, где n(G) и $n(G_D)$ — порядок пространственной группы G высокосимметричной неупорядоченной фазы и порядок пространственной группы G_D низкосимметричной упорядоченной фазы соответственно. С учетом этого в переходе β -фаза VO_y (пр. гр. I4/mmm) — γ -фаза V₁₄O₆ (пр. гр. C2/m) общее понижение симметрии N = 28.

Таблица 2. Реальная структура моноклинного (пр. гр. $C2/m(C_{2h}^3)$) упорядоченного субоксида V₁₄O_{6.16}, содержащегося в образце VO_{0.86}, отожженном в течение 2 h при 1070 K, с учетом смещений атомов ванадия и кислорода: $a_m = 0.95536(6)$ nm, $b_m = 0.29184(2)$ nm, $c_m = 0.77622(9)$ nm, $\beta_m = 90.32(4)^{\circ}$

Атом	Позиция и кратность	Атомі в уі	ные ко 10рядо структ	Степень заполнения	
		x/a_m	y/b_m	z/c_m	
01	2(a)	0	0	0	1
O2	4(i)	0.288	0	0.136	1
ОЗ (вакансия)	4(i)	6/7	0	3/7	0.02
О4 (вакансия)	4(i)	4/7	0	2/7	0.02
V1	2(d)	0	1/2	1/2	1
V2	4(i)	0.653	0	0.041	1
V3	4(i)	0.796	0	0.613	1
V4	4(i)	0.939	0	0.184	1

Выполненное уточнение кристаллической структуры γ -фазы в отожженном при 1070 К образце VO_{0 86} показало, что в изученном моноклинном субоксиде небольшое количество атомов кислорода размещается на позициях 4(*i*) с координатами (6/7, 0, 3/7) и (4/7, 0, 2/7), тогда как в идеальной упорядоченной структуре эти позиции вакантны. В соответствии с этим изученный субоксид имеет состав V₁₄O_{6.16} (VO_{0.44}) (табл. 2). Моноклинная γ -фаза, содержащаяся в образце VO_{0.57}, отожженном при 1070 K в течение 1000 h, имеет состав $V_{14}O_{6,48}(VO_{0,46})$ и в ней степень заполнения позиций 4(i) с координатами (6/7, 0, 3/7) и (4/7, 0, 2/7) еще выше и достигает 0.06. В реальной структуре моноклинного субоксида атомы V, занимающие позиции 4(i), заметно смещены (табл. 2). Смещения атомов кислорода в позициях 4(i) с идеальными координатами (2/7, 0, 1/7) примерно в 5 раз меньше смещений атомов ванадия (табл. 2). Величины относительных атомных смещений вдоль осей a_m и с_т моноклинной элементарной ячейки соответственно равны $\pm \delta$ и $\mp 3\delta$, где $\delta = 0.01$. Соотношение величины моноклинных смещений таково, что в базисной ОЦТ-решетке атомы ванадия смещаются только вдоль оси $c_{bct} \equiv [001]_{bct}$. Найденное направление смещений атомов ванадия совпадает с направлением смещений, установленным в работе [8], и противоположно направлению смещений для позиций ванадия с координатами (9/14, 0, 1/14) и (13/14, 0, 3/14), которое предложено в работе [9]. Для уточенения величины и направления смещений нужно провести дополнительное нейтронографическое исследование структуры моноклинного субоксида $V_{14}O_6$. Заметим, что установленные в настоящей работе атомные смещения искажают ОЦТподрешетку атомов ванадия так, что подготавливают ее превращение в гранецентрированную кубическую (ГЦК) подрешетку (рис. 4). Это искажение металлической подрешетки вместе с увеличением степени заполнения октаэдрических междоузлий атомами кислорода приводит к превращению субоксида $V_{14}O_6$ в кубический монооксид ванадия V_xO_z со структурой *B*1.

Полученные результаты могут быть использованы для уточнения положения фазовых границ на диаграмме системы V–O в области между моноклинным субоксидом $V_{14}O_6$ и кубическим монооксидом V_xO_z ванадия.

Список литературы

- [1] H.A. Wriedt. Bull. Alloy Phase Diagrams 10, 3, 271 (1989).
- [2] H.A. Wriedt. In: Phase diagrams of binary vanadium alloys / Ed. J.F. Smith. ASM International, Materials Park, OH, USA (1989) p. 175.
- [3] Диаграммы состояния двойных металлических систем / Под ред. Н.П. Лякишева. Машиностроение, М. (2001). Т. 3. С. 715.
- [4] A.I. Gusev, A.A. Rempel, A.J. Magerl. Disorder and order in strongly nonstoichiometric compounds: transition metal carbides, nitrides and oxides. Springer, Berlin–Heidelberg– N.Y.–London (2001). 607 p.
- [5] А.И. Гусев. Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле. Физматлит, М. (2007). 856 с.
- [6] S. Westman. Acta Chem. Scand. 17, 3, 749 (1963).
- [7] M. Cambini, G. Pellergini, S. Amelinckx. Mater. Res. Bull. 6, 9, 791 (1971).
- [8] K. Hiraga, M. Hirabayashi. J. Solid State Chem. 14, 3, 219 (1975).
- [9] Л.Н. Галкин, В.В. Вавилова, Л.Е. Фыкин. Изв. АН СССР. Неорган. материалы 13, 10. 1839 (1977).
- [10] М.П. Арбузов, Н.Т. Бугайчук, Б.В. Хаенко. Докл. АН УССР. Сер. А 4, 307 (1979).
- [11] A.C. Larson, R.B. von Dreele. General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748. Los Alamos (2004). 231 p.
- [12] J. Stringer. J. Less-Comm. Met. 8, 1, 1 (1965).
- [13] D.G. Alexander, O.N. Carlson. Metallurgical Trans. 2, 2805 (1971).
- [14] P. Marksteiner, P. Weinberger, A. Neckel, R. Zeller, P.H. Dederichs. Phys. Rev. B 33, 2, 812 (1986).
- [15] В.А. Губанов, А.Л. Ивановский, М.В. Рыжков. Квантовая химия в материаловедении. Наука, М. (1987). 336 с.
- [16] K. Schwarz. Critical Reviews in the Solid State and Mater. Sci. 13, 3, 211 (1987).
- [17] G. Hobiger, P. Herzig, R. Eibler, F. Schalapansky, A. Neckel. J. Phys.: Cond. Matter 2, 20, 4595 (1990).
- [18] L.F. Mattheis. Phys. Rev. B 5, 2, 290 (1972).
- [19] F. Kutzler, D.E. Ellis. Phys. Rev. B 29, 10, 6890 (1984).
- [20] О.В. Ковалев. Неприводимые и индуцированные представления и копредставления федоровских групп. Наука, М. (1986). 368 с.
- [21] A.I. Gusev, A.A. Rempel. Phys. Status Solidia A 135, 1, 15 (1993).
- [22] А.Г. Хачатурян. Теория фазовых превращений и структура твердых растворов. Наука, М. (1974). 384 с.