Магнитострикция и намагниченность интерметаллических соединений $R \operatorname{Fe}_{2-x} \operatorname{Co}_x (R = \operatorname{Tb}, \operatorname{Dy}, \operatorname{Er})$ со скомпенсированной магнитной анизотропией

© И.С. Терёшина^{*,***}, С.А. Никитин^{**,***}, Г.А. Политова^{**}, А.А. Опаленко^{**}, Е.А. Терёшина^{**,***}, И.В. Телегина^{**}

* Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, Москва, Россия

** Московский государственный университет им. М.В. Ломоносова,

Москва, Россия

*** Международная лаборатория сильных магнитных полей и низких температур,

Вроцлав, Польша

E-mail: teresh@ultra.imet.ac.ru

(Поступила в Редакцию 20 марта 2008 г.)

Синтезированы соединения Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x ($0 \le x \le 2$) в поли- и монокристаллическом состоянии. Состав новых многокомпонентных сплавов со скомпенсированной магнитной анизотропией (MA) рассчитан на основе одноионной модели MA с учетом данных о температурных зависимостях констант магнитной анизотропии для монокристаллов *R*Fe₂. Синтезированные соединения аттестованы методами металлографического, химического, рентгенофазового и термомагнитного анализов. Проведен также комплексный анализ магнитных и магнитоупругих свойств. Установлено, что высокие магнитострикционные характеристики редкоземельных интерметаллических соединений Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x со структурой фаз Лавеса наблюдаются в области спин-переориентационного фазового перехода, температуру которого можно варьировать в широких пределах, изменяя содержание Co. Для состава с x = 1.3 обнаружено, что в области комнатных температур величина магнитной восприимчивости ($d\lambda/dH$) достигает значений, превосходящих значение $d\lambda/dH$ для терфенола-*D* благодаря компенсации магнитной анизотропии.

Работа поддержана грантом РФФИ № 06-03-32850 и Федеральной программой поддержки ведущих научных школ № НШ-8701.2006.2.

PACS: 75.30.-m, 75.50.Bb

1. Введение

Интерметаллические соединения RFe_2 являются высокоанизотропными кубическими ферримагнетиками и известны как материалы с гигантской магнитострикцией [1,2]. В настоящее время весьма актуальна проблема создания широкого спектра магнитострикционных материалов, обладающих гигантскими значениями магнитострикции в небольших полях в области комнатной температуры. Это связано с возможностью широкого использования таких соединений в качестве ультразвуковых преобразователей, сенсоров, датчиков перемещений в гидролокации, гидравлике и автоматике. Для получения высоких значений магнитострикции в соединениях RFe_2 при указанных выше условиях прежде всего необходимо минимизировать константы магнитной анизотропии (MA).

В редкоземельных (P3) интерметаллических соединениях типа R-(Fe, Co) (где R — комбинация нескольких редкоземельных ионов) константа МА редкоземельной подрешетки аддитивно складывается из одноионных констант анизотропии R-ионов, умноженных на их концентрацию [3–5]. Суммарная константа МА lго порядка, согласно [3], может быть вычислена по формуле

$$K_{l} = \sum X_{n} K_{nl}^{0} \hat{I}_{l+1/2} \{ L_{m}^{-1} \}, \qquad (1)$$

где K_{nl}^{0} — одноионная константа *l*-го порядка при 0 K, X_n — концентрация *R*-ионов, $\hat{I}_{l+1/2}$ — отношение гиперболической функции Бесселя порядка l+1/2 к гиперболической функции порядка 1/2 (т.е. $\hat{I}_{l+1/2} = (I_{l+1/2})/(I_{1/2})$), $L^{-1}(m)$ — обратная функция Ланжевена от приведенной намагниченности $m = I_S(T)/I_S(0)$ ($I_S(T)$ — спонтанная намагниченность при температуре *T*, $I_S(0)$ — при 0 K)

$$m(T, H) = L(x) = I_{3/2}(x) = \operatorname{cth} x - 1/x.$$
 (2)

В области низких температур [6]

$$\hat{I}_{l+1/2}\{L_m^{-1}\} = m^{l(l+1)/2},\tag{3}$$

а вкладом от подрешетки 3*d*-переходного металла в магнитную анизотропию можно пренебречь [1,2].

На предварительном этапе настоящей работы, используя известные значения констант МА для ионов Tb, Dy и Er в соединениях RFe_2 при 0 K [4,7,8], а также данные об их температурной зависимости, вычисленные по формулам (1)–(3) и откорректированные на основании известных из литературы [9] и полученных нами

экспериментальных данных с учетом вклада в МА от подрешетки железа (все измерения были выполнены на монокристаллах RFe_2 , где R = Tb, Dy, Er, Lu), мы вычислили результирующую константу МА и нашли многокомпонентный состав $Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_2$, в котором при комнатной температуре скомпенсирована магнитная анизотропия в РЗ-подрешетке. Однако для полной компенсации МА в образце необходимо компенсировать также анизотропию в 3*d*-подрешетки, для чего было произведено частичное замещение ионов Fe ионами Co (которые обладают разными знаками констант MA).

Таким образом, целью настоящей работы явилось получение однофазных образцов (в поли- и монокристаллическом состоянии), проведение их аттестации (уточнение элементного и фазового составов), а также изучение структуры, магнитных и магнитострикционных свойств многокомпонентных соединений $Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x$. Исследование данных соединений связано с возможностью достижения в них больших магнитострикционных деформаций (в сравнительно слабых магнитных полях в области температур, близких к комнатной), что представляет интерес для их использования в качестве материалов для магнитострикторов в устройствах различного функционального назначения.

2. Методика эксперимента

Исследуемые $Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x$ сплавы (0 < x < 2) (в качестве исходных компонентов использовались металлы высокой степени чистоты) получали в дуговой электропечи с нерасходуемым вольфрамовым электродом на медном водоохлаждаемом поддоне в атмосфере инертного газа (аргона или гелия) [10]. Равномерность состава соединений обеспечивалась трехкратным переплавом и последующим отжигом в эвакуированных кварцевых ампулах при температуре 900°С в течение 100 h. Полученные таким образом слитки были мелкозернистыми. В общей сложности нами было синтезировано 15 составов. С целью укрупнения зерен (до размера 2–3 mm) некоторые из слитков переплавлялись в печи сопротивления и охлаждались путем вытягивания из высокотемпературной зоны.

Фазовый состав синтезированных соединений контролировался прежде всего методом рентгеноструктурного анализа. В работе проведены прецизионные измерения основных структурных характеристик на поликристаллах и монокристаллических образцах.

Синтезированные соединения были аттестованы также методами металлографического, химического, рентгенофлуоресцентного и термомагнитного анализов.

Измерения магнитострикции в интервале температур 77–300 К и магнитных полях до 12 kOe проводились тензометрическим методом с использованием проволочных тензодатчиков ФНМ-1-300. Установка позволяла проводить измерения как продольной, так и поперечной магнитострикции, а также их температурных зависимостей. Для исследуемых образцов были измерены температурные и полевые зависимости намагниченности с помощью вибрационного магнитометра в поле до 16 kOe в температурном интервале от 100 до 700 K, а также с помощью СКВИД-магнитометра в полях до 55 kOe в температурном интервале 4.2–400 K. Мессбауэровские измерения на ядрах ⁵⁷Fe в сплавах системы Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x проводились при комнатной температуре. Для этих целей использовались источник ⁵⁷Co в Pd и спектрометр, работающий в режиме постоянных ускорений.

3. Результаты и обсуждение

3.1. Структурные исследования соединений $Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x$. Фазовый состав слитков определялся по рентгенограммам, полученным на дифрактометре ДРОН-3М, а также по дебаеграммам (камера PKУ-114 обеспечивает высокое разрешение, имеет эффективный диаметр 114.595 mm, поэтому за

Таблица 1. Наблюдаемый и расчетный спектры межплоскостных расстояний соединения Tb_{0.35}Dy_{0.45}Er_{0.2}Fe₂

