Об эффективных величинах температур Дебая фуллерита С₆₀

© В.П. Михальченко

Институт термоэлектричества Национальной академии наук и Министерства образования и науки Украины, Черновцы, Украина

E-mail: vikhorl@ukr.net

(Поступила в Редакцию в окончательном виде 30 ноября 2009 г.)

Проведены анализ и сопоставление эффективных величин температур Дебая $\Theta_{\rm eff}$ твердых тел, определяемых различными физическими методами. Акцентируется внимание на оригинальном параметре теории теплоемкости Дебая — трансляционной калориметрической $\Theta'_c(0)$ и рентгеновской Θ_x по Дебаю—Уоллеру применительно к фуллериту C_{60} . Установлено, что истинный закон T^3 Дебая для C_{60} выполняется в крайне узкой области температур: $0.4 \le T \le 1.8$ К. По этой причине экспериментальные данные $\Theta'_c(0)$ для фуллерита C_{60} , полученные различными авторами в области T > 4.2 К, обнаруживают большой разброс (~ 5 раз). Установлено, что наиболее близкой к истинной дебаевской температуре является величина $\Theta'_c(0) = 77.12$ К, вычисленная автором с помощью шестичленной формулы Беттса по гармоническим упругим постоянным \widetilde{C}_{ijkl} монокристалла C_{60} в пределе T = 0 К.

Продемонстрировано отклонение реальной функции спектрального распределения частот трансляционных колебаний решетки $g(\omega)$ фуллерита C_{60} от параболического методом эквивалентных моментов и определены величины Θ_{eff} , фигурирующие в прикладных задачах термодинамики кристаллов и упругого рассеяния различных излучений на колебаниях решетки.

Определена количественная мера ангармоничности трансляционных и либрационных колебаний решетки фуллерита C_{60} , что позволило осуществить эмпирическую оценку его решеточной теплопроводности κ при $T\approx 300\,\mathrm{K}$: $\kappa(300)=0.80\,\mathrm{W}\cdot(\mathrm{m/K})\,$ в хорошем согласии с экспериментальной $\kappa_{\mathrm{exp}}=0.78\,\mathrm{W}\cdot(\mathrm{m/K})\,$ при $T\approx 250\,\mathrm{K}$.

1. Введение

Название этой работы может вызвать определенное недоумение: есть ли какой-либо смысл подвергать специальному анализу и обсуждению такой атрибут физики твердого тела, как температуру Дебая Θ — широко используемую характеристику кристