Корреляция атомов серы в неметаллических плоскостях нанопленок сульфида свинца со структурой *D*0₃

© С.И. Садовников, А.А. Ремпель

Институт химии твердого тела УрО РАН, Екатеринбург, Россия E-mail: sadovnikov@ihim.uran.ru

(Поступила в Редакцию 20 апреля 2010 г.)

Изучено распределение атомов серы S и вакансий \Box в плоских квадратной и гексагональной неметаллических подрешетках, образуемых узлами 4(b) и 8(c) нанокристаллических пленок PbS с кубической структурой D0₃ и скрытой нестехиометрией. С помощью компьютерного моделирования ближнего порядка показано, что в твердых растворах S_y \Box_{1-y} с квадратной и гексагональной решетками появление корреляции между атомами S и вакансиями \Box в первой координационной сфере приводит к появлению корреляций во второй и последующих координационных сферах. С увеличением радиуса координационной сферы абсолютная величина наведенных корреляций уменьшается и полное затухание корреляций происходит в девятой координационной сфере. Для разных составов твердого раствора S_y \Box_{1-y} установлена функциональная зависимость между корреляцией в первой координационной сфере и наведенными корреляциями в последующих координационных сферах. Результаты моделирования могут быть использованы для уточнения кристаллической структуры нанокристаллических пленок и частиц сульфида свинца.

Работа поддержана проектом РФФИ № 08-03-00111а и 10-03-00023а, проектом № 09-П-23-2001 программы № 27 Президиума РАН и совместным проектом № 09-С-3-1014 УрО и СО РАН.

1. Введение

В нормальных условиях сульфид свинца PbS имеет кубическую структуру B1 [1] и является узкозонным полупроводником [2]. Благодаря узкой запрещенной зоне и высокой фоточувствительности в инфракрасном (ИК) диапазоне покрытия на основе сульфида свинца используются как функциональные элементы оптоэлектроники, сенсорной техники и энергетики. Например, элементами, использующими свойства сульфида свинца, являются детекторы в инфракрасной области спектра (от 850 до 3100 nm) [3], фотоумножители, фоторезисторы, приборы ночного видения, солнечные батареи [4–7].

Уменьшение размера зерен кристаллических веществ до нескольких десятков нанометров и менее приводит к изменению их свойств. Это обусловило повышенный интерес к пленкам нанокристаллического сульфида свинца PbS, которые по свойствам могут заметно отличаться от крупнозернистых и монокристаллических аналогов. Использование нанокристаллических пленок PbS создает возможности для улучшения существующих приборов и открывает перспективу создания более чувствительных МК-сенсоров и детекторов.

Переход сульфидов в наносостояние может сопровождаться не только трансформацией их свойств [8,9], вызванной размерными эффектами, но и структурными изменениями. Недавно [10–12] показано, что нанокристаллические пленки сульфида свинца с размером наночастиц менее 80 nm имеют кубическую (пр. гр. $Fm\bar{3}m$) структуру с неупорядоченным размещением атомов серы не только в октаэдрических позициях 4(b), но и в тетраэдрических позициях 8(c). Вновь обнаруженная структура нанокристаллических пленок PbS относится к структурному типу $D0_3$. В этой структуре неметал-

лическая решетка разбивается на две неметаллические подрешетки: одна образована узлами, занимающими кристаллографические позиции 4(b), а вторая — узлами, занимающими позиции 8(c).

При химическом осаждении пленок PbS из водных растворов [12] на поверхности подложки могут формироваться пленки с разной кристаллографической ориентацией. Для кубической структуры D03 наиболее вероятно образование нанопленок PbS, соответствующих плоскостям (001) и (111) или эквивалентным им. В плоскостях (001) узлы 8(с) неметаллической подрешетки образуют плоскую квадратную (пл. гр. *р4mm*) кеплеровскую сетку типа 4^4 , а в плоскости (111) узлы 4(b)неметаллической подрешетки — плоскую гексагональную (пл. гр. р6тт) сетку типа 3⁶ (рис. 1). В обнаруженной структуре [10,11] нанопленок PbS атомы S заполняют октаэдрические узлы 4(b) и тетраэдрические узлы 8(с) неметаллической решетки с вероятностями $P_{\text{S-octa}} = 0.84$ и $P_{\text{S-tetra}} = 0.08$ соответственно. Это означает, что в неметаллической решетке нанопленки PbS со структурой D0₃ реализуется скрытая нестехиометрия [11]. С учетом степеней заполнения позиций 4(b) и 8(с) формулу сульфида свинца можно представить как $PbS_{0.84}^{4(b)}S_{0.16}^{8(c)}$. Таким образом, в неметаллических плоскостях (001) и (111) нанопленки сульфида свинца часть узлов занята атомами S, а остальные узлы вакантны (рис. 1). В плоских квадратной и тетрагональной решетках атомы серы и вакантные узлы 🗆 образуют твердый раствор замещения S_v \Box_{1-v} . С учетом результатов [10-12] отличие свойств наноструктурированных пленок PbS от свойств крупнокристаллического сульфида свинца с равной степенью вероятности может быть вызвано как размерными эффектами [8,9], так и изменением структуры и особенностями во взаимном

Рис. 1. Положение неметаллических квадратной (001) (A) и гексагональной (111) (B) плоскостей в элементарной ячейке кубической (пр. гр. $Fm\bar{3}m$) структуры $D0_3$ нанокристаллической пленки сульфида свинца и моделирующие эти плоскости квадратная (пр. гр. p4mm) (C) и гексагональная (пл. гр. p6mm) (D) решетки. Неметаллические плоскости (001) и (111) проходят через узлы 8(c) и 4(b) соответственно. В квадратной и гексагональной решетках атомы серы и вакантные узлы \Box образуют твердый раствор замещения $S_y \Box_{1-y}$. Внизу показаны неэквивалентные конфигурации фигур (узел, связь, квадратный и треугольный кластеры), используемых для описания твердого раствора $S_y \Box_{1-y}$ с плоскими квадратной (E) и гексагональной (F) решетками соответственно.

расположении атомов S и вакансий \Box в дефектных неметаллических плоскостях (001) и (111).

Распределение атомов разных сортов (или атомов и структурных вакансий) в кристалле характеризуют с помощью дальнего и ближнего порядка [13–15]. Авторы [10–12] не обнаружили сверхструктурных отражений на рентгенограммах нанопленок сульфида свинца со структурой $D0_3$, что свидетельствует об отсутствии упорядочения в неметаллической решетке. Однако они не исключили возможное наличие корреляций (ближнего порядка) во взаимном расположении атомов серы и вакансий. Поэтому при описании структуры или свойств нанопленок сульфида свинца корреляций орядка). Во взаимном расположении атомов серы и вакансий. Поэтому при описании структуры или свойств нанопленок сульфида свинца необходимо учитывать ближний порядок. Это особенно важно, так как отно-

сительное число вакансий в каждой неметаллической подрешетке велико и достаточно для возникновения корреляций между атомами S и

В связи с этим целью настоящей работы является моделирование ближнего порядка в неупорядоченном твердом растворе $S_y \Box_{1-y}$ с плоскими квадратной (пл. гр. *p4mm*) и гексагональной (пл. гр. *p6mm*) решетками и установление зависимости параметров корреляции между атомами серы и вакансиями в *j*-х координационных сферах ($j \ge 2$) этих решеток от параметров корреляции ε_1 в первой сфере.

2. Оценка возможности размещения атомов серы в позициях 8(c)

В работах [10,12] показано, что радиус r_{tetra} тетраэдрического междоузлия 8(c) меньше радиуса $r_{S^{2-}}$ иона серы S^{2-} . Поскольку $r_{S^{2-}} > r_{\text{tetra}}$, переход атома S из узла 4(b) в узел 8(c) приводит к локальным смещениям ближайших атомов Pb от узла 8(c), в котором разместился атом S. Следствием этого является наличие микронапряжений в нанопленке PbS: при комнатной температуре их величина равна ~ 0.20% [10,12]. В сульфиде PbS со структурой $D0_3$ любой узел 8(c) является, с одной стороны, центром тетраэдрического междоузлия, образованного атомами Pb, занимающими ближайшие узлы 4(a), и, с другой стороны, центром тетрамеждоузлия из четырех ближайших узов 4(b) неметаллической решетки (рис. 2).

Оценим возможность перехода атома S из узла 4(b) в 8(c). Такой переход приводит к образованию пары вакансия в неметаллической плоскости (111)-атом серы в неметаллической плоскости (001) (рис. 2), т.е. появлению вакансии в одном из четырех ближайших узлов 4(b). Это дополнительно увеличивает размер

Рис. 2. Модель кубической (пр. гр. $Fm\bar{3}m$) структуры $D0_3$ нанопленки PbS со статистическим размещением атомов серы с вероятностями 0.84 и 0.08 по октаэдрическим и тетраэдрическим позициям 4(b) и 8(c). Стрелками показаны возможные переходы атомов S из позиций 4(b) в 8(c). Тетраэдрические кластеры, образованные узлами 4(b) неметаллической решетки, выделены жирными линиями; тетраэдрические кластеры, образованные узлами 4(a) металлической решетки, т. е. атомами Pb, показаны штриховыми линиями.

тетраэдрического междоузлия. Но в неметаллических плоскостях (111) уже имеются вакантные узлы и их относительная концентрация равна $(1 - P_{\text{S-octa}}) \approx 0.16$. Поэтому в окружении атома S, находящегося в неметаллической плоскости (001) и занимающего тетраэдрическое междоузлие 8(c), в двух смежных плоскстях (111) будет формироваться тетраэдр, два узла которого заняты атомами S и два вакантны.

При неупорядоченном распределении атомов серы и вакансий по узлам 4(b) вероятность возникновения тетраэдра, образованного четырьмя соседними узлами 4(b), равна

$$\lambda_i P_i \equiv C_4^{n_i} p_i = C_4^{n_i} P_{\text{S-octa}}^{4-n_i} (1 - R_{\text{S-octa}})^{n_i}, \qquad (1)$$

где n_i — число вакансий в *i*-конфигурации тетраэдра, λ_i — мультиплетность *i*-конфигурации (число конфигураций, совпадающих друг с другом после применения к ним операций симметрии), $P_{\text{S-octa}}$ — вероятность заполнения октаэдрических позиций 4(*b*) атомами S (в обсуждаемом случае $P_{\text{S-octa}} = 0.84$). Всего неэквивалентных конфигураций пять: тетраэдр P_{SSSS} , все узлы которого заняты атомами S; тетраэдры P_{SSS} , P_{SS} и P_{S} содержащие один, два или три вакантных узла соответственно; тетраэдр $P_{\Box\Box\Box\Box}$, все узлы которого вакантны.

Заполнение атомами S окта- и тетрапозиций 4(b) и 8(c) с вероятностями $P_{\text{S-octa}} = 0.84$ и $P_{\text{S-tetra}} = 0.08$ означает, что примерно из каждых двенадцати октамеждоузлий десять заняты атомами S, а два — пустые [11,12]. На 12 октамеждоузлий приходится 24 тетрамеждоузлия, из них два заняты атомами S, а остальные вакантны (рис. 2). С учетом вероятности $P_{\text{S-octa}}$ и выражения (1) вероятность образования тетраэдрического кластера, содержащего два вакантных узла, равна $P_{\text{SS}\square\square} = C_4^2 P_{\text{S-octa}}^2 (1 - P_{\text{S-octa}})^2 = 0.108$. Поскольку $P_{\text{SS}\square\square} > P_{\text{S-tetra}}$, переход атомов серы в тетраэдрические междозулия 8(c) до степени их заполнения ~ 0.08 с математической точки зрения вполне возможен.

Концепция имитационной модели и основные элементы моделирования

Если дальний порядок определяет вероятность заполнения узлов той или иной кристаллической подрешетки атомом определенного сорта [15–17], то близкий порядок описывает распределение атомов вокруг некоторого узла решетки [15–20] и, в частности, определяет, какие двухчастичные атомные [18,19] или атомновакансионные корреляции существуют в той или иной координационной сфере (КС) [15,18,19]. Ближний порядок характеризуется параметрами ближнего порядка α_j и параметрами корреляции ε_j в *j*-й КС [13,20].

В реальных кристаллах взаимодействие ближайших соседей приводит к корреляциям не только в первой,

но и в более удаленных КС. Однако до настоящего времени теории, позволяющие рассчитывать зависимость параметров корреляции в удаленных КС от известного параметра корреляции в первой сфере, отсутствуют, а точные решения задачи Изинга имеются лишь для немногих решеток [21–23].

До сих пор не установлено, на сколько КС распространяется ближний порядок: возникший в первой КС. В настоящей работе эта задача решена с помощью компьютерного моделирования зависимости параметров корреляции в *j*-х координационных сферах ($j \ge 2$) от параметра корреляции ε_1 в первой сфере. В качестве объекта моделирования использовали твердый раствор замещения $S_y \square_{1-y}$, атомы которого размещены на узлах дефектных плоских квадратной и гексагональной решеток: часть узлов занята атомами серы, остальные узлы вакантны. Взаимозамещаемыми элементами твердого раствора являются атомы S и вакансии.

Параметр парной корреляции ε_j есть разность между вероятностью парной связи, образованной одноименными элементами в *j*-й КС кристаллической решетки с ближним порядком, и вероятностью этой же связи в неупорядоченной решетке. Для бесконечной решетки в неупорядоченном состоянии вероятность пар определяется биномиальным распределением [14–17], поэтому

$$\varepsilon_{\rm SS}(R_j) = P_{\rm SS}^{(j)} - P_{\rm SS}^{\rm dis} = P_{\rm SS}^{(j)} - P_{\rm SS}^{\rm bin} = P_{\rm SS}^{(j)} - y^2, \qquad (2)$$

$$\varepsilon_{\Box\Box}(R_j) = P_{\Box\Box}^{(j)} - P_{\Box\Box}^{\text{dis}} = P_{\Box\Box}^{(j)} - P_{\Box\Box}^{\text{bin}} = P_{\Box\Box}^{(j)} - (1-y)^2,$$
(3)

где $P_{SS}^{(j)}$, $P_{\Box\Box}^{(j)}$ — вероятности одноименных парных связей в решетке с ближним порядком; в бесконечной неупорядоченной решетке эти вероятности равны $P_{SS}^{bin} = y^2$ и $P_{\Box\Box}^{bin} = (1 - y)^2$. Согласно [15], при наличии только ближнего порядка вероятности парных связей равны

$$P_{SS}^{(j)} = P_{SS}^{bin} + y(1-y)\alpha_j = y^2 + y(1-y)\alpha_j,$$

$$P_{\Box\Box}^{(j)} = P_{\Box\Box}^{bin} + y(1-y)\alpha_j = (1-y)^2 + y(1-y)\alpha_j,$$

$$P_{S\Box}^{(j)} = (1-\alpha_j)P_{S\Box}^{bin} = (1-\alpha_j)y(1-y),$$
 (4)

где α_i — параметр ближнего порядка в *j*-й КС.

Анализ величины вероятностей связей S- \Box в любой КС квадратной решетки показывает, что максимальное значение вероятности в интервале составов $0 \le y \le 0.5$ равно $P_{S\Box}^{(j)} = y$, а в интервале составов $0.5 \le y \le 1.0 - P_{S\Box}^{(j)} = 1 - y$. Минимальное значение вероятности разноименной связи во всем интервале составов равно нулю. Поэтому в интервалах составов $0 \le y \le 0.5$ и $0.5 \le y \le 1.0$ минимальные величины двухчастичной корреляции в квадратной решетке $\varepsilon_j = -y^2$ и $\varepsilon_j = -(1-y)^2$ соответственно. Максимальное значение корреляции во всем интервале составов $0 \le y \le 1.0$ равно $\varepsilon_j = y(1-y)$. Для твердого раствора с y = 0.5 корреляция может изменяться в пределах $-0.25 \le \varepsilon_j \le 0.25$, а при y = 0.75 — в пределах $-0.0625 \le \varepsilon_i \le 0.1875$.

Из (2)–(4) следует, что в отсутствие дальнего порядка корреляции между атомами серы (или вакансиями) равны друг другу

$$\varepsilon_{\rm SS}(R_j) \equiv \varepsilon_{\Box\Box}(R_j) = y(1-y)\alpha_j.$$
 (5)

Параметры разноименной парной корреляции атомов серы и вакансий равны по абсолютной величине параметрам парной корреляции атомов серы (вакансий), но противоположны им по знаку, т. е. $\varepsilon_{S\square}(R_j) \equiv \varepsilon_{\square S}(R_j) \equiv -\varepsilon_j$. При неупорядоченном распределении атомов в бесконечной решетке параметр корреляции точно равен нулю. В настоящей работе все вероятности рассчитывали в модели конечной решетки без дальнего порядка. В этом случае вероятности связей в неупорядоченной решетке близки к биномиальным вероятностям $P_{SS}^{\text{bin}} = y^2$ и $P_{\square\square}^{\text{bin}} = (1 - y)^2$, но не равны им из-за ограниченного размера решетки и вклада от связей, лежащих на границе двумерного кристалла.

Вероятности парных связей S–S, S– \Box , \Box – \Box в твердом растворе S_y \Box_{1-y} , атомы которого размещены на узлах квадратной и гексагональной решеток, были рассчитаны для девяти КС, так как уже по ним можно судить о слиянии ближнего порядка в первой КС на параметры парной корреляции в удаленных КС и уменьшении параметров ближнего порядка с увеличением радиуса R_j координационной сферы. Кроме того, моделирование показало, что в девятой и десятой КС корреляции снижаются до величин, сравнимых с ошибкой расчета, и практически затухают.

В неупорядоченной бесконечной решетке параметр корреляции ε_j во всех КС точно равен нулю. В случае ближнего упорядочения, когда в ближайшей КС атома S находятся преимущественно вакансии \Box , параметр корреляции ε_1 отрицателен. При ближнем расслоении, когда в окружении атома S находятся преимущественно атомы S (или в окружении вакансии \Box находятся преимущественно вакансии $\varepsilon_j > 0$.

4. Построение компьютерной модели и вычислительный эксперимент

Для установления зависимости между параметрами корреляции в различных координационных сферах были рассмотрены двумерные квадратная и гексагональная решетки фиксированного размера с заданным содержанием вакансий. Расчеты проводили для квадратных решеток размером 23×23 и 32×32 , содержащих 529 и 1024 узла соответствено, и для гексогональной решетки размером 33×33 , содержащей 1089 узлов. Часть узлов решеток заполнена атомами, остальные узлы вакантны. При имитационном моделировании границы решетки твердого раствора были заданы абсолютно жесткими, поэтому они не смещались в пространстве, а количество атомов и вакансий в решетке всегда оставалось постоянным.

Первым шагом моделирования решетки заданного размера являлся компьютерный синтез неупорядоченного твердого раствора $S_{v} \Box_{1-v}$ с заданной величиной *y*, т.е. с известным числом атомов и вакансий. Состав твердого раствора $S_{\nu} \square_{1-\nu}$ определяется числом *n* атомов серы в кристаллической решетке из N узлов. В этом случае вероятность нахождения атома в узле бесконечной неупорядоченной решетки равна y = n/N, а относительное число вакансий равно (1 – у). Состав варьировали от 0.1 до 0.9 с шагом 0.1. Синтез неупорядоченного раствора проводили после выбора размера решетки и состава раствора. С помощью генератора случайных чисел в решетку "вносили" столько атомов серы, сколько нужно для достижения заданного состава S_vD_{1-v}. В результате статистического заполнения узлов атомы и вакансии в решетке распределены неупорядоченно. Неупорядоченное состояние синтезированного раствора было начальным для последующего моделирования [24].

При моделировании твердого раствора с гексагональной решеткой возникает проблема, связанная с нецелочисленными иррациональными координатами узлов в прямоугольной системе координат. Из-за нецелочисленных координат атомов возникает погрешность в определении расстояния между атомами. При описании корреляций в удаленных КС, когда приращение радиуса при переходе от *n*-й к (n + 1)-й КС мало и по величине сравнимо с погрешностью расположения атомов, появляется вероятность того, что узел, принадлежащий *n*-й КС, окажется в (n + 1)-й КС. Для исключения этой погрешности при моделировании гексагональной решетки применяли специальный алгоритм преобразования координат узлов гексагональной решетки, описанный в работе [25].

Далее были организованы корреляционные блуждания атомов по узлам решетки. С этой целью в произвольных узлах решетки вводились флуктуации энергии, в результате которых атом мог перейти в вакантные узлы. Учитывалось лишь такое изменение энергии, которое достаточно для "перескока" атома из своего узла кристаллической решетки в соседний вакантный узел.

После синтеза неупорядоченной решетки осуществлялся ее виртуальный отжиг. Методом Монте-Карло выбирался произвольный узел решетки. Вероятность выбора занятого или вакантного узла непосредствено зависит от состава твердого раствора. Процесс отжига заключался в перестановке атомов, зависящей от начального значения параметра корреляции ε_1 в первой КС. Если в узле находился атом, то он диффундировал в соседний вакантный узел. Направление перемещения выбирали стохастически с помощью генератора случайных чисел, поэтому вероятность перемещения атома в каждую из сторон моделируемой решетки была одинакова.

В зависимости от знака ε_1 программа работала разным образом. При $\varepsilon_1 > 0$, т.е. при ближнем расслоении, программа стремилась уменьшить вероятность разноименных связей, а при $\varepsilon_1 < 0$ — увеличить. Перестановку

атомов в вакантные узлы осуществляли до достижения состояния решетки с заданным значением *ε*₁. Для решения задачи в ограниченное время задавали предельное количество флуктуаций, т.е. предельное число возможных переходов атомов в другие узлы решетки. Это позволяло избежать при моделировании бесконечных циклов, которые могут возникать, если вероятность благоприятного перехода очень мала: например, при степени упорядочения, близкий к максимальной, или в случае, когда заданное значение параметра корреляции недостижимо (например, заданное значение ε_1 больше значения, возможного для для решетки данного состава). Предельное число флуктуаций т принимали равным 9000, хотя проведенные расчеты показали, что для достижения заданной величины параметра корреляции є₁ в первой КС квадратной и гексагональной решеток достаточно уже ~ 1500-2000 флуктуаций. Число флуктуаций т, достаточное для достижения заданной велиины ε_1 , пропорционально абсолютной величине $|\varepsilon_1|$ и размеру (числу узлов) модельной решетки.

Если после перестановки атома вероятность связи S— \Box уменьшалась (при $\varepsilon_1 > 0$) или росла (при $\varepsilon_1 < 0$), то программа "запоминала" это состояние и перемещала следующий атом в решетке. При противоположном результате атом возвращался в исходное положение и для перемещения выбирался другой атом.

5. Результаты моделирования и их обсуждение

Расчеты показали, что наблюдаются два принципиально разных процесса: расслоение твердого раствора $S_y \Box_{1-y}$, когда парная корреляция в первой КС положительна ($\varepsilon_1 > 0$), или упорядочение, когда $\varepsilon_1 < 0$ (рис. 3).

На рис. 4 в качестве примера показаны рассчитанные для твердого раствора $S_y \Box_{1-y}$ (y = 0.5) с квадратной решеткой зависимости параметров корреляции ε_2 и ε_4 во второй и четвертой КС от величины ε_1 . Подобные зависимости получены для других КС квадратной и гексагональной решеток. Найденные зависимости $\varepsilon_j(\varepsilon_1)$ для всех анализируемых координационных сфер квадратной

Таблица 1. Значение коэффициентов полинома $\varepsilon_j = c_1 \varepsilon_1 + c_2 \varepsilon_1^2 + c_3 \varepsilon_1^3$ для квадратной решетки состава S_{0.75} $\Box_{0.25}$ в области $-0.0625 \le \varepsilon_1 \le 0.1875$

Корреляция	Радиус КС	<i>C</i> ₁	<i>C</i> ₂	Сз
ε_2	$\sqrt{2}a$	0.00131	5.175	-8.794
ε_3	2a	-0.0195	1.285	4.954
\mathcal{E}_4	$\sqrt{5}a$	0.0150	-0.509	10.760
\mathcal{E}_5	$2\sqrt{2}a$	-0.0687	0.374	4.683
ε_6	3 <i>a</i>	0.0278	-0.657	6.141
ε_7	$\sqrt{10}a$	0.0172	-0.902	7.161
ε_8	$\sqrt{13}a$	-0.00406	0.309	0.644
E 9	4 <i>a</i>	0.00888	0.258	1.322

Рис. 3. Модельное распределение атомов серы в квадратной (пл. гр. *p4mm*) решетке твердого раствора $S_y \Box_{1-y}$ (y = 0.5) (a, b) и гексагональной (пл. гр. *p6mm*) решетке твердого раствора $S_y \Box_{1-y}$ (y = 0.66) (c, d). a, c — неупорядоченные твердые растворы; b, d — ближнее упорядочение, достигнутое с помощью виртуального отжига твердого раствора при отрицательной корреляции $\varepsilon_1 < 0$ в первой КС.

Рис. 4. Изменение параметров парной корреляции ε_j во второй и четвертой координационных сферах твердого раствора $S_y \Box_{1-y}$ (y = 0.5) с квадратной решеткой в зависимости от величины параметра корреляции ε_1 в первой КС.

и гексагональной решеток, вплоть до девятой в пределах ошибок расчета с достаточной точностью описываются полиномами третьего порядка $\varepsilon_j = c_1\varepsilon_1 + c_2\varepsilon_1^2 + c_3\varepsilon_1^3$. Все зависимости $\varepsilon_j(\varepsilon_1)$ проходят через начало координат (рис. 5), что подтверждает адекватность модели и правильность работы программы. Коэффициенты c_1, c_2, c_3 для корреляций от второй до девятой сферы для квадратной решетки состава y = 0.75 приведены в табл. 1.

Таблица 2. Значение коэффициентов полинома $\varepsilon_j = c_1 \varepsilon_1 + c_2 \varepsilon_1^2 + c_3 \varepsilon_1^3$ для корреляций во второй и третьей КС твердых растворов $S_y \Box_{1-y}$ с гексагональной решеткой разного состава

у	Вторая КС			Третья КС		
	<i>c</i> ₁	<i>c</i> ₂	С3	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃
0.25	-0.014	5.948	0.634	0.148	1.722	18.421
0.33	-0.032	4.296	3.897	0.058	3.650	-2.720
0.50	0.065	4.480	-1.122	0.108	2.020	7.642
0.60	0.146	1.946	11.056	0.171	1.807	7.447
0.66	0.101	3.198	17.468	0.101	2.308	8.786
0.75	0.391	3.099	4.268	0.271	1.526	17.419
0.80	0.262	4.772	4.023	0.262	4.772	4.023

В табл. 2 представлены коэффициенты полиномов второй и третьей КС для нескольких составов гексагональной решетки. Коэффициенты полинома справедливы во всей области изменения параметра корреляции в первой координационной сфере.

На рис. 6 показано изменение параметров парной корреляции ε_i в зависимости от относительного радиуса R_j/a_{quadr} или R_j/a_{hex} *j*-й координационной сферы твердых растворов S_vD_{1-v} квадратной и гексагональной решетками. Видно, что корреляции, имеющиеся в первой КС твердого раствора $S_v \Box_{1-v}$ (y = 1/2) с квадратной решеткой или твердого раствора $S_v \Box_{1-v}$ (y = 1/3) с гексагональной решеткой, распространяются, постепенно затухая, до девятой координационной сферы, т.е. на расстояние не менее $4a_{\text{quadr}}$ или $4a_{\text{hex}}$, где a_{quadr} , a_{hex} периоды этих решеток. Для кубической структуры D03 сульфида свинца $a_{\text{quadr}} = a_{\text{cub}}/2$ и $a_{\text{hex}} = (\sqrt{2}/2)a_{\text{cub}}$, где *a*_{cub} — период кубической (пр. гр. *Fm*3*m*) решетки сульфида свинца. В случае ближнего упорядочения параметры корреляции ε_i осциллируют, меняя знак и асимптотически приближаясь к нулю по абсолютной величине: когда $\varepsilon_{SS}(R_1) \equiv \varepsilon_1 < 0$, то $|\varepsilon_j| \to 0$ при $j \to \infty$. При ближнем расслоении, когда $\varepsilon_{\rm SS}(R_1) \equiv \varepsilon_1 > 0$, параметры корреляции ε_i положительны во всех КС и с увеличением радиуса КС уменьшаются, приближаясь к нулю.

Несмотря на принципиальные различия ближнего и дальнего порядка, между ними существует некоторая взаимосвязь. Если в твердом растворе имеется дальний порядок, то обязательно существует и ближний порядок. Если же дальний порядок отсутствует, то параметры ближнего порядка при увеличении радиуса координационной сферы стремятся к нулю. Наличие же в твердом растворе ближнего порядка не означает обязательного существования дальнего порядка.

С помощью ранее предложенного [14,16] кластерновариационного метода определим, достаточно ли наличия ближнего порядка в первой кооодинационной сфере тверого раствора с квадратной решеткой для возникновения порядка в следующих координационных сферах. Представим неупорядоченный твердый раствор произвольного состава $S_y \square_{1-y}$ с плоской квадратной (пл. гр. *p4mm*) решеткой как совокупность кластеров в виде квадрата из четырех узлов, вакантных или занятых атомами S. В этом случае существует шесть вариантов взаимного расположения атомов серы S и вакансий \square по узлам кластера, т.е. шесть неэквивалентных конфигураций *i* (рис. 1). Условие нормировки вероятностей кластеров определяется выражением $\sum_i \lambda_i P_i = 1$, в котором мультиплетности λ_1 кластеров с вероятностями P_0, P_1, P_2, P_3, P_4 и P_5 равны 1, 4, 4, 2, 4 и 1 соответственно.

Рис. 5. Сглаженные зависимости параметров парной корреляции ε_j в *j*-х КС (j = 2-8) твердого раствора $S_y \Box_{1-y}$ (y = 0.5) с квадратной решеткой от параметра корреляции ε_1 в первой КС. На вставке — корреляции в *j*-х сферах (от второй до восьмой) во всем интервале изменения корреляции ε_1 в первой сфере (номера КС указаны около кривых).

Рис. 6. Изменение параметров парной корреляции ε_j в зависимости от относительного радиуса *j*-й координационной сферы. *I*, *2* — параметры ε_j для твердого раствора S_{1/3} $\Box_{2/3}$ (y = 0.33) с гексагональной решеткой при ближнем упорядочении с $\varepsilon_1 < 0$ и ближнем расслоении с $\varepsilon_1 > 0$ соответственно; *3*, *4* — параметры ε_j для твердого раствора S_{0.5} $\Box_{0.5}$ (y = 0.5) с квадратной решеткой при ближнем упорядочении с $\varepsilon_1 < 0$ и ближнем расслоении с $\varepsilon_1 > 0$ соответственно. *a*_{hex}, *a*_{quadr} — периоды гексагональной и квадратной решеток.

Для твердого раствора $S_y \square_{1-y}$ можно записать также уравнение, связывающее вероятности кластеров P_i с составом твердого раствора,

$$\sum_{i} l_i \lambda_i P_i = y, \tag{6}$$

где l_i — доля узлов, занятых атомами серы, в кластере с *i*-й конфигурацией.

Вероятности образования пар S-П в любой координационной сфере можно выразить через вероятности и мультиплетности кластеров

$$\lambda_{\mathrm{S}\square} P_{\mathrm{S}\square}^{(j)} = \sum_{i} n_i^{(j)} \lambda_i P_i, \qquad (7)$$

где $n_i^{(j)}$ — относительная доля пар S— \Box в *j*-й координационной сфере кластера с *i*-й конфигурацией.

Запишем для квадратной решетки условие нормировки вероятностей и уравнение (6) в явном виде

$$P_0 + 4P_1 + 4P_2 + 2P_3 + 4P_4 + P_5 = 1, (8)$$

$$P_0 + 3P_1 + 2P_2 + P_3 + P_4 = 1.$$
(9)

С учетом (8) и (9) уравнение (7) для вероятностей связей $P_{S\square}^{(1)}$ и $P_{S\square}^{(2)}$ в первой и второй координационных сферах квадратной решетки приобретает вид

$$P_1 + P_2 + P_3 + P_4 = P_{S\square}^{(1)}, \tag{10}$$

$$P_1 + 2P_2 + P_4 = P_{\rm SD}^{(2)}.$$
 (11)

Из (10) и (11) следует, что

$$P_{S\Box}^{(2)} = P_2 - P_3 + P_{S\Box}^{(1)}.$$
 (12)

Уравнение (12) показывает, что имеется бесконечное множество решений, связывающих вероятность $P_{S\Box}^{(2)}$ разноименной связи во второй координационной сфере квадратной решетки с вероятностью $P_{S\Box}^{(1)}$ разноименной связи в первой КС. Это значит, что даже при максимальном ближнем порядке в первой КС параметр ближнего порядка по второй КС будет переменной величиной. Следовательно, образования ближнего порядка в первой координационных сферах при любом составе *у*. Иначе говоря, наличие ближнего порядка в первой КС неметаллической (001) плоскости (позиции 8(*c*)) сульфида свинца не является достаточным условием для образования дальнего порядка.

Ранее в работах [23,26] для гексагональной решетки методом максимизации энтропии было получено точное аналитическое решение для зависимости вероятностей трехчастичных фигур от состава твердого раствора. Выполненное компьютерное моделирование ближнего порядка с учетом трехчастичных корреляций в твердом растворе $S_v \Box_{1-v}$ с плоской гексагональной решеткой

показало, что зависимости вероятностей трехчастичных кластеров $\lambda_i P_i$ от корреляции ε с достаточной степенью точности совпадают с кривыми, полученными в работах [23,26] аналитически. Это подтверждает правильность результатов компьютерного моделирования.

6. Заключение

Моделирование корреляций во взаимном расположении атомов серы при наличии только ближайших парных взаимодействий показало, что эти взаимодействия приводят к корреляциям в удаленных координационных сферах квадратной и гексагональной плоскостей (001) и (111). Затухание корреляций происходит лишь при радиусе КС, равном $4a_{quadr}$ или $4a_{hex}$. Кроме того, моделирование показало, что в гексагональных плоскостях (111) парные корреляции приводят к возникновению трехчастичных корреляций.

Из сопоставления экспериментальных дифракционных данных по структуре пленок (отсутствие сверхструктурных отражений и диффузного рассеяния в малых углах) [10–12] с результатами моделирования ближнего порядка следует, что корреляции в подрешетке серы пленок PbS малы и параметр корреляции ε_1 по абсолютной величине не превышает ~ 0.01.

Модельные решетки, исследованные в настоящей работе, имеют конечные размеры, которые соизмеримы с размерами частиц в наноматериалах. Поэтому полученные данные могут быть использованы для анализа экспериментальных результатов, полученных на тонких пленках и наноматериалах не только сульфида свинца PbS, но и других наноматериалов. Например, исследования [27] массивов когерентно напряженных пирамидальных островков размером ~ 15 nm в системах InGaAs/GaAs(001) и InAs/GaAs(001) обнаружили, что в расположении островков наблюдается корреляция, характерная для квадратной решетки. Осаждением селенида кадмия на углеродную пленку [28] получают гексагональные массивы наночастиц CdSe со средним размером 5 nm.

Список литературы

- [1] Y. Noda, S. Ohba, S. Sato, Y. Saito. Acta Cryst. B **39**, 312 (1983).
- [2] J.N. Zemmel, J.D. Jensen, R.B. Schoolar. Phys. Rev. 140, 330 (1965).
- [3] H. Zogg, A. Fach, C. Maissen, J. Masek, S. Blunier. Opt. Eng. 33, 1440 (1994).
- [4] P.K. Nair, M.T.S. Nair, A. Fernandez, M. Ocampo. J. Phys. D: Appl. Phys. 22, 829 (1989).
- [5] H. Preier. Semicond. Sci. Technol. 5, S12 (1990).
- [6] G. Bauer, H. Clemens. Semicond. Sci. Technol. 5, S122 (1990).
- [7] А.А. Ремпель. Успехи химии 76, 474 (2007).
- [8] Y. Baolong, Y. Guosheng, Z. Congshn, G. Fuxi. Opt. Mater. 11, 17 (1998).

- [9] S. Jana, R. Thapa, R. Maity, K.K. Chattopadhyay. Physica E 40, 3121 (2008).
- [10] С.И. Садовников, А.И. Гусев, А.А. Ремпель. Письма в ЖЭТФ 89, 279 (2009).
- [11] С.И. Садовников, А.А. Ремпель. ДАН 428, 48 (2009).
- [12] С.И. Садовников, А.А. Ремпель. ФТТ 51, 2237 (2009).
- [13] W.L. Bragg, E.J. Williams. Proc. Roy. Soc. A 145, 699 (1934).
- [14] А.А. Ремпель, А.И. Гусев. ФТТ 32, 16 (1990).
- [15] A.I. Gusev, A.A. Rempel, A.A. Magerl. Disorder and order in strongly non-stoichiometric compounds. Transition metal carbides, nitrides and oxides. Springer, Berlin–Heidelberg– N.Y.–London (2001). 607 p.
- [16] А.А. Ремпель. Эффекты упорядочения в нестехиометрических соединениях внедрения. Наука, Екатеринбург (1992). 232 с.
- [17] А.А. Ремпель, А.И. Гусев. ФММ 60, 847 (1985).
- [18] R. Kikuchi. Phys. Rev. 81, 434 (1951).
- [19] J. Hijmans, J. de Boer. Physica 21, 471 (1955).
- [20] J.M. Cowley. Phys. Rev. 77, 669 (1950).
- [21] Р. Бэкстер. Точно решаемые модели в статистической механике. Мир, М. (1985).
- [22] А.И. Гусев. ФТТ 48, 613 (2006).
- [23] А.И. Гусев. ФТТ 50, 2160 (2008).
- [24] С.И. Садовников, А.А. Ремпель. ФТТ 49, 1470 (2007).
- [25] С.И. Садовников, А.А. Ремпель. ФТТ 50, 1085 (2008).
- [26] А.И. Гусев. Письма в ЖЭТФ 87, 5, 296 (2008).
- [27] Н.Н. Леденцов, В.М. Устинов, С.В. Иванов, Б.Я. Мельцер, М.В. Максимов, П.С. Копьев, Д. Бимберг, Ж.И. Алферов. УФН 166, 423 (1996).
- [28] D. Bertram, J. Weller. Phys. J. 1, 47 (2002).