№ п/п	θ , deg	I/I_0	<i>d</i> , Å	hkl	$Q_{ m obs}$	$Q_{ m calc}$
1	10.53	123	4.2165	111	0.0562	0.0561
2	17.35	607	2.5855	220	0.1496	0.1495
3	20.46	1000	2.2050	311	0.2057	0.2056
4	21.41	261	2.1116	222	0.2243	0.2243
5	24.94	6	1.8284	400	0.2991	0.2991
6	27.35	41	1.6781	331	0.3551	0.3551
7	31.06	233	1.4929	422	0.4487	0.4486
8	33.17	469	1.4079	511	0.5045	0.5047
9	36.56	226	1.2930	440	0.5981	0.5981
10	38.53	25	1.2364	531	0.6541	0.6542

Таблица 2. Структурные и магнитные свойства соединений Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x

x	a, Å	<i>V</i> , Å ³	<i>T_C</i> , K	σ , emu/g ($T = 300$ K; H = 16 kOe)	$\lambda_{\parallel}, 10^{-6}$ (T = 300 K; H = 10 kOe)
0	7.3145	391.34	685	71.9	920
0.2	7.3060	289.97	715	74.4	895
0.4	7.3090	394.78	738	73	870
0.5	7.2933	387.95	743	71.8	856
0.7	7.2929	387.88	741	69.3	814
0.8	7.2854	386.70	736	66.9	791
0.9	7.2797	385.77	727	64.5	760
1.1	7.2664	383.67	692	59.1	700
1.3	7.2550	381.87	627	52.5	630
1.6	7.2272	377.49	471	40.3	415
1.8	7.2088	374.62	333	18.7	77
2.0	7.1878	371.36	170	4	11

счет эффекта накопления происходило выявление слабых дифракционных линий).

Отдельные рефлексы дифрактограммы, полученной для соединения Tb_{0 35}Dy_{0 45}Er_{0 2}Fe₂, представлены в табл. 1. В таблице также приведены значения межплокостных расстояний d и погрешность их определения. Как следует из анализа данных, образец Tb_{0.35}Dy_{0.45}Er_{0.2}Fe₂ является практически однофазным, поскольку дифрактограмма демонстрирует наличие дифракционных пиков, однозначно инлицируемых в кубической сингонии фазы MgCu₂. Согласно результатам расчетов, параметр элементарной ячейки а и объем элементарной ячейки V сплава Tb_{0.35}Dy_{0.45}Er_{0.2}Fe₂ равны 7.3145(3) Å и 391.34(5) Å³ соответственно (табл. 2). В табл. 2 приведены также данные о параметрах элементарной ячейки для Со-содержащих соединений $Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x$ ($0 \le x \le 2$). Все значения получены при комнатной температуре. Видно, что с увеличением концентрации кобальта параметр элементарной ячейки уменьшается вследствие того, что металлический радиус атома кобальта меньше, чем для атома железа. Этот результат согласуется с изменением параметров решетки, рассчитанным по правилу Вегарда.

Магнитные измерения в настоящей работе проводились на монокристаллических образцах. На рис. 1 приведена рентгенограмма монокристалла полученная $Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_2$, при комнатной температуре. Ее анализ также не выявил какихлибо структурных образований, отличных от структуры MgCu₂, или наличие двойников. Рис. 2 демонстрирует результаты термомагнитного анализа для монокристаллов Tb_{0.35}Dy_{0.45}Er_{0.2}Fe₂ и Tb_{0.35}Dy_{0.45}Er_{0.2}Co₂. Измерение температурных зависимостей намагниченности проводилось в магнитном поле H = 1 kOe; как видно из рис. 2, выше температуры Кюри намагниченность обоих соединений близка к нулю. Посторонних фаз не выявлено также и методом оптической металлографии. Таким образом, исследования, выполненные на образцах

Рис. 1. Рентгенограмма монокристалла Tb_{0.35}Dy_{0.45}Er_{0.2}Fe₂.

Рис. 2. Результаты термомагнитного анализа, выполненного для монокристаллов $Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_2$ (*1*) и $Tb_{0.35}Dy_{0.45}Er_{0.2}Co_2$ (*2*) в магнитном поле H = 1 kOe.

Рис. 3. Результаты рентгеновского флуоресцентного микроанализа, выполненного для соединения Tb_{0.35}Dy_{0.45}Er_{0.2}Fe₂.

