Температурная зависимость концентрации дырок в модели *р*-металла с *U*-минус-центрами

© И.А. Барыгин, К.Д. Цэндин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, Санкт-Петербург, Россия

E-mail: Tsendin@mail.ioffe.ru

(Поступила в Редакцию 7 апреля 2008 г.)

В модели *р*-металла с *U*-минус-центрами исследована температурная зависимость концентрации дырок. Рассмотрены варианты модели с упрощенным представлением разрешенных зон и с квадратичным законом дисперсии в валентной зоне. Найдено, что зависимость концентрации дырок от температуры может иметь различный вид, определены области параметров модели, соответствующие различным видам. Полученные результаты применены для обсуждения связи нормальных и сверхпроводящих свойств высокотемпературных сверхпроводников.

PACS: 74.72.-h, 74.20.Mn

1. Введение

Одна из главных проблем физики высокотемпературных сверхпроводников (ВТСП) заключается в согласованном и непротиворечивом объяснении как сверхпроводящих свойств, так и свойств в нормальном состоянии. В работах [1,2] была сформулирована модель, в которой сверхпроводящие свойства ВТСП объяснялись наличием U-минус-центров, а также рассматривалось влияние этих центров на нормальные свойства, которые в основном определялись концентрацией дырок в валентной зоне. В связи с этим оказалось необходимым рассмотреть статистическое взаимодействие U-минус-центров и дырок. Поэтому настоящая работа посвящена одному из аспектов этого взаимодействия — влиянию наличия U-минус-центров на температурную зависимость концентрации дырок в валентной зоне.

При обсуждении результатов будет показано, что параметры модели, которые определяются из нормальных свойств ВТСП, могут быть согласованы с величинами, обусловливающими их сверхпроводящие свойства.

2. Модель

Зонная диаграмма модели, предложенной в [2], изображена на рис. 1, *а*. Известно, что ВТСП, близкие к оптимально легированным составам, в нормальном состоянии являются дырочными металлами (*p*-металлами). Поэтому на рис. 1, *а* уровень Ферми изображен недалеко от верха валентной зоны.

Наряду с диаграммой на рис. 1, *а* рассмотрим ее упрощенный вариант, представленный на рис. 1, *b*. В упрощенном варианте зона проводимости заменена одним уровнем, располагающимся на ее дне, с эффективной концентрацией состояний N_c . Вместо валентной зоны введены два близких уровня с концентрациями состояний N_1 и N_2 , расположенных на расстоянии ε_{d1} и ε_{d2} соответственно от зоны проводимости (значение ε_{d1} соответствует ширине запрещенной зоны E_g). Пустые состояния на этих уровнях отвечают дыркам в валентной зоне.

Уровни, располагающиеся на ε_1 и ε_2 ниже зоны проводимости, соответствуют *U*-минус-центрам. На каждом *U*-минус-центре может располагаться 0, 1 или 2 электрона. Состояние с двумя электронами считается

Рис. 1. Зонная диаграмма модели [1,2] (*a*) и упрощенный вариант зонной диаграммы (*b*). Обозначения см. в тексте.

отрицательно заряженным (D^-) , с одним — нейтральным (D^0) , без электронов — положительно заряженным (D^+) . Энергия первой ионизации (перехода из состояния D^- в состояние D^0) ε_1 больше энергии второй ионизации (перехода из состояния D^0 в состояние D^+) ε_2 . Это означает, что эффективная корреляционная энергия $\varepsilon_2 - \varepsilon_1 = -U < 0$; таким образом, энергетически выгоден переход пары *U*-минус-центров из состояния (D^0, D^0) в состояние (D^+, D^-) . Вследствие пиннинга *U*-минус-центрами уровень Ферми для рассматриваемой системы равен $\varepsilon_{\rm F} = (\varepsilon_1 + \varepsilon_2)/2$. Имея в виду зонную диаграмму на рис. 1, *a*, будем рассматривать ситуацию, когда уровень Ферми расположен между уровнями ε_{d1} и ε_{d2} .

3. Упрощенное рассмотрение зон

Рассмотрим сначала упрощенную модель. Введем следующие обозначения: N_1^0 и N_1^+ — концентрации занятых и свободных состояний на уровне ε_{d1} ; N_2^0 и N_2^+ то же для уровня ε_{d2} ; D^+ , D^0 и D^- — концентрации *U*-минус-центров с 0, 1 и 2 электронами соответственно; D — их общая концентрация; n — концентрация электронов в зоне проводимости. Тогда справедливы следующие соотношения:

$$N_1 = N_1^0 + N_1^+, (1)$$

$$N_2 = N_2^0 + N_2^+, (2)$$

$$D = D^+ + D^0 + D^-.$$
(3)

Уравнение нейтральности имеет вид

$$N_1^+ + N_2^+ + D^+ = D^- + n.$$
(4)

Для пояснения уравнения (4) рассмотрим ситуацию при температуре T = 0. Будем считать, что в отсутствие *U*-минус-центров валентная зона целиком заполнена, т. е. материал фактически является собственным полупроводником. Наличие *U*-минус-центров приводит к пиннингу уровня Ферми. В соответствии с этим все электроны, находящиеся в валентной зоне выше уровня Ферми, переходят на *U*-минус-центры; на уровне N_1 электронов нет, и при T = 0 уравнение нейтральности имеет вид $N_1 + D^+ = D^-$. Таким образом, разница между концентрациями D^+ и D^- целиком обусловлена электронами, перешедшими с уровня N_1 . При ненулевой температуре появляются электроны на уровне N_1 , дырки на уровне N_2 и электроны в зоне проводимости, и справедливо уравнение (4).

Уравнения действующих масс для переходов электронов с уровней ε_{d1} , ε_{d2} , ε_1 и ε_2 в зону проводимости имеют вид

$$\frac{nN_1^+}{N_1^0} = N_c e^{-\frac{\varepsilon_{d1}}{k_{\rm B}T}},\tag{5}$$

$$\frac{nN_2^+}{N_2^0} = N_c e^{-\frac{c_{d2}}{k_{\rm B}T}},\tag{6}$$

$$\frac{nD^+}{D^0} = N_c e^{-\frac{c_2}{k_{\rm B}T}}.$$
 (8)

Эта система уравнений позволяет найти по заданным значениям N_1 , N_2 , D, ε_{d1} , ε_{d2} , ε_1 , ε_2 и температуры T концентрации электронов на всех уровнях. Удобно исключить из уравнений (5)–(8) концентрации D^0 и n, сведя их к виду

$$\frac{N_1^+ N_2^0}{N_1^0 N_2^+} = e^{\frac{\epsilon_{d2} - \epsilon_{d1}}{k_{\rm B}T}},\tag{9}$$

$$\frac{N_1^+}{N_1^0}\sqrt{\frac{D^-}{D^+}} = e^{\frac{\epsilon_{\rm F}-\epsilon_{\rm d1}}{k_{\rm B}T}}.$$
 (10)

Концентрация дырок определяется как $p = N_1^+ + N_2^+$. Будем считать, что U и E_g много больше, чем $\varepsilon_{d1} - \varepsilon_{d2}$ и kT. Поэтому в дальнейшем будем пренебрегать концентрацией U-минус-центров в нейтральном состоянии D^0 и концентрацией электронов в зоне проводимости n. Эти предположения обоснованы тем, что в ВТСП (например, YBa₂Cu₃O_x) величины U и E_g равны нескольким eV [3], а уровень Ферми расположен вблизи верха валентной зоны на расстояниях порядка десятков meV [2]. В таком приближении упрощаются уравнения (3) и (4), которые вместе с уравнениями (9), (10) образуют полную систему для нахождения концентраций.

4. Результаты для упрощенной модели

Предварительные результаты исследования модели, приведенной на рис. 1, b, были кратко изложены в работе [4]. В зависимости от параметров модели температурная зависимость концентрации дырок p(T) имеет различный вид. Возможны следующие варианты изменения концентрации с увеличением температуры: 1) монотонно возрастающая; 2) с одним максимумом; 3) монотонно убывающая; 4) с одним минимумом; 5) с одним максимумом и одним минимумом. На рис. 2 приведены примеры зависимостей каждого типа.

Какой именно вид будет иметь зависимость p(T), определяется параметрами $N_1/(N_1 + N_2)$, $D/(N_1 + N_2)$ и $\xi = (\varepsilon_F - \varepsilon_{d1})/(\varepsilon_{d2} - \varepsilon_{d1})$. Первый из них задает соотношение между концентрациями состояний на уровнях N_1 и N_2 , второй — относительную концентрацию U-минус-центров, а третий характеризует положение уровня Ферми ε_F относительно уровней ε_{d1} и ε_{d2} . Когда уровень Ферми пробегает значения от ε_{d1} до ε_{d2} , ξ изменяется от нуля до единицы. На рис. 3 изображены области параметров, при которых зависимость имеет тот или иной вид, причем номер области соответствует номеру кривой на рис. 2.

