Особенности возникновения сегнетоэлектрической фазы в политипах кристаллов TIGaSe₂

© Н.А. Боровой¹, Ю.П. Гололобов², А.Н. Горб¹, Г.Л. Исаенко²

¹ Киевский национальный университет им. Тараса Шевченко, Киев, Украина ² Национальный транспортный университет, Киев, Украина E-mail: gololo@ukr.net

(Поступила в Редакцию 11 ноября 2009 г.)

Обнаружено, что политипия слоистых кристаллов TlGaSe₂ существенным образом влияет на температурное положение фазовых превращений, а также на механизм возникновения в этих сегнетоэлектриках полярного состояния. В частности, показано, что в политипе *C*-TlGaSe₂ сегнетоэлектрический фазовый переход является несобственным и происходит при температуре $T_c \approx 108$ K, в то же время в политипе 2*C*-TlGaSe₂ такой переход является собственным и происходит при более высокой температуре $T_c \approx 111$ K. Сделан вывод о том, что необходимым этапом исследования кристаллов TlGaSe₂ является выяснение принадлежности образцов к соответствующему политипу.

Слоистые кристаллы таллий-галлиевого диселенида (TlGaSe₂) интенсивно исследуются уже более четверти века, однако не только количество, температурные положения, но и физические механизмы фазовых переходов (ФП), происходящих в них при изменении температуры в интервале $T = 100-300 \, \text{K}$, до сих пор однозначно не определены. В частности, это относится и к сегнетоэлектрическому ФП, наблюдаемому при переходе из несоразмерной в соразмерную фазу. Надежно установлено, что такой переход сопровождается возникновением полярного состояния с вектором поляризации, который лежит в плоскости слоя кристаллов TlGaSe₂, при этом в разных образцах образование сегнетофазы происходит при несколько отличных температурах ($T_c = 107 - 111 \text{ K}$) [1–5]. Относительно параметра порядка такого ФП в литературе имеются весьма противоречивые данные. С одной стороны, обнаружение сегнетоэлектрической мягкой моды, частота которой в парафазе пропорциональна $(T_c - T)^{1/2}$ [6,7], и выполнение закона Кюри-Вейсса для низкочастотной диэлектрической проницаемости при температурах как выше температуры фазового перехода из высокотемпературной в несоразмерную фазу $T_i = 119 \, \text{K}$, так и ниже $T_c = 107 \,\mathrm{K}$ [8] характерны для собственного сегнетоэлектрика. С другой стороны, результаты нейтронографических [9,10] и рентгеноструктурных исследований [11,12] убедительно свидетельствуют о том, что в кристаллах TlGaSe₂ при температуре $T_c \approx 107 \,\mathrm{K}$ происходит увеличение вчетверо размеров элементарной ячейки вдоль направления, перпендикулярного слоям. Этот факт, а также обнаружение при температурах ниже Т_с в спектрах ИК и КРС новых линий [13,14] свидетельствуют о том, что сегнетоэлектрический ФП является несобственным. Недавно было выдвинуто предположение о том, что в кристаллах TlGaSe₂ свойства, характерные для несобственных сегнетоэлектриков с промежуточной по температуре несоразмерной фазой, могут при наличии дополнительной остаточной поляризации проявляться в экспериментах как "ложные" проявления свойств, характерных для собственных сегнетоэлектриков с промежуточной по температуре несоразмерной фазой [15].

В то же время известно, что слоистым кристаллам TlGaSe₂ присуща политипия, которая существенным образом влияет на их физические свойства, в частности на поведение с температурой диэлектрической проницаемости ε [16–18]. Поскольку для политипов *C*-TlGaSe₂ и 2*C*-TlGaSe₂ (различаются параметром *с* элементарной ячейки, т.е. числом слоев вдоль оси *C*) нами недавно обнаружены значительные различия в изменениях с температурой структуры [19], интересным представляется выяснение особенностей возникновения полярного состояния в указанных политипах. С этой целью в интервале температур *T* = 100–300 К были проведены диэлектрические исследования тех же образцов политипов *C*-TlGaSe₂ и 2*C*-TlGaSe₂, которые использовались при рентгенографических исследованиях [19].

Диэлектрическая проницаемость ε кристаллов измерялась на частоте 1 MHz с помощью моста переменного тока *E*7-12. Относительная погрешность измерения ε не превышала 0.5%. Температура в криостате поддерживалась постоянной с точностью до 0.5 К благодаря использованию терморегулятора BPT-2 и измерялась медь-константановой термопарой (точность 0.1 К). Образцы были изготовлены из слитков TlGaSe₂, выращенных модифицированным методом Бриджмена; их тимичные размеры $4 \times 3 \times 2$ mm. В качестве контактов использовалась индий-галлиевая паста, которая наносилась на предварительно обезжиренные поверхности кристаллов. Измерения $\varepsilon(T)$ проводились в режиме квазистатического нагрева со скоростью ≈ 1 K/min.