системы Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x ($0 \le x \le 2$), показали, что все они являются практически однофазными: содержание основной магнитострикционной фазы Лавеса варьировалось от 95 до 97% в зависимости от состава.

Для уточнения состава образцы были исследованы с помощью метода рентгеновского флуоресцентного микроанализа (рис. 3). Проводилась оценка не только интегрального содержания компонентов, рассматривалось также и локальное распределение состава по отдельных областям. Результаты этих исследований показали, что образцы имели заданный стехиометрический состав и однородную структуру, что в сочетании с упомянутыми выше методиками свидетельствует о достаточно полной характеризации полученных образцов.

3.2. Магнитные свойства сплавов $Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x$. Температура Кюри T_C определялась по максимуму производной от намагниченности по температуре $\left|\frac{d\sigma}{dT}\right|$. Как видно из табл. 2, замещение атомов железа атомами кобальта системе $Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x$ в приводит к

87

0

H, kOe

0.6

1.2

1.8

-0.6

увеличению Т_С в области концентраций кобальта $0 \le x \le 0.5$ (от значения $T_C = 685$ до 743 К). При дальнейшем росте концентрации Со значение ТС практически не изменяется при $0.5 \le x \le 0.8$, а затем при x > 0.8 резко уменьшается до значения $T_C = 170 \,\mathrm{K}$ (для Со-содержащего сплава Tb_{0.35}Dy_{0.45}Er_{0.2}Co₂). Температуры Кюри данных соединений определяются величинами парциальных обменных взаимодействий: 3d-3d, 4f-3d, 4f-4f (последнее, однако, является самым слабым). В Fe-содержащих соединениях RFe₂ преобладает вклад от 3d-3d-обменного взаимодействия в температуру Кюри, тогда как в Со-содержащих соединениях RCo_2 основным является вклад от 4f - 3dобменного взаимодействия. Конкуренцией этих двух вкладов (3d-3d и 4f-3d), а также изменением электронной структуры при замещении атомов Fe атомами Со в соединениях $RFe_{2-x}Co_x$ можно объяснить наблюдаемую немонотонную зависимость температуры Кюри от концентрации Со.

На рис. 4 представлены петли гистерезиса, полученные с помощью вибрационного магнитометра для соединений Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x с различным содержанием Со при T = 300 К. Видно, что хотя кривые $\sigma(H)$ не выходят на насыщение в полях до 16 kOe, тем не менее значение намагниченности σ (H = 16 kOe) (табл. 2) слегка увеличивается при малых концентрациях Со ($x \le 2$), а затем уменьшается с ростом концентрации Со практически до нуля. Существование такого максимума на концентрационной зависимости $\sigma(x)$ характерно как для интерметаллидов типа R-3d-переходный металл (Fe, Co), так и для бинарных сплавов Fe–Co [11] и находит объяснение в рамках зонной теории [12]. В случае бинарных (Fe_{1-x}Co_x) сплавов в соответствии с кривой Слэтэра–Полинга [12] наибольшее значение средний магнитный момент также достигает в точке x = 0.3. Следовательно, можно предположить, что именно подрешетка 3d-переходного металла ответственна за немотонный вид концентрационной зависимости магнитного момента в сплавах (RR'R'') (Fe_{1-x}Co_x)₂.

Нами получены мессбауэровские спектры для соединений $Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x$ ($0 \le x \le 1.6$) при комнатной температуре. Особенностью кристаллографической структуры сплавов типа RFe₂ является то, что из четырех атомов Fe три атома имеют одинаковое расположение осей градиента электрического поля (КЭП) по отношению к оси легкого намагничивания (это ось [111]). Этот угол составляет 72°. И только один атом имеет совпадающие по направлению оси ГЭП и магнитного поля. Поэтому при обработке мессбауэровских спектров использовалась модель двух секстетов. В результате обработки установлено, что: 1) изомерные сдвиги и квадрупольные расщепления практически не изменяются от сплава к сплаву; 2) соотношение интенсивностей двух секстетов колеблется около величины 3:1; 3) ширина линий изменяется от 0.28 mm/s для сплава с x = 0 до 0.48 mm/s для сплава с x = 1.6, что свидетельствует о появлении локальных неоднородностей при замещении атомов железа атомами кобальта. Наиболее информативным параметром является величина сверхтонкого поля на ядрах Fe. На рис. 5 показана концентрационная зависимость сверхтонких магнитных полей H₁ и H₂ для обоих положений атомов Fe в структуре MgCu₂ для сплавов Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x. Данные зависимости, так же как и зависимость $\sigma(x)$, демонстрируют наличие максимальных значений при определенном содержании Со.