Рис. 2. Зависимость концентрации дырок *p* от температуры *T* для модели, приведенной на рис. 1, *b*. $N_1/(N_1 + N_2)$ и ξ соответственно равны: I - 0.15 и 0.65, 2 - 0.7 и 0.8, 3 - 0.85 и 0.35, 4 - 0.3 и 0.2, 5 - 0.385 и 0.55. Для всех кривых $D/(N_1 + N_2) = 1$.

Рис. 3. Области параметров, соответствующих различным зависимостям p(T), для модели, приведенной на рис. 1, *b*. Сплошная граница между областями *I* и 5 соответствует значению $D/(N_1 + N_2) = 1$, штриховая — значению $D/(N_1 + N_2) = 2$. Номера областей соответствуют номерам кривых на рис. 2.

Поясним положение границ между отдельными областями на рис. 3. Поведение концентрации дырок в низкотемпературном пределе определяется положением уровня Ферми относительно уровней N₁ и N₂. Концентрация электронов на уровне N1 зависит от температуры экспоненциально с энергией активации $\varepsilon_{\rm F} - \varepsilon_{d1}$, а концентрация дырок на уровне N₂ — также экспоненциально, но с энергией активации $\varepsilon_{d2} - \varepsilon_F$. Если первая энергия активации меньше второй, то количество электронов на уровне N_1 будет больше количества дырок на уровне N_2 , и общее количество дырок уменьшится при возрастании температуры. В противном случае общее количество дырок будет возрастать. Таким образом, области 1, 2 и 5 на фазовой диаграмме (соответствующие росту концентрации дырок при низких температурах) отделены от областей 3 и 4 прямой $\xi = 1/2$.

Поведение концентрации дырок в высокотемпературном пределе ($\varepsilon_{d2} - \varepsilon_{d1} \ll kT \ll U, E_g$) определяется со-

отношением величин ($\varepsilon_{d2} - \varepsilon_{d1}$) N_2 и ($\varepsilon_{\rm F} - \varepsilon_{d1}$)($N_1 + N_2$): если первая из них больше второй, то концентрация дырок возрастает с температурой, в противном случае — убывает. Соответственно на фазовой диаграмме области 2 и 3 отделены от областей 1, 4 и 5 прямой $\xi + N_1/(N_1 + N_2) = 1$.

Граница между областями 1 и 5 является единственной, зависящей не только от расположения уровня Ферми и соотношения между N_1 и N_2 , но и от концентрации U-минус-центров. С ростом числа U-минус-центров область 5, в которой температурная зависимость концентрации дырок обладает двумя экстремумами, сужается.

5. Валентная зона. Квадратичный изотропный закон дисперсии

Теперь рассмотрим зонную диаграмму, изображенную на рис. 1, *а*. Будем отсчитывать энергию от верха валентной зоны, т.е. положим $E_v = 0$. Пусть уровень Ферми находится на величину Δ ниже верха валентной зоны: $E_F = -\Delta < 0$. Как и выше, ε_2 — энергия второй ионизации, а U — модуль эффективной корреляционной энергии U-минус-центров, E_g — ширина запрещенной зоны, D — концентрация U-минус-центров.

Статистическая сумма системы равна [2]

$$Z = \left(1 + 2e^{\frac{-(E_g - \varepsilon_2) + \mu}{k_{\mathrm{B}}T}} + e^{\frac{-2(E_g - \varepsilon_2) + U + 2\mu}{k_{\mathrm{B}}T}}\right)^{VD} \cdot \prod_k \left(1 + e^{\frac{\varepsilon(k) - \mu}{k_{\mathrm{B}}T}}\right).$$
(11)

Здесь μ — химический потенциал, V — объем образца. Первый множитель соответствует U-минус-центрам, остальные — электронам в валентной зоне с волновым вектором k (мы ограничимся случаем $k_{\rm B}T \ll E_g$, поэтому не рассматриваем электроны в зоне проводимости). Пользуясь статистической суммой, можно вычислить полное число электронов в системе и тем самым прийти к уравнению нейтральности

$$\nu = \nu_0 + p/2D, \tag{12}$$

где v — степень заполнения *U*-минус-центров (отношение концентрации электронов на *U*-минус-центрах к ее максимально возможному значению 2*D*), *p* концентрация дырок в валентной зоне. Параметр v_0 связан с полным числом электронов в системе и описывает легирование ВТСП. Он равен степени заполнения *U*-минус-центров в ситуации, когда дырки в валентной зоне отсутствуют (заполнены электронами из системы *U*-минус-центров). Отметим, что уравнение нейтральности (4) соответствует значению $v_0 = 1/2$, т.е. при целиком заполненной валентной зоне концентрации *D*⁺ и *D*⁻ равны. Отличие v_0 от 1/2 задает разницу между *D*⁺ и *D*⁻, напрямую не связанную с электронами в валентной зоне.