Температурные зависимости диэлектрической проницаемости для двух указанных политипов кристаллов TlGaSe₂, полученные в направлении, перпендикулярном слоям, представлены на рис. 1. Следует отметить, что для политипа *C*-TlGaSe₂ вид зависимости $\varepsilon(T)$

Рис. 1. Темературные зависимости относительного изменения диэлектрической проницаемости $\Delta \varepsilon / \varepsilon$ для двух политипов кристаллов TlGaSe₂, полученные в направлении, перпендикулярном слоям. 1 - C-политип, 2 - 2C-политип.

практически совпадает с аналогичной зависимостью, полученной ранее для кристаллов TlGaSe₂ [8,20], а именно на кривой $\varepsilon(T)$ наблюдаются две аномалии: максимум при температуре $T_i = 118$ K и значительный излом при $T_c = 109$ K. Для политипа 2C-TlGaSe₂ зависимость $\varepsilon(T)$ имеет иной вид, на ней имеется только один отчетливо выраженный максимум при температуре T = 112 K.

Как известно, для кристаллов TlGaSe2 аномалии диэлектрической проницаемости значительно сильнее проявляются при измерениях в плоскости слоя, т.е. в направлении, параллельном вектору поляризации [8]. Поскольку анизотропия диэлектрической проницаемости в плоскости слоя TlGaSe₂ не наблюдается [8,21], для тех же образцов двух политипов были получены зависимости $\varepsilon(T)$ для произвольных направлений вдоль слоев. Для политипа *C*-TlGaSe₂ такая зависимость $\varepsilon(T)$ представлена на рис. 2 (на вставке зависимость приведена в координатах $1/\varepsilon = f(T)$). Как видно, на зависимости $\varepsilon(T)$ наблюдаются два отчетливо выраженных максимума при температурах $T_i = 118 \text{ K}$ и $T_c = 108 \text{ K}$, при этом для интервалов температур $T_i < T < T_i + 40 \, \mathrm{K}$ и $T_c - 8 \,\mathrm{K} < T < T_c$ выполняется закон Кюри-Вейсса с константами $C^+ \approx 8 \cdot 10^3 \, \text{K}$ и $C^- \approx 1 \cdot 10^3 \, \text{K}$. Эти данные практически совпадают с экспериментальными результатами, полученными ранее другими авторами [8,22], согласно которым в TlGaSe₂ при температуре $T_i = 118 \,\mathrm{K}$ происходит $\Phi \Pi$ второго рода из исходной в несоразмерную фазу, а при $T_c = 108 \,\mathrm{K}$ — сегнетоэлектрический ФП первого рода из несоразмерной в соразмерную фазу.

Измерения температурной зависимости параметра c элементарной ячейки образца C-TlGaSe₂, проведенные нами и представленные на рис. 3, выявили в интервале температур T = 90-140 К наличие двух аномалий:

Рис. 2. Температурная зависимость диэлектрической проницаемости для политипа *C*-TIGaSe₂, полученная в направлении вдоль слоя. На вставке представлена та же зависимость в координатах $1/\varepsilon = f(T)$.

Рис. 3. Температурные зависимости параметров *с* элементарной ячейки кристаллов TlGaSe₂. *1* — *С*-политип, *2* — *2С*-политип.

Рис. 4. Температурная зависимость диэлектрической проницаемости для политипа 2*C*-TlGaSe₂, полученная в направлении вдоль слоя. На вставке представлена та же зависимость в координатах $1/\varepsilon = f(T)$.

характерного для $\Phi\Pi$ второго рода излома при температуре $T_i \approx 119$ К и незначительного скачкообразного изменения величины параметра c ($\Delta c \approx 0.004$ Å), свидетельствующего о наличии при температуре $T_c = 108$ К $\Phi\Pi$ первого рода, что согласуется с результатами нейтронографических [9,10] и рентгеноструктурных исследований [11,12]. Такой переход приводит к увеличению вчетверо размеров элементарной ячейки в направлении, перпендикулярном слоям, о чем свидетельствуют дополнительные рефлексы типа (00*l*), обнаруженные при температурах $T \leq 108$ К [19].

Таким образом, совокупность представленных результатов позволяет утверждать: кристаллы политипа *C*-TIGaSe₂ принадлежат к несобственным сегнетоэлектрикам, в которых образование полярного состояния происходит через возникновение промежуточной несоразмерной фазы.

Температурная зависимость диэлектрической проницаемости $\varepsilon(T)$ для направления вдоль слоя образца политипа 2C-TlGaSe₂ представлена на рис. 4. Как видно, для этого политипа на кривой $\varepsilon(T)$ наблюдаются не два, как для C-политипа, а один отчетливый максимум при температуре $T_{c2} = 111$ К. Следует отметить, что приведенная зависимость $\varepsilon(T)$ практически совпадает с аналогичной зависимостью, представленной в недавно опубликованной работе [3], и подобна приведенным в [17,18]. Закон Кюри–Вейсса для зависимости $\varepsilon(T)$ политипа 2C-TlGaSe₂ выполняется в температурных областях, которые на $T_1 \approx 28$ К выше и на $T_2 \approx 12$ К ниже $T_{c2} = 111$ К (константы $C^+ \approx 5 \cdot 10^3$ К и $C^- \approx 0.4 \cdot 10^3$ К, вставка на рис. 4). Такое поведение диэлектрической проницаемости с температурой является типичным для собственных сегнетоэлектрических ФП. Отсутствие для этого же образца 2*C*-TlGaSe₂ в области температур T = 90-150 К скачкообразного изменения параметра *с* элементарной ячейки (рис. 3, зависимость 2) и неизменность числа структурных рефлексов типа (00*l*) [19] позволяют утверждать, что в этом политипе, так же как и в аналогичном политипе его изоструктурного аналога 2*C*-TlInS₂ [23], параметром порядка сегнетоэлектрического ФП является спонтанная поляризация.

Что касается существования в кристаллах 2C-TlGaSe₂ несоразмерно модулированной структуры, то, возможно, она возникает в результате ФП, о существовании которого при температуре $T \approx 245 \,\mathrm{K}$ сообщалось ранее [1,24,25], т.е. несоразмерная фаза существует в температурном интервале, превышающем 130 К. Отметим, что выполнение закона Кюри-Вейсса в интервале температур T = 111-140 К не противоречит такому подходу, поскольку известно, что для кристаллов в области существования несоразмерной фазы в виде солитонной доменной структуры диэлектрическая проницаемость є изменяется с температурой пропорционально $(T_c - T)^{-1}$ [26]. Более того, такое предположение согласуется с результатами недавних исследований, которые обнаружили возникновение в кристаллах TlGaSe₂ фазы с солитонной структурой при температурах $T < 140 \, \text{K}$ [25]. Однако для выяснения вопроса о существовании несоразмерной фазы в кристаллах 2C-TlGaSe₂ необходимы дальнейшие, в первую очередь рентгеноструктурные, исследования этого политипа.

Таким образом, политипия в кристаллах TlGaSe₂, так же как и в его изоструктурном аналоге TlInS₂ [23], влияет не только на температурное положение сегнетоэлектрического ФП, но и на механизм возникновения полярного состояния: в политипе *C*-TlGaSe₂ сегнетоэлектрический ФП является несобственным и происходит при температуре $T_c \approx 108$ K, а в 2*C*-TlGaSe₂ такой ФП является собственным и происходит при несколько более высокой температуре $T_c \approx 111$ K.

Обнаруженные особенности сегнетоэлектрического $\Phi\Pi$ согласуются с кажущимися на первый взгляд противоречивыми результатами, полученными различными авторами при исследовании кристаллов TlGaSe₂ с использованием одних и тех же экспериментальных методов. Так, например, в [14] сообщалось, что ниже T = 109 K в спектрах KPC TlGaSe₂ появляются новые линии, которые возникают вследствие увеличения при указанной температуре вчетверо параметра *с* элементарной ячейки. В то же время аналогичные исследования, проведенные почти одновременно, не выявили новых линий в той же спектральной области при изменении температуры даже в более широком интервале T = 35-300 K [7]. Такая неоднозначность может быть

обусловлена тем, что авторы исследовали образцы, принадлежащие к разным политипам, в частности C-TlGaSe₂ и 2C-TlGaSe₂ соответственно. Поскольку о влиянии политипии на динамику кристаллической решетки [9,19], упругие [12], диэлектрические [16–18], оптические [24] свойства TlGaSe₂ неоднократно упоминалось и ранее, полученные результаты позволяют сделать вывод о том, что исследованиям физических свойств этих кристаллов должен обязательно предшествовать этап идентификации образцов с целью установления их принадлежности к соответствующему политипу.

Список литературы

- [1] Ю.П. Гололобов, В.М. Перга, И.Н. Саливонов, Е.Е. Щиголь. ФТТ **34**, 115 (1992).
- [2] F. Salehli, Y. Bakis, M.-H.Yu. Seyidov, R.A. Suleymanov. Semicond. Sci. Technol. 22, 843 (2007).
- [3] M.-H.Yu. Seyidov, R.A. Suleymanov. ΦΤΤ **50**, 1169 (2008).
- [4] E. Senturk. Phys. Lett. 135, 1 (2005).
- [5] A.M. Panich, D.C. Ailion, S. Kashida, N. Gasanly. Phys. Rev. B 69, 245 319 (2004).
- [6] А.А. Волков, Ю.Г. Гончаров, Г.В. Козлов, С.П. Лебедев, А.М. Прохоров, Р.А. Алиев, К.Р. Аллахвердиев. Письма в ЖЭТФ 37, 517 (1983).
- [7] Е.А. Виноградов, В.М. Бурлаков, М.Р. Яхьеев, А.П. Рябов, Н.Н. Мельник, Б.С. Шмаров, А.А. Аникьев. ФТТ 30, 2847 (1988).
- [8] В.А. Алиев, К.Р. Аллахвердиев, А.И. Баранов, Н.Р. Иванов, Р.М. Сардарлы. ФТТ 26, 1271 (1984).
- [9] С.Б. Вахрушев, Б.Е. Квятковский, Н.М. Окунева, К.Р. Аллахвердиев, Р.М. Сардарлы. Препринт ФТИ АНСССР № 886. Л. (1984). 12 с.
- [10] S. Kashida, Y. Kobayashi. J. Korean Phys. Soc. 32, 40 (1998).
- [11] D.F. Mc Morrow, R.A. Cowley, P.D. Hatton, J. Banys. J. Phys.: Cond. Matter 2, 3699 (1990).
- [12] А.У. Шелег, О.Б. Плющ, В.А. Алиев. Кристаллография 44, 873 (1999).
- [13] К.Р. Аллахвердиев, С.С. Гусейнов, Т.Г. Мамедов, М.М. Тагиев, М.М. Ширинов. Неорган. материалы 25, 1858 (1989).
- [14] Б.С. Кульбужев, Л.М. Рабкин, В.И. Торгашев, Ю.И. Юзюк. ФТТ 30, 195 (1988).
- [15] M.-H.Yu. Seyidov, R.A. Suleymanov, F. Salehli, С.С. Бабаев, Т.Г. Мамедов, А.И. Наджафов, Г.М. Шарифов. ФТТ 51, 533 (2009).
- [16] К.Р. Аллахвердиев, Н.Д. Ахмед-заде, Т.Г. Мамедов, Т.С. Мамедов, М.-Г.Ю. Сеидов. ФНТ 26, 76 (2000).
- [17] R.M. Sardarly, O.A. Samedov, I.Sh. Sadykhov. Solid State Commun. 77, 453 (1991).
- [18] V.P. Aliyev, S.S. Babaev, T.G. Mammedov, M.Yu. Seidov, R.A. Suleymanov, F.A. Mikailov. Transactions of Azerbaijan National Academy of Sciences. Series of physical-mathematical and technical sciences. Physics and Astronomy 24, 2, 3 (2004).
- [19] Н.А. Боровой, Ю.П. Гололобов, Г.Л. Исаенко, Н.Б. Степанищев. ФТТ 51, 2229 (2009).
- [20] А.У. Шелег, К.В. Иодковская, Н.Ф. Кирилович. ФТТ 40, 1328 (1998).
- [21] А.А. Волков, Ю.Г. Гончаров, Г.В. Козлов, Р.М. Сардарлы. Письма в ЖЭТФ 39, 293 (1984).

- [22] М.-Г.Ю. Сеидов, Р.А. Сулейманов, С.С. Бабаев, Т.Г. Мамедов, Г.М. Шарифов. ФТТ 50, 105 (2008).
- [23] Н.А. Боровой, Ю.П. Гололобов, А.Н. Горб, Г.Л. Исаенко. ФТТ 50, 1866 (2008).
- [24] С.Г. Абдуллаева, Н.Т. Мамедова, Ш.С. Мамедов, Ф.А. Мустафаев. ФТТ 29, 3147 (1987).
- [25] F.A. Mikailov, E. Başaran, E. Sentürk, L. Tümbek, T.G. Mammedov, V.P. Aliev. Phase Trans. 76, 1057 (2003).
- [26] В.А. Головко. ЖЭТФ 94, 182 (1988).