Рис. 5. Концентрационные зависимости сверхтонких полей $H_{\rm hf}$ для двух неэквивалентных (1, 2) положений атомов Fe в соединениях Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x при T = 300 K.

80

40

0

-40

-1.2

σ, emu/g

3.3. Магнитострикционные свойства сплавов Тb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x. Известно, что направление легкого намагничивания в соединениях типа (*RR'R''*)Fe₂ изменяется при изменении температуры. Кристаллографическое направление [111] является осью легкого намагничивания (ОЛН) при температурах выше T_{SR} (температуры спин-переориентационного перехода (СПП)). При $T < T_{SR}$ ОЛН совпадает с кристаллографическим направлением [100]. Известно [1], что в соединениях *R*Fe₂ $\lambda_{111} \gg \lambda_{100}$, поэтому большие магнитострикционные деформации могут наблюдаться только выше T_{SR} . Точное определение температуры СПП является сложной задачей, поскольку T_{SR} зависит в значительной степени от величины и направления приложенного магнитного поля.

Для определения $T_{\rm SR}$ было проведено исследование температурной зависимости коэффициента теплового расширения $\alpha(T)$ (при H = 0). На рис. 6 представлены экспериментальные данные для соединения Tb_{0.35}Dy_{0.45}Er_{0.2}Fe₂. Как видно, экстремум $\alpha(T)$ наблюдается при комнатной температуре, что согласуется с величиной $T_{\rm SR}$, рассчитанной по формуле (1).

На рис. 7 показаны температурные зависимости продольной магнитострикции λ_{\parallel} для соединения Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{1.8}Co_{0.2}, измеренные в разных магнитных полях. Видно, что в слабых магнитных полях (при H = 0.9 kOe) λ_{\parallel} достигает максимального значения при $T_{\rm SR} = 250$ K. Однако при увеличении значения приложенного поля $T_{\rm SR}$ сдвигается в сторону низких температур.

Рис. 8 демонстрирует температурные зависимости анизотропной магнитострикции $\lambda_a = \lambda_{\parallel} - \lambda_{\perp},$ измеренные $H = 10 \,\mathrm{kOe}$ при для сплавов $Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x$ с различной концентрацией кобальта. Из рис. 8 видно, что с увеличением содержания Со температура СПП сдвигается в сторону низких температур: так, для соединения Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{1.2}Co_{0.8} значение $T_{\rm SR} = 145 \, {\rm K},$

Рис. 6. Температурная зависимость коэффициента теплового расширения для монокристалла $Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_2$.

Рис. 7. Температурные зависимости продольной магнитострикции λ_{\parallel} , измеренные для сплавов Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{1.8}Co_{0.2} в различных магнитных полях. *H*, kOe: *1* — 0.9, *2* — 3.5, *3* — 5, *4* — 6.5, *5* — 8, *6* — 9.5, *7* — 10.5, *8* — 11.5.

Рис. 8. Температурные зависимости анизотропной магнитострикции $\lambda_{\parallel} - \lambda_{\perp}$, измеренные при H = 9.5 kOe для сплавов Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x. x = 0.2 (1), 0.8 (2) и 1.8 (3).

однако оба соединения $(Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{1.8}Co_{0.2}$ и $Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{1.2}Co_{0.8})$ обладают достаточно высокими значениями магнитострикции не только при $T = T_{SR}$, но и при комнатной температуре.

