Магнитное фазовое расслоение в твердом растворе (La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO₃ со структурой перовскита

© Л.С. Лобановский¹, С.В. Труханов¹, О.С. Волкова²

¹ Научно-практический центр по материаловедению НАН Белоруссии, Минск, Белоруссия ² Институт радиотехники и электроники РАН, Москва, Россия E-mail: Lobanov@physics.by

(Поступила в Редакцию 30 марта 2010 г.)

Выполнены исследования кристаллической структуры и магнитных свойств твердого раствора (La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO₃ со структурой перовскита, синтезированного по методике высокого давления. Уточнение параметров элементарной ячейки с использованием полнопрофильного анализа по методу Ритвельда проводилось в предположении однофазного кристаллоструктурного состояния и двухфазной модели, соответствующей исходным составам. Из вычислений следует, что лучшее соответствие экспериментальных данных и теоретической кривой наблюдается для двухфазной модели. Измерение магнитных свойств также указывают на сосуществование двух магнитных фаз.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (грант Ф08Р-148).

Эффект зарядового диспропорционирования, обнаруженный впервые в магнетите Fe₃O₄ [1] и недавно в перовскитных системах CaFeO₃ и La_{1/3}Sr_{2/3}FeO₃ [2,3], представляет интерес с точки зрения природы и механизма его формирования. В этих системах ниже определенных температур наблюдается перераспределение заряда ионов железа $2Fe^{4+} \rightarrow Fe^{3+} + Fe^{5+}$, сопровождающееся изменением кристаллической структуры и ведущее к изменению электрических свойств. Отметим, что феррит кальция имеет орторомбически искаженную структуру перовскита и температуру перехода зарядовый порядок-беспорядок ~ 290 К, что значительно выше температуры магнитного упорядочения $(T_N = 116 \text{ K})$. В твердом растворе La_{1/3}Sr_{2/3}FeO₃, который обладает псевдокубической элементарной ячейкой, температура магнитного упорядочения и температура, при которой наблюдается зарядовое диспропорционирование, составляют в зависимости от содержания кислорода 180-220 К. В связи с этим представляет интерес изучение связи кристаллической структуры и магнитных свойств промежуточного твердого раствора (La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO₃ с целью выяснения взаимосвязи между структурными и магнитными факторами и валентным состоянием ионов железа.

Синтез образца $(La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO_3$ проводился в два этапа. На первом этапе нами были синтезированы в воздушной среде прекурсоры $Ca_2Fe_2O_5$ и $Sr_2Fe_2O_5$ со структурой браунмилерита, а также перовскит LaFeO_3. Далее прекурсоры перетирались в стехиометрическом по катионному составу соотношении и помещались в капсулу из фольги нержавеющей стали контейнера высокого давления. Для поддержания кислорода в близком к стехиометрическому соотношению в капсулу дополнительно помещался окислитель, отделенный от шихты пористой перегородкой. Синтез образ-

ца $(La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO_3$ проводился термобарическим методом при температуре 1373 К в течение 15 min.

Исследования кристаллической структуры проводились нами по методике рентгенофазового анализа при комнатной температуре на дифрактометре общего назначения ДРОН-3М. Магнитные свойства исследовались на вибрационном магнитометре Cryogenic (Лондон) в температурном интервале 5–300 К и магнитных полях до 10 Т.

Анализ спектров рентгеновского отражения синтезированного нами твердого раствора $(La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO_{3.5}$ показал, соединение что кристаллизовалось в структуру типа перовскита. На рентгенограмме не наблюдалось рефлексов примесных фаз, в том числе рефлексов, характерных для исходных соединений со структурой браунмилерита. Однако отношение пик-фон для данного твердого раствора было низким, что, вероятно, указывает на неоднородное кристаллоструктурное состояние. Симметрию элементарной ячейки (La_{0,3}Sr_{0,7})_{0,5}Ca_{0,5}FeO₃ можно охарактеризовать как псевдокубическую. Структурные рефлексы этого твердого раствора асимметричны и заметно уширены (рис. 1), что подтверждает предположение о неоднородном кристаллоструктурном состоянии. Попытка расчета кристаллической структуры в однофазной модели с гексагональной симметрией $(пр. гр. R\overline{3}C_h)$ элементарной ячейки аналогично авторам [3] для La_{1/3}Sr_{2/3}FeO₃) не позволила в удовлетворительной степени описать наблюдаемую асимметрию структурных рефлексов. Анализ фактора толлерантности [4] для твердого раствора $(La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO_3$ указал на необходимость учета также орторомбических искажений параметров элементарной ячейки. Искажение элементарной ячейки до орторомбической наблюдалось также авторами [5]

Рис. 1. Рентгенограмма твердого раствора $(La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO_3$, полученная в Си K_{α} -излучении. Точки — экспериментальные данные. Сплошная линия — теоретическая кривая, рассчитанная в двухфазной модели. Внизу показана разностная кривая между теоретическими и экспериментальными данными. Вертикальными штрихами отмечены брегтовские положения структурных рефлексов, рассчитанные в пространственной группе $R \ 3C_h (1) \ Pnma (2)$.

