Поверхностные магнитостатические колебания в эллиптических цилиндрических магнитных доменах

© М.А. Попов, И.В. Зависляк

Киевский национальный университет им. Тараса Шевченко, Киев, Украина

E-mail: zav@univ.kiev.ua

(Поступила в Редакцию 16 января 2008 г. В окончательной редакции 13 марта 2008 г.)

> Представлена теория поверхностных магнитостатических колебаний в магнитных доменах, имеющих форму эллиптического цилиндра. Проанализированы зависимости собственных частот резонансных мод от приложенного магнитного поля для образца гексаферрита бария с учетом изменения размеров домена при изменении подмагничивающего поля. Сделана оценка диапазона перестройки частоты магнитным полем, меняющимся в диапазоне от поля эллиптической неустойчивости до поля коллапса. Обращено внимание на возможность применения эллиптических цилиндрических магнитных доменов в качестве микроминиатюрных резонаторов миллиметрового диапазона.

PACS: 75.70.Kw, 76.50.+g

1. Введение

В ферромагнетиках при определенных условиях могут существовать одиночные домены как в форме прямого кругового цилиндра (цилиндрические магнитные домены) [1,2], так и эллиптические цилиндрические магнитные домены (ЭЦМД) [3–7]. Теоретическая модель ЭЦМД, основанная на предположении об анизотропии плотности энергии доменной стенки, предложена в [3] и экспериментально проверена для доменов в ферритахгранатах [4] и ортоферритах [5,6]. Экспериментально наблюдались не только одиночные домены эллиптической формы, но и стабильные решетки таких доменов [8–10].

В работах [4,8] показано, что причиной возникновения анизотропии плотности энергии доменной стенки может быть наличие в феррите одноосной анизотропии с легкой осью в плоскости пленки. В ферритах-гранатах, выращенных на подложках (111), такая анизотропия возникает в результате отклонения кристаллографической оси кристалла (111) от нормали к поверхности пленки. В ортоферритах к тому же эффекту приводит ромбическая магнитная кристаллографическая анизотропия.

В ферромагнетиках с круговыми цилиндрическими магнитными доменами могут существовать магнитостатические волны и колебания при условии, что доменные стенки неподвижны [11]. В настоящей работе представлена теория поверхностных магнитостатических колебаний (ПМСК) в уединенном ЭЦМД.

2. Теоретическая модель и ее анализ

Рассмотрим домен эллиптической формы в матрице, намагниченной противоположно по отношению к домену. Пусть ось *z*, легкая ось и направление внешнего магнитного поля перпендикулярны к поверхности образца. При этом вектор статической намагниченности **M** направлен вдоль положительного направления *z* в домене и противоположным образом в матрице. Геометрия задачи изображена на рис. 1.

Доменную стенку будем считать неподвижной. Это предположение справедливо при условии, когда частота магнитостатических колебаний значительно превышает частоту радиальных пульсационных колебаний доме-

Рис. 1. Эллиптический цилиндрический магнитный домен в матрице. Общий вид (*a*) и поперечное сечение (*b*).

на. Оценивая частоту колебаний доменной стенки как $\gamma 4\pi M \left(\frac{4\pi M}{H_a}\right)^{1/2}$ [12], а характерную частоту магнитностатических колебаний как γH_a [11], получаем критерий, при выполнении которого доменную стенку можно считать неподвижной, рассматривая только интересующие нас спиновые колебания: $q^{3/2} \gg 1$, где $q = \frac{H_a}{4\pi M}$ — фактор качества. Этот критерий выполняется практически для всех ЦМД-материалов, в том числе гексаферритов.

Будем решать непосредственно систему уравнений Максвелла в магнитостатическом приближении, считая домен бесконечным в направлении оси *z*,

$$\operatorname{rot} \mathbf{H} = \mathbf{0}, \quad \operatorname{div} \mathbf{B} = \mathbf{0}. \tag{1}$$

Для решения (1) сделаем следующую замену переменных [13]:

$$x = \left(\rho + \frac{c^2}{4\rho}\right) \cdot \cos\varphi, \qquad y = \left(\rho - \frac{c^2}{4\rho}\right) \cdot \sin\varphi,$$
$$\varphi \in [-\pi, \pi], \qquad \rho \in \left[\frac{c}{2}, \infty\right),$$

где c — фокальное расстояние, $c = \sqrt{a^2 - b^2}$, a и b — соответственно большая и малая полуоси эллипса. При этом масштабные множители Ламе

$$h_
ho = \sqrt{\left(1 - rac{c^2}{4
ho^2}
ight)^2 + rac{c^2}{
ho^2}\sin^2 arphi}, \quad h_arphi =
ho h_
ho.$$

Эллипс с полуосями a и b в данной системе координат описывается соотношением $\rho = R = \text{const}$, где R = (a + b)/2. Считая, что компоненты полей и намагниченностей не зависят от координаты z, систему (1) можно свести к следующей:

$$\begin{cases} \frac{\partial (h_{\varphi}H_{\varphi})}{\partial \rho} - \frac{\partial (h_{\rho}H_{\rho})}{\partial \varphi} = 0, \\ \frac{\partial (h_{\varphi}(H_{\rho} + 4\pi M_{\rho}))}{\partial \rho} + \frac{\partial (h_{\rho}(H_{\varphi} + 4\pi M_{\varphi}))}{\partial \varphi} = 0. \end{cases}$$
(2)

Используем тензор магнитной невосприимчивости исходя из соотношения [14]

$$\mathbf{H} = \hat{\eta} \mathbf{M},\tag{3}$$

$$\hat{\eta} = egin{pmatrix} \eta^d & -i\eta_a \ i\eta_a & \eta^d \end{pmatrix}$$
для домена, $\hat{\eta} = egin{pmatrix} \eta^m & i\eta_a \ -i\eta_a & \eta^m \end{pmatrix}$ для матрицы,

где $\eta^m = 4\pi(\omega_a + \omega_H)/\omega_M$, $\eta^d = 4\pi(\omega_a - \omega_H)/\omega_M$, $\eta_a = 4\pi\omega/\omega_M$, $\omega_a = \gamma H_a = \gamma 2K_u/M$, $\omega_M = \gamma 4\pi M$, $\omega_H = \gamma H_0$, H_0 — внешнее поле, K_u — первая константа одноосной анизотропии, γ — гиромагнитное отношение, M — намагниченность насыщения.

Для поверхностей магнитостатической моды с номером n решение системы (2) для намагниченности в домене с учетом непрерывности компонент намагниченности при $\rho = c/2$ имеет вид

$$\begin{split} M^{d}_{n\rho}(\rho,\varphi) &= \frac{1}{h_{\rho}\rho^{n+1}} \Big(A(\rho^{2n} - (c/2)^{2n}) \cos(n\varphi) \\ &+ C(\rho^{2n} + (c/2)^{2n}) \sin(n\varphi) \Big), \\ M^{d}_{n\varphi}(\rho,\varphi) &= \frac{1}{h_{\rho}\rho^{n+1}} \Big(C(\rho^{2n} - (c/2)^{2n}) \cos(n\varphi) \\ &- A(\rho^{2n} + (c/2)^{2n}) \sin(n\varphi) \Big), \quad n \in N. \end{split}$$

Для матрицы с учетом ограниченности на бесконечности получаем

$$M_{n\rho}^{m}(\rho, \varphi) = \frac{1}{h_{\rho}\rho^{n+1}} \left(E\cos(n\varphi) + G\sin(n\varphi) \right),$$
$$M_{n\varphi}^{m}(\rho, \varphi) = \frac{1}{h_{\rho}\rho^{n+1}} \left(-G\cos(n\varphi) + E\sin(n\varphi) \right), \quad (5)$$

где *A*, *C*, *E*, *G* — произвольные постоянные. Использование электродинамических граничных условий на границе домен—матрица приводит к следующему соотношению:

$$\eta_{a}^{4} - \eta_{a}^{2} \left(\eta^{m2} + \eta^{d2} + 4\pi (\eta^{m} + \eta^{d}) + T(4\pi)^{2} \right) + \eta^{d} \eta^{m} \left(\eta^{d} \eta^{m} + 4\pi (\eta^{m} + \eta^{d} + 4\pi) \right) + T(4\pi)^{2} \frac{(\eta^{m} - \eta^{d})^{2}}{4} = 0,$$
(6)

где $T = 1 - ((a - b)/(a + b))^{2n}$.

Формула (6) применима во всех случаях, когда тензор магнитной невосприимчивости среды может быть записан в форме (3). Используя явный вид компонент тензора невосприимчивости, выражение (6) можно привести к следующему виду:

$$(\omega_n^2)_{1,2} = \omega_a^2 + \omega_H^2 + \omega_a \omega_M + \frac{T}{2} \omega_M^2$$

$$\pm \sqrt{\omega_H^2 (2\omega_a + \omega_M) + T \omega_M^2 \omega_a (\omega_a + \omega_M) + \frac{T^2 \omega_M^4}{4}}.$$
 (7)

Можно показать, что результаты, полученные в [11], являются частным случаем соотношения (7) для вырожденной ситуации a = b. В другом предельном случае $(a/b \gg 1)$, используя разложение экспоненты в ряд при малом значении аргумента, нетрудно показать, что $((a - b)/(a + b))^{2n} \approx \exp(-4nb/a)$. Поэтому формулу (7) (по аналогии с формулой, описывающей дисперсию поверхностных магнитостатичеких волн в изолированном слое [15]), положив n/a = |k|, где k

Рис. 2. Зависимости частот ПМСК в ЭЦМД от номера моды при различных значениях отношения полуосей. Каждому значению отношения *a/b* соответствуют два набора точек, обозначенных одинаковыми символами.

Рис. 3. Изменение частот ПМСК с *n* = 1, 3, 5 при деформации эллипса. Каждому значению *n* соответствуют две кривые.

волновое число, можно трактовать как описывающую дисперсию спиновых волн в полосовом домене шириной s = 2b. При этом дискретный спектр колебаний переходит в непрерывный спектр волн.

В качестве примера обсудим спектр частот ПМСК эллиптического домена в бесконечной матрице для гексаферрита бария ($H_a = 16.8$ kOe, $4\pi M = 4.8$ kG), опираясь на представленную теорию, при отсутствии подмагничивающего поля (рис. 2, 3). Из графиков следует, что в эллиптическом магнитном домене в отличие от круглого (a/b = 1) снимается вырождение по частоте мод с разными индексами и частоты мод ПМСК сильно зависят от эксцентриситета эллипса, причем изменение формы домена наибольшее влияние оказывает на основную моду (n = 1).

Применение теории для анализа спектров ПМСК в ЭЦМД конечной длины

Обсудим возможность применения данной теории в реальной экспериментальной ситуации, т. е. для ПМСК в доменах, существующих в образцах конечной толщины h. При $h \gg a$, b домен можно считать бесконечным по длине, и формулы, полученные выше, остаются в силе. Однако необходимо решить статическую задачу для определения полуосей эллипса и статического размагничивающего поля. Для этого найдем размеры устойчивого эллиптического домена в зависимости от толщины образца и приложенного поля.

Анизотропную плотность энергии доменной стенки в первом приближении можно представить в виде [3,4]

$$\sigma = \sigma_m + \sigma_x \cos^2 \alpha, \qquad (8)$$

83

где σ_m — изотропная часть плотности энергии доменной стенки, σ_x — амплитуда анизотропной части, α — угол между нормалью к поверхности стенки и некоторым направлением в плоскости образца. Форма доменной стенки при этом в полярной системе координат описывается формулой

$$r = r_0 + r_2 \cos(2\theta),\tag{9}$$

где величины r₀ и r₂ находятся из уравнений [3,5]

$$\frac{d}{h} + \frac{2r_0}{h} \frac{H_0}{4\pi M} - F\left(\frac{2r_0}{h}\right) = 0,$$
 (10)

$$\frac{r_2}{r_0} = \frac{1}{2} \left(\frac{l}{h} - S_2 \left(\frac{2r_0}{h} \right) \right)^{-1} \frac{\Delta l}{h}.$$
 (11)

Здесь $l = (\sigma_m + \sigma_x/2)/4\pi M^2$, $\Delta l = \sigma_x/4\pi M^2$, F(x) и $S_2(x)$ — функция магнитостатической силы и функция стабильности соответственно [2,3].

Условия существования стабильных ЭЦМД с учетом коэрцитивной силы были проанализированы в [7].

Полагая, что $h = 40 \,\mu\text{m}$, $l = 15.4 \,\text{nm}$ [12] и $\sigma_x / \sigma_m =$ = 0.05, можно для каждого допустимого значения внешнего поля (от поля эллиптической неустойчивости до поля коллапса [2,3]) определить значения полуосей стабильного домена. Как следует из (9), $a = r_0 + r_2$, $b = r_0 - r_2$, где r_0 и r_2 определяются по формулам (10), (11). Проведенные расчеты показывают, что средний диаметр домена r₀ меняется в зависимости от значения поля в пределах 1-3 µm, что позволяет с хорошей точностью пользоваться предложенной моделью домена бесконечной длины для динамической задачи. Найденные величины а и b при подстановке в формулу (7) с заменой в ней величины H_0 на $H_0 - H_d$, где H_0 — внешнее поле, $H_d = H_d(a, b, h)$ — размагничивающее поле эллиптического домена, дают возможность исследовать полевые зависимости частот ПМСК.

Рис. 4. Зависимость частоты поверхностных магнитностатических колебаний разных индексов в уединенном ЭЦМД от внешнего магнитного поля. Каждому значению *n* соответствуют две кривые.

Размагничивающее поле можно найти по методике, изложенной в [16], в которой требуемый размагничивающий фактор эллиптического цилиндра конечной длины, усредненный по объему цилиндра, берется из [17]. Поскольку рассматриваются поверхностные колебания, локализованные вблизи границы раздела матрица-домен, изменением размагничивающего поля по мере удаления от домена можно в первом приближении пренебречь. Результаты расчета зависимости частоты резонанса от приложенного внешнего поля для разных мод ПМСК представлены на рис. 4. Как видно, при данных параметрах задачи в достаточно узком диапазоне полей, близких к полю эллиптической неустойчивости, можно перестраивать резонансную частоту основной моды (*n* = 1) одиночного домена более чем на 2 GHz. Этот эффект может быть использован в ферритовых устройствах миллиметрового диапазона волн для управления резонансными частотами микроминиатюрных резонаторов, каковыми являются ЭЦМД.

Анизотропию плотности энергии доменной стенки в плоскости образца можно создать, изготавливая образец так, чтобы легкая ось составляла с нормалью к поверхности ферромагнетика определенный угол θ_0 . При этом в плоскости возникает одноосная анизотропия с константой анизотропии $K_p = K_u \sin^2 \theta_0$. Другим вариантом может быть создание в образце механического напряжения в плоскости. В этом случае за счет энергии магнитострикции $U = \lambda^{\varepsilon,2} \sigma_{xx} \alpha_y^2$ [18] ($\lambda^{\varepsilon,2} = -21 \cdot 10^{-6}$ — константа магнитострикции гексаферрита бария [19], σ_{xx} — компонента тензора упругих напряжений, α_y — направляющий косинус вектора намагниченности) также возникает одноосная анизотропии плотности энергии доменной стенки можно найти согласно [4]

$$\frac{\sigma_x}{\sigma_m} \approx \frac{K_p}{2K_u}.$$
(12)

Формула (12) получена в предположении, что $K_u/2\pi M^2 \gg 1$ (это выполняется для всех материалов с цилиндрическими магнитными доменами), $K_p < 2\pi M^2$ и $K_p \ll K_u$.

Заметим, что отношение σ_x/σ_m увеличивается с ростом температуры [6], что можно использовать для управления спектром ПМСК.

4. Заключение

Таким образом, в работе развита теория поверхностных магнитостатических колебаний в ЭЦМД, на основании которой определены резонансные частоты ПМСК как функции намагниченности насыщения, внешнего поля и соотношения полуосей эллипса.

Построены теоретические зависимости частот ПМСК разных индексов для гексаферрита бария при отсутствии подмагничивающего поля, а также для образцов конечной толщины при подмагничивающих полях в диапазоне от поля эллиптической неустойчивости до поля коллапса.

Показана возможность существенного изменения резонансной частоты основной моды внешним магнитным полем.

Список литературы

- В.Г. Барьяхтар, Б.А. Иванов. В мире магнитных доменов. Наук. думка, Киев (1986). 160 с.
- [2] В.Г. Барьяхтар, Ю.И. Горобец. Цилиндрические магнитные домены и их решетки. Наук. думка, Киев (1988). 168 с.
- [3] A.A. Thiele. Bell Syst. Tech. J. 50, 725 (1971).
- [4] A.P. Malozemoff, K.R. Papworth. J. Phys. D 8, 1149 (1975).
- [5] E. Della Torre, M.Y. Dimyan. IEEE Trans. Magn. MAG-6, 489 (1970).
- [6] M.Y. Dimyan, E. Della Torre. IEEE Trans. Magn. MAG-7, 476 (1971).
- [7] S.C. Choi. J. Appl. Phys. 43, 4203 (1972).
- [8] А. Малоземов, Дж. Слонзуски. Доменные стенки в материалах с цилиндрическими магнитными доменами. Мир, М. (1982). 380 с.
- [9] Ф.В. Лисовский, Е.Г. Мансветова. Письма в ЖЭТФ 55, 34 (1992).
- [10] М.В. Логунов, М.В. Герасимов. Письма в ЖЭТФ 74, 551 (2001).
- [11] И.В. Зависляк. УФЖ 28, 1403 (1983).
- [12] H. Dotch, W. Tolksdorf, F. Welz. J. Appl. Phys. 51, 3816 (1980).
- [13] И.В. Зависляк, Г.П. Головач, М.А. Попов, В.Ф. Романюк. РЭ 51, 2, 213 (2006).
- [14] И.В. Зависляк. УФЖ 27, 1257 (1982).
- [15] В.В. Данилов, И.В. Зависляк, М.Г. Балинский. Спинволновая электродинамика. Лыбидь, Киев (1991). 212 с.
- [16] M.A. Wanas, N.H. Hegazi. J. Phys. D 9, 1461 (1976).
- [17] M. Beleggia, M. De Graef, Y.T. Millev, D.A. Goode, G. Rowlands. J. Phys. D 38, 3333 (2005).
- [18] С.П. Кунцевич, В.П. Палехин. УФЖ 21, 410 (1976).
- [19] А.А. Безлепкин, С.П. Кунцевич, В.П. Палехин. Изв. вузов. Физика 9, 106 (1985).