Для технического использования сплавов, обладающих высокими значениями магнитострикции λ, важно, чтобы эти значения достигались в области слабых магнитных полей. сравнительно Поэтому нами было проанализировано поведение полевых магнитострикции зависимостей при $T = 300 \, \text{K}.$ На рис. 9 представлены полевые зависимости продольной магнитострикции λ_{\parallel} для соединений $Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x$ (*x* = 0.2, 0.5, 0.8, 1.3, 1.6) и соединения $Tb_{0.27}Dy_{0.73}Fe_2$ (терфенол-*D*) при T = 300 Kв магнитных полях до 4 kOe. Видно, что в области слабых магнитных полей ($H \leq 1 \, \mathrm{kOe}$) для состава Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{0.7}Co_{1.3} значения магнитострикции превышают терфенола — D. значения для

89

Рис. 9. Полевые зависимости продольной магнитострикции λ_{\parallel} для соединений Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x при разном содержании кобальта (x = 0.2, 0.5, 0.8, 1.3, 1.6), а также для терфенола Tb_{0.27}Dy_{0.73}Fe₂ при T = 300 K.

Рис. 10. Зависимость магнитострикционной восприимчивости $\partial \lambda_{\parallel}/\partial H$ от концентрации кобальта для сплавов системы Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x при T = 300 K.

Тb_{0.35}Dy_{0.45}Er_{0.2}Fe_{0.7}Co_{1.3} обладает самым высоким значением магнитострикационной восприимчивости среди соединений Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{2-x}Co_x ($0 \le x \le 2$), что наглядно продемонстрировано на рис. 10. Отсюда можно заключить, что данный состав является перспективным для использования в приборах и устройствах, работающих в области магнитных полей 1–1.5 kOe.

4. Выводы

1) Синтезированы однофазные многокомпонентные сплавы $RFe_{2-x}Co_x$, где R = Tb, Dy, Er, $0 \le x \le 2$.

2) Проведено комплексное исследование структуры, магнитных и магнитострикционных свойств на моно- и поликристаллических образцах.

3) Экспериментально установлено, что уменьшение константы МА вследствие ее компенсации не только в подрешетке РЗ-металла, но и в подрешетке 3*d*переходного металла позволяет достичь высоких значений магнитострикционной восприимчивости в соединении Tb_{0.35}Dy_{0.45}Er_{0.2}Fe_{0.7}Co_{1.3} в области комнатных температур.

Авторы выражают глубокую благодарность сотрудникам Института "Гиредмет" Ю.Б. Патрикееву и Т.Г. Соченковой за предоставление образцов для магнитных измерений, а также сотрудникам Института структурных исследований и низких температур ПАН (Вроцлав, Польша) К.Д. Нижневскому за помощь при аттестации образцов и В. Ивасечко за помощь в проведении измерений на СКВИД-магнитометре.

Список литературы

- A.E. Clarc. Marnetostrictive *R*Fe₂ intermetallic compounds. Handbook on the physics and chemistry of rare-earth / Ed. K.A. Gschneider. North-Holland publishing company (1979). P. 231.
- [2] К.П. Белов. Магнитострикционные явления и их технические приложения. Наука, М. (1987). 159 с.
- [3] N.C. Koon, C.M. Williams, B.N. Das. J. Magn. Magn. Mater. 100, 173 (1991).
- [4] С.А. Никитин. Магнитные свойства редкоземельных металлов и их сплавов. Изд-во МГУ, М. (1989). 248 с.
- [5] M.P. Dariel, U. Atzony. Int. J. Magnetism 4, 213 (1973).
- [6] E. Callen, H.B. Callen. Phys. Rev. 139, 455 (1965).
- [7] A.E. Park, J.P. Teter, M. Wun-Fogle. J. Appl. Phys. 69, 5771 (1991).
- [8] А.С. Илюшин. Введение в структурную физику редкоземельных интерметаллических соединений. Изд-во МГУ, М. (1991). 176 с.
- [9] Н.В. Кудреватых, В.Н. Москалев, А.В. Дерягин, А.В. Андреев, С.М. Задворкин. УФЖ 26, 1734 (1981).
- [10] С.А. Никитин, И.С. Терёшина, А.П. Туляков, Ю.Б. Патрикеев, Т.Г. Соченкова. Материаловедение 12(57), 29 (2001).
- [11] К. Тейлор. Интерметаллические соединения редкоземельных металлов. Пер. с англ. Мир, М. (1974). 221 с.
- [12] М. Бозорт. Ферромагнетизм. ИЛ, М. (1956). 784 с.