на монокристаллах $Sr_{2/3}Nd_{1/3}FeO_3$ при замещении ионов лантана ионами неодима с меньшим ионным радиусом [6].

При обработке рентгенограммы в двухфазной модели, предполагающей сосуществование элементарных ячеек с ромбоэдрическими и орторомбическим искажениями, качество подгонки спектра рентгеновского отражения значительно улучшалось. В качестве исходных фаз для уточнения нами принималась фаза La_{1/3}Sr_{2/3}FeO₃ (пр. гр. $R\bar{3}C_h$) и фаза CaFeO₃ (пр. гр. *Pnma*) [7]. Уточнение проводилось в предположении независимого сосуществования фаз с возможностью подгонки их процентного содержания и параметров элементарной ячейки. В результате обработки рентгенограммы оказалось, что процентное содержание ромбоэдрической фазы значительно превышает содержание орторомбической фазы и составляет 77:23. В то же время степень искажения орторомбической элементарной ячейки значительно уменьшилась относительно исходной, характерной для СаFeO₃ (табл. 1, 2).

Полученные результаты можно описать, предполагая неоднородное распределение катионов La, Sr и Ca в *А*-подрешетке структуры перовскита. В частности, соседство ионов лантана и/или стронция с ионом кальция в силу значительного различия в ионных радиусах приведет к возникновению сильных локальных искажений кристаллической структуры. Этим можно объяснить невысокое отношение пик/фон для исследованного твердого раствора, поскольку такие локальные искажения не дают когерентного вклада в отражение рентгеновского излучения и вместе с тем несколько искажают идеальную ромбоэдрическую ячейку, характерную для La_{1/3}Sr_{2/3}FeO₃.

Таблица 1. Параметры элементарной ячейки фазы La_{1/3}Sr_{2/3}FeO₃ в пространственной группе $R \bar{3}C_h$ при обработке рентгенограммы твердого раствора (La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO₃ (параметры a = b = 0.5484 nm, c = 1.331 nm)

	Позиция	Координата			Заполнение
Атом	Викоффа	x/a	y/b	z/c	позиции
La	6 <i>a</i>	0.0	0.0	0.250	0.333
Sr	6 <i>a</i>	0.0	0.0	0.250	0.667
Fe	6 <i>b</i>	0.0	0.0	0	1
Ο	18 <i>e</i>	0.480	0.0	0.250	1

Таблица 2. Параметры элементарной ячейки фазы CaFeO₃ в пространственной группе *Pnma* при обработке рентгенограммы твердого раствора (La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO₃ (параметры a = 0.5426 nm, b = 0.7667 nm, c = 0.5545 nm).

	Позиция	Координата			Заполнение
Атом	Викоффа	x/a	y/b	z/c	позиции
Ca	4 <i>c</i>	0.0	0.250	0.491	1
Fe	4a	0.0	0.0	0.0	1
O1	4c	0.989	0.250	0.003	1
O2	4 <i>c</i>	0.261	0.039	0.240	1

Рис. 2. Температурная зависимость удельной намагниченности твердого раствора $(La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO_3$, полученная в режиме отогрева в поле 0.02 T после охлаждения в нулевом поле (1) и после охлаждения в поле 0.02 T (2).

Рис. 3. Полевая зависимость удельной намагниченности твердого раствора $(La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO_3$, полученная при температуре 6 К.

Можно заключить, что кристаллическая структура полученного твердого раствора разбивается на области с различным катионным составом, но близкими параметрами элементарной ячейки, что ведет к возникновению искажений орторомбического характера.

Для твердого раствора $(La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO_3$ нами проведены исследования магнитных свойств в зависимости от температуры (рис. 2) и внешнего магнитного поля (рис. 3). Поведение удельной намагниченности в зависимости от температуры имеет ряд аномалий. В частности, нами обнаружено, что небольшой спонтанный магнитный момент для этого твердого раствора появляется при температурах ниже 280–290 К. Далее, в зависимости от магнитной предыстории вблизи 175 К видна аномалия в виде пика (кривая 1) либо излома (кривая 2) намагниченности. При дальнейшем понижении температуры наблюдается постепенное снижение величины намагниченности. Сильное различие кривых 1 и 2 ниже 175 К указывает на неоднородное магнитное состояние типа спинового стекла. Аномалия при 175 К, на наш взгляд, может быть связана с формированимагнитной структуры фазы с орторомбически исем каженной элементарной ячейкой либо фазы, близкой к $La_{0,3}Sr_{0,7}FeO_{3-\delta}$ [3]. С учетом способа получения твердого раствора (La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO₃ не предполагающего изменения кислородной стехиометрии, аномалия на температурной кривой, вероятно, связана с магнитными свойствами кальцийсодержащих орторомбически искаженных областей. В орторомбически искаженном соединении Sr_{2/3}Nd_{1/3}FeO₃ при температуре 160 К наблюдается аномалия на температурной зависимости электрических свойств, связанная с зарядовым диспропорционированием [5].

При дальнейшем снижении температуры до значений ниже ~ 120 К в магнитных свойствах также начинают проявляться свойства фазы с высоким содержанием кальция, в которой ожидается антиферромагнитное упорядочение магнитных моментов ионов железа, ведущее к снижению суммарной намагниченности образца.

Несколько необычно присутствие аномалии при температуре 280 К, при которой возникает магнитное упорядочение в исследованном твердом растворе. Вблизи этих температур (290 К) происходит зарядовое диспропорционирование в соединении CaFeO₃ [7], при котором происходит перераспределение валентности ионов железа следующим образом: $2Fe^{4+} \rightarrow Fe^{3+} + Fe^{5+}$. При этом в CaFeO₃ такое зарядовое диспропорционирование не сопровождается магнитным упорядочением. Вероятно, в нашем случае с появлением ионов Fe⁵⁺, вызванных зарядовым диспропорционированием в областях, обогащенных кальцием, формируются слабые косвенные положительные обменные взаимодействия Fe³⁺-O-Fe⁴⁺ или Fe⁴⁺-O-Fe⁵⁺, ведущее к появлению спонтанного магнитного момента. Наличием таких обменных взаимодействий можно объяснить совпадение температур зарядового диспропорционирования и магнитного упорядочения в La_{1/3}Sr_{2/3}FeO₃, поскольку в этом твердом растворе при зарядовом диспропорционировании присутствует избыточное количество Fe³⁺ по сравнению с соединением CaFeO₃.

В результате исследований полевых зависимостей намагниченности при низких температурах нами обнаружена небольшая петля гистерезиса. В сильных магнитных полях наблюдается линейная зависимость намагниченности от внешнего магнитного поля и выражен парапроцесс. Такое поведение может свидетельствовать о доминировании антиферромагнитных обменных взаимодействий в $(La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO_3$, характерных для родительских составов $La_{1/3}Sr_{2/3}FeO_3$ и CaFeO₃.

Таким образом, можно заключить, что в твердом растворе $(La_{0.3}Sr_{0.7})_{0.5}Ca_{0.5}FeO_3$ формируется двухфазное кристаллоструктурное состояние, соответствующее исходным составам CaFeO₃ и La_{1/3}Sr_{2/3}FeO₃, ведущее к формированию негомогенного магнитного состояния, со

свойствами, присущими родительским составам $CaFeO_3$ и $La_{1/3}Sr_{2/3}FeO_3$.

Список литературы

- [1] E.J.W. Vervey, P.W. Haaijman. Physica 8, 929 (1941).
- [2] M. Takano, N. Nakanishi, Y. Takeda, S. Naka, T. Takada. Mater. Res. Bull. **12**, 923 (1977).
- [3] P.D. Battle, T.C. Gibb, P.J. Lightfoot. Solid State Chem. 84, 271 (1990).
- [4] Д. Гуденаф. Магнетизм и химическая связь. Металлургия, М. (1968). 328 с.
- [5] J. Blasco, M.C. Sánchez, J. García, J. Stankiewicz, J. Herrero-Martin. J. Cryst. Growth 310, 3247 (2008).
- [6] R.D. Shannon. Acta Cryst. A 32, 751 (1976).
- [7] T. Takeda, R. Kanno, Y. Kawamoto, M. Takano, S. Kawasaki,
 - T. Kamiyama, F. Izumi. Solid State Sci. 2, 673 (2000).