Как и выше, будем рассматривать температуры $k_{\rm B}T\ll U$, тогда число U-минус-центров в состоянии D^0 пренебрежимо мало, и степень заполнения

U-минус-центров

$$\nu = \frac{1}{1 + e^{\frac{-2(\Delta + \mu)}{k_{\rm B}T}}}.$$
 (13)

Закон дисперсии дырок в валентной зоне считаем квадратичным и изотропным с эффективной массой m^* : $\varepsilon_k = -k^2 \hbar^2/2m^*$. Тогда концентрация дырок равна

$$p = \frac{3p_0}{2\Delta^{3/2}} \int_{-\infty}^{0} \frac{\sqrt{-\varepsilon}d\varepsilon}{1 + e^{\frac{\mu-\varepsilon}{k_BT}}} = 0, \qquad (14)$$

где $p_0 = (2m^*\Delta)^{3/2}/3\pi^2\hbar^3$ — концентрация дырок при T = 0, а ε — энергия состояния в валентной зоне.

Результаты для квадратичного закона дисперсии

Решив уравнение нейтральности относительно μ , можно определить зависимость концентрации дырок от температуры p(T) при заданных параметрах v_0 , m^* , D и Δ . Зависимость p(T) является монотонно возрастающей при $v(T = 0) = v_0 + p_0/2D < 1/2$ (рис. 4, кривая 1). В случае v(T = 0) > 1/2 концентрация дырок с ростом температуры сначала уменьшается, а затем увеличивается (рис. 4, кривая 2).

Границу между этими двумя случаями можно проследить, рассматривая низкотемпературный предел. В первую очередь заметим, что доля заполненных *U*-минус-центров ν задается выражением, совпадающим с функцией Ферми-Дирака $f(\varepsilon, \mu, T) =$ $= [1 + \exp((\varepsilon - \mu)/T)]^{-1}$ для вдвое меньшей температуры: $\nu(\mu, T) = f(-\Delta, \mu, T/2)$. Это значит, что при малых, но конечных температурах химический потенциал, соответствующий значению функции Ферми-Дирака $f(\mu, \mu, T) = 1/2$, будет больше $-\Delta$ при $\nu > 1/2$ (рис. 5, *a*) и меньше $-\Delta$ при $\nu < 1/2$ (рис. 5, *b*). Изменение химического потенциала (рис. 6) влияет на

Рис. 4. Зависимость концентрации дырок p от температуры T для модели, приведенной на рис. 1, a. $1 - v_0 = 0.3$, $p_0/2D = 0.1$, $2 - v_0 = 0.7$, $p_0/2D = 0.1$.

Рис. 5. Пояснение хода химического потенциала в низкотемпературном пределе при $\nu > 1/2$ (*a*) и $\nu < 1/2$ (*b*) для модели, приведенной на рис. 1, *a*.

Рис. 6. Зависимость химического потенциала μ от температуры *T* для модели, приведенной на рис. 1, *a*. Параметры кривых те же, что на рис. 4.

концентрацию дырок — при его увеличении концентрация дырок падает, и наоборот. Следует отметить, что размытие функции Ферми–Дирака также влияет на концентрацию дырок, но этот эффект квадратичен по температуре, в то время как изменение химического потенциала и соответственно связанное с ним изменение концентрации дырок зависят от температуры линейно. Таким образом, при $\nu > 1/2$ в низкотемпературном пределе dp/dT < 0, и наоборот.

7. Обсуждение результатов

Рассматриваемая модель позволяет связать свойства ВТСП в нормальной фазе и сверхпроводящие свойства. Действительно, параметры системы *U*-минус-центров, с одной стороны, оказывают влияние на концентрацию дырок в нормальной фазе, а с другой — определяют тем-

Рис. 7. Связь степени заполнения *U*-минус-центров [6] и температуры сверхпроводящего перехода [5] для YBa₂Cu₃O_x. Содержание кислорода *x* указано около точек. Сплошная кривая показывает характерную двугорбую зависимость $T_c(v)$ [7].

Рис. 8. Зависимость температуры сверхпроводящего перехода ВТСП семейства La_{2-x}Ba_xCuO₄ от состава [10]. Кривая проведена для наглядности.

пературу сверхпроводящего перехода T_c . На основании анализа температурной зависимости коэффициента Холла в YBa₂Cu₃O_x (по данным работы [5]) мы предполагаем, что при изменении содержания кислорода x от 6.7 до 7.0 степень заполнения U-минус-центров v пробегает значения от 0.43 до 0.14 [6]. Помимо коэффициента Холла в [5] была определена и температура сверхпроводящего перехода для тех же образцов. На рис. 7 эти данные сопоставлены со значениями v. Полученная зависимость качественно согласуется с теоретической зависимостью $T_c(v)$, имеющей вид двойного купола [7,8].

Анализ температурной зависимости коэффициента Холла ВТСП состава $La_{2-x}Sr_xCuO_4$ показал, что для них степень заполнения *U*-минус-центров находится в диапазоне 0.5 < v < 1 [9], что соответствует правой половине графика на рис. 7. Однако обнаруженное изменение v оказалось настолько небольшим, что сопоставление полученных результатов с теоретической зависимостью требует дополнительных данных. Подчеркнем, что характерная зависимость $T_c(v)$ с двумя максимумами, по-видимому, актуальна для большого числа семейств ВТСП. В качестве примера на рис. 8

приведена экспериментальная двугорбая зависимость T_c от состава для ВТСП семейства La_{2-x}Ba_xCuO₄ [10]. Для сопоставления этой зависимости с нормальными свойствами в рамках модели *U*-минус-центров необходимы экспериментальные данные по зависимости p(T), которые в настоящий момент нам неизвестны.

При переходе от упрощенного рассмотрения к модели, предполагающий квадратичный закон дисперсии в валентной зоне, количество возможных типов зависимости p(T) уменьшается с пяти до двух. Это показывает, что температурная зависимость концентрации носителей существенно зависит от закона дисперсии. Известно, что зависимость p(T), например, для YBa₂Cu₃O_x при x = 6.30-6.35 имеет более сложный вид, чем может объяснить модель на рис. 1, a [11], и, скорее, качественно напоминает зависимости, полученные для модели на рис. 1, b. Это может свидетельствовать о том, что при слабых уровнях легирования дисперсия зоны не квадратична, а имеет особенности.

8. Заключение

Показано, что в рамках модели [2] могут быть естественно согласованы данные по немонотонной температурной зависимости концентрации носителей в нормальной фазе ВТСП и зависимость критической температуры от состава для семейств $La_{2-x}Sr_xCuO_4$ и YBa₂Cu₃O_x.

Авторы благодарны Б.П. Попову и А.И. Капустину за плодотворное обсуждение и помощь в работе.

Список литературы

- K.D. Tsendin, B.P. Popov. Supercond. Sci. Technol. 12, 255 (1999).
- [2] К.Д. Цэндин, Д.В. Денисов, Б.П. Попов. Письма в ЖЭТФ 80, 277 (2004).
- [3] J.A. Wilson. J. Phys.: Cond. Matter 12, 303 (2000).
- [4] К.Д. Цэндин, А.И. Капустин, И.А. Барыгин. Изв. РГПУ им. А.И. Герцена. Физика 6 (15), 204 (2006).
- [5] E.C. Jones, D.K. Christen, J.R. Thompson, R. Feenstra, S. Zhu, D.H. Lowndes, J.M. Philips, M.P. Siegal, J.D. Budai. Phys. Rev. B 47, 8986 (1993).
- [6] И.А. Барыгин, А.И. Капустин, К.Д. Цэндин. Письма в ЖТФ 34, 1 (2008).
- [7] И.О. Кулик, А.Г. Педан. ФНТ 9, 256 (1983).
- [8] S. Robaszkiewicz, R. Micnas, K.A. Chao. Phys. Rev. B 23, 1447 (1981).
- [9] К.Д. Цэндин, И.А. Барыгин, А.И. Капустин, Б.П. Попов. ЖЭТФ 132, 902 (2007).
- [10] A.R. Moodenbaugh, Y. Xu, M. Suenaga, T.J. Folkerts, R.N. Shelton. Phys. Rev. B 38, 4596 (1988).
- [11] K. Segawa, Y. Ando. Phys. Rev. B 69, 104 521 (2004).