Спектральные характеристики фталоцианинатов европия с различными аксиальными лигандами

© А.В. Зиминов¹, Т.А. Юрре¹, С.М. Рамш¹, М.М. Мездрогина²

 ¹ Санкт-Петербургский государственный технологический институт (Технический университет), Санкт-Петербург, Россия
² Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
E-mail:ziminov@inbox.ru

(Поступила в Редакцию 28 декабря 2009 г.)

Синтезированы и изучены фотофизические характеристики (электронные спектры поглощения и спектры фотолюминесценции) (ацетилацетонато)фталоцианина европия Eu(acac)Pc и (оксихинолинато)фталоцианина европия Eu(q)Pc, различающиеся аксиальными лигандами. Предложена энергетическая диаграмма электронных уровней комплексов. Выявлено влияние аксиального лиганда на спектрально-люминесцентные характеристики комплексов.

1. Введение

Комплексные соединения фталоцианинов лантаноидов отличаются разнообразием архитектурных типов: моно-, ди- и трисфталоцианинов [1]. Особенностью монофталоцианиновых комплексов является наличие в координационной сфере комплекса как фталоцианинового лиганда, так и дополнительного экстралиганда различной химической природы [2-4]. Сочетание в одной молекуле иона лантаноида, жесткого планарного фталоцианинового макрогетероцикла с различными экстралигандами открывает путь изменения спектральных характеристик, управления рядом физико-химических свойств и, следовательно, областью потенциального применения. При этом экстралиганды должны существенно влиять и на саму геометрию комплексов. Изменение дизайна соединения в свою очередь сказывается и на их фотофизических и фотохимических свойствах. Фталоцианиновые комплексы редкоземельных элементов привлекают внимание многих исследователей благодаря важным для практического использования свойствам: спектральным, электрохромным, полупроводниковым и др. Интерес к таким соединениям в настоящее время только растет. Очевидна актуальность исследования, когда в качестве экстралигандов выступают молекулы оксихинолина. Комплексы оксихинолинатов металлов прекрасно зарекомендовали себя способностью к переносу заряда, большой подвижностью дырок в процессах переноса энергии. На примере исследования люминесценции смеси свободного фталоцианинового лиганда и трис(оксихинолината)алюминия в красной и ближней ИК-областях показано, что доминирующим механизмом в таких системах является направленный перенос заряда [5]. Недавно был изучен процесс переноса энергии с эффектом антенны для макрогетероциклических каликсареновых комплексов европия, содержащих оксихинолиновые лиганды. Было отмечено уменьшение люминесценции лиганда и появление интенсивного узкого пика люминесценции Eu [6].

Целью нашей работы явилось сравнительное изучение спектральных характеристик растворов (ацетилацетонато)фталоцианина европия Eu(acac)Pc (1) и (оксихинолинато)фталоцианина европия Eu(q)Pc (2) и выявление влияния объемных аксиальных лигандов.

2. Эксперимент

Комплексы получали взаимодействием фталоцианинового лиганда с солями лантанидов. 0.39 mmol фталоцианинового лиганда перемешивали при нагревании в 10 ml о-дихлорбензола; после получения однородной суспензии добавляли 15.6 mmol 1.8-диазабицикло[5.4.0]ундец-7-ена (DBU), далее при перемешивании засыпали 0.9 mmol соответствующей соли лантаноида. Реакционную массу выдерживали при кипении в течение 6h. После охлаждения смесь выливали в 50 ml гексана, осадок отфильтровывали, промывали водой. После этого осадок переносили в аппарат Сокслета и примеси экстрагировали поочередно бензолом и ацетоном. После экстракции порошок сушили при 120-150°C в течение 2.5 h. Выходы составляли 80-90%. Контроль реакции проводили тонкослойной хроматографией и спектро-фотометрически [7]. На рис. 1 представлены объекты исследования: 1 — (ацетилацетонато)фталоцианин европия Eu(acac), 2 — (оксихинолинато)фталоцианин европия Eu(q)Pc.

Электронные спектры поглощения измеряли в растворе диметилформамида (ДМФА) с концентрацией $\approx 10^{-5} - 10^{-6} \, mol/l\,$ на спектрофотометре СФ 2000 в области длин волн 200–800 nm.

Оптические измерения фотолюминесценции (ФЛ) проводились на экспериментальной установке, собранной на базе дифракционного спектрометра СДЛ-2 с обратной линейной дисперсией 1.3 nm/mm. В качестве источников излучения, возбуждающих фотолюминесценцию, использовались: 1) непрерывный He-Cd-лазер с длиной волны излучения $\lambda = 3250$ Å и мощностью излучения 15 mW (межзонное возбуждение фталоцианинов);

Рис. 1. Объекты исследования. I — (ацетилацетонато)фталоцианин европия Eu(acac)Pc, 2 — (оксихинолинато)фталоцианин европия Eu(q)Pc.

2) импульсный азотный лазер типа ЛГИ-21 с длительностью импульса $\tau = 7$ ns на полуширине импульса, с частотой следования 100 Hz, средней мощностью 3 mW и длиной волны излучения $\lambda = 3371$ Å. Плотность энергии в импульсе при расфокусированном пучке ~ 10 kW/cm².

Для корректного сравнения спектров излучения разных образцов контролируемые параметры: угол падения луча, интенсивнось возбуждающего света, температуры (300, 77 K) — были постоянными.

3. Обсуждение результатов

В отличие от электронных спектров фталоцианинов *d*-элементов, где на спектральные характеристики *Q*-полосы влияет природа металла-комплексообразователя [8], положение и характер *Q*-полосы электронных спектров поглощения фталоцианинов редкоземельных элементов чувствительны прежде всего к природе макроциклического лиганда, тогда как роль аксиального лиганда и среды незначительна [2]. Электронные спектры поглощения растворов фталоцианинов лантаноидов включают несколько полос (*Q*, *B*, или полоса Соре; *N*, *L*, *C*). В красной области видимого спектра (600–800 nm) для всех фталоцианинов наблюдается Q-полоса, ответственная за цвет соединения. В ближнем ультрафиолете у металлофталоцианинов имеется характерная *B*-полоса. Для различных соединений она находится в области 320-350 nm [8].

В таблице представлены спектральные характеристики комплексов *1* и *2* в растворе ДМФА.

В спектрах люминесценции в области 600-800 nm наблюдаются зеркально-симметричные полосы, соответствующие разрешенным переходам между основным и первым возбужденным синглетными уровнями молекулы $(S_1 \rightarrow S_0)$. В области 450-600 nm наблюдается уширенная и менее разрешенная полоса люминесценции $(S_2 \rightarrow S_0)$, соответствующая *B*-полосе поглощения.

Ранее нами были исследованы замещенные фталоцианины меди и показано влияние структуры молекул на их фотолюминесцентные свойства [9,10]. На рис. 2 представлены спектры поглощения и фотолюминесценции исследуемых растворов в ДМФА с концентрацией $10^{-5}-10^{-6}$ mol/l.

Анализируя спектральные кривые, следует отметить подобие спектров с $\Delta Q_{abs} = Q_{max}^{(2)} - Q_{max}^{(1)} = 9$ nm и $\Delta Q_{PL} = Q_{max}^{(1)} - Q_{max}^{(2)} = 1$ nm, что свидетельствует о незначительном влиянии аксиального оксихинолинатного лиганда на положение энергетической щели $S_1 \leftrightarrow S_0$ в изученных комплексах. Более заметное влияние оксихинолинатного лиганда на спектры поглощения проявляется в области полосы Соре (рис. 2 и таблица), что связано с наложением полос вследствие собственного поглощения оксихинолина в данной области.

Ранее было показано, что люминесцентные характеристики фталоцианинатов лантаноидов существенно зависят от взаимного расположения электронно-возбужденных состояний лигандов и резонансных уровней ионов лантаноидов [11,12].

Поскольку из анализа спектров поглощения следует, что первый возбужденный синглетный уровень S_1 фталоцианинового лиганда (670–680 nm, 1.85–1.82 eV) находится ниже резонансного уровня иона европия, триплетный перенос энергии на ион европия невозможен (триплетный уровень T_1 фталоцианинового лиганда расположен еще ниже по энергетической шкале) и внутриатомные переходы с излучением атомов европия при возбуждении уровня S_1 не происходят. Известно, что возбуждение молекул металлофталоцианинов в область поглощения Q-полосы приводит к зеркально-симметричной полосе излучения с небольшим стоксовым сдвигом [13].

Спектральные характеристики комплексов *1* и *2* в растворе ДМФА

Тип спектра	Eu(acac)Pc (1)	Eu(q)Pc(2)
Спектр поглощения Спектр фотолюминесценции	338, 607, 670 nm 457, 697 nm	336, 612, 679 nm 450, 618, 696 nm

Рис. 2. Спектры поглощения (a) и фотолюминесценции (b) изученных растворов в ДМФА с концентрацией $\approx 10^{-5} - 10^{-6}$ mol/l.

Картина меняется, если проводить возбуждение молекул металлофталоцианинов высокоэнергетическим лазером. Ранее для дифталоцианинов европия было отмечено, что появление внутрицентровых переходов ионов европия сильно зависит от энергии возбуждения. Так, при возбуждении светом в области 270 nm в спектре люминесцении появляется полоса с $\lambda = 585 \,\mathrm{nm}$, относимая авторами к внутриатомным f-f-переходам европия, а заселение резонансного уровня происходит с высших занятых триплетных состояний [14]. При сравнении спектров ФЛ ($\lambda_{exc} = 325 \text{ nm}$) для комплексов Eu(acac)Pc и Eu(q)Рс видно, что для комплекса с ацетилацетонатным лигандом полосы свечения европия отсутствуют, в то время как для комплекса с оксихинолинатным фрагментом появляется полоса люминесценции при 618 nm, соответствующая переходу с резонансного уровня европия ${}^{5}D_{0}$ на основной уровень ${}^{7}F_{2}$.

Для объяснения спектров поглощения и люминесценции была предложена энергетическая диаграмма уровней комплексов. На рис. 3 приведены диаграмма электронных уровней и фотофизические процессы, протекающие в растворе Eu(q)Рс при возбуждении светом $\lambda = 325$ nm.

Первичным процессом является фотовозбуждение лазерным излучением с длиной волны 325 nm и заселение высших возбужленных синглетных состояний (процесс 1). Далее в процессе внутренней конверсии с колебательных уровней система переходит на квазистабильный возбужденный уровень ^{Рс}S₂. Затем молекула в возбужденном состоянии ^{Рс}S₂ может подвергаться различным фотофизическим процессам. Например, излучательный переход на основное состояние $P^{c}S_{0}$ (процесс 2) либо быстрая разрешенная безызлучательная внутренняя конверсия в стабильное состояние ${}^{Pc}S_1$ (процесс 3) с последующим излучательным (процесс 4) или безызлучательным переходом в основное состояние ${}^{Pc}S_0$. Вследствие того что разница между первым и вторым возбужденными состояниями достаточно большая $(\Delta = 1.84 \, \text{eV})$, часть возбужденных молекул в состоянии ^{Pc}S₂ может флуоресцировать (сразу переходить в основное состояние с излучением фотона) [15].

В спектре поглощения $Eu(q)_3$ (трисоксихинолината европия) наблюдаются два максимума поглощения: при 337 и 393 nm. Поскольку первое возбужденное синглетное состояние аксиального лиганда ${}^{L}S_{1}$ ($\lambda_{max} = 393 \, \text{nm}$) находится на энергетической диаграмме (рис. 3) ниже возбужденного состояния $^{Pc}S_2$ ($\Delta = 0.535 \, \text{eV}$), будет возможен безызлучательный синглет-синглетный перенос энергии с фталоцианинового лиганда Рс S2 на аксиальный лиганд в состоянии ${}^{L}S_{1}$ (процесс 5). Далее может происходить как молекулярная люминесценция самого лиганда, так и посредством интеркомбинационной конверсии перенос энергии на долгоживущий триплетный уровень аксиального лиганда ${}^{L}T_{1}$ (процесс 6). Для спектра ФЛ Eu(q)Pc из рис. 2 видно, что полоса в области 450-500 nm значительно уширена и имеет интенсивность в 3 раза

Рис. 3. Диаграмма электронных уровней и фотофизические процессы, протекающие в растворе Eu(q)Pc при возбуждении светом с $\lambda = 325$ nm.

превышающую интенсивность полосы при 696 nm по сравнению со спектром ФЛ Eu(acac)Pc, где наблюдается обратное отношение интенсивностей полос порядка 1:5. Это обстоятельство свидетельствует о наложении полос люминесценции ${}^{Pc}S_2 \rightarrow {}^{Pc}S_0$ и ${}^{L}S_1 \rightarrow {}^{L}S_0$. С триплетного уровня аксиального лиганда энергия возбуждения будет переходить на резонансные уровни атома европия (процесс 7). Атом европия из возбужденных состояний 5D_1 и 5D_0 переходит в основное состояние 7F_j с различными колебательными подуровнями (j = 0-6) с излучением квантов света с характеристическими частотами (процесс 8).

Отсутствие характеристических полос излучения для спектров фотолюминесценции исследованных комплексов связано с тем, что первое возбужденное синглетное состояние аксиального лиганда (молекула ацетилацетона) энергетически находится выше, чем второе возбужденное состояние фталоцианинового лиганда, и соответственно при возлуждении молекулы лазером в область полосы Соре ($^{Pc}S_2$) не происходит переноса энергии, подобного процессу 5. Если в качестве аксиального лиганда выступает большая гетероциклическая молекула (оксихинолинатный лиганд), то его первое возбуженное состояние находится немного ниже, чем $^{Pc}S_2$ фталоцианинового лиганда, и мы можем наблюдать люминесценцию атома европия (рис. 3).

4. Заключение

Были синтезированы и изучены комплексы монофталоцианинов европия с различными аксиальными лигандами. Показано, что аксиальный лиганд практически не влияет на электронные спектры поглощения, однако значительно влияет на фотолюминесцентные характеристики. Таким образом, для получения узкой полосы свечения атома европия в монофталоцианиновых комплексах необходим тщательный подбор аксиальных лигандов с определенными энергетичесими характеристиками.

Список литературы

- [1] В.Е. Пушкарев, Л.Г. Томилова, Ю.В. Томилов. Успехи химии 77, 938 (2008).
- [2] В.Н. Немыкин, С.В. Волков. Координац. химия 26, 465 (2000).
- [3] А.В. Зиминов. Синтез и исследование физико-химических свойств металлофталоцианинов для оптоэлектронных изделий. Автореф. канд. дис. СПбГТИ (ТУ), СПб (2008). 20 с.
- [4] К.Н. Максимова. Монофталоцианиновые комплексы европия с органическими экстралигандами. Автореф. канд. дис. НГТУ, Н. Новгород (2009). 22 с.
- [5] F. Zhao-Qi, C. Chuan-Hui, Y. Kai-Qi, Y. Shu-Kun, H. Wei, X. Dao-Cheng, G. Zhen-Qiang, S. Ren-Sheng, W. Xu, D. Xi-Guang, D. Guo-Tong. Chin. Phys. Lett. 25, 2261 (2008).
- [6] I.A. Bagatin, H.E. Toma. New J. Chem. 24, 841 (2000).
- [7] А.В. Зиминов, С.М. Рамш, Т.А. Юрре. ЖОХ 78, 525 (2008).

- [8] Электронные спектры фталоцианинов и родственных соединений. Каталог / Под ред. Е.А. Лукьянца. НИИТЭХИМ, Черкассы (1989). 94 с.
- [9] В.Л. Берковиц, А.В. Зиминов, А.Г. Казанский, А.Г. Колосько, С.М. Рамш. Е.И. Теруков, А.В. Фенухин, В.П. Улин, Т.А. Юрре, J.P.Kleider. ФТТ 49, 262 (2007).
- [10] А.Г. Казанский, Е.И. Теруков, А.В. Зиминов, О.Б. Гусев, А.В. Фенухин, А.Г. Колоско, И.Н. Трапезникова, Ю.А. Николаев, Б. Моду. Письма в ЖТФ **31**, *18*, 37 (2005).
- [11] K. Yoshino, S.B. Lee, T. Sonoda, H. Kawagishi, R. Hidayat, K. Nakayama, M. Ozaki, K. Ban, K. Nishizawa, K. Ohta, H. Shirai. J. Appl. Phys. 88, 7137 (2000).
- [12] X. Sun. Synth. Met. 158, 917 (2008).
- [13] G. Knor. Inorg. Chem. 35, 7916 (1996).
- [14] X. Sun, Ch. Ma, J. Jiang. Synth. Met. 139, 497 (2003).
- [15] Q. Gan, S. Li, F. Morlet-Savary, S. Wang, S. Shen, H. Xu, G. Yang. Opt. Exp. 13, 5424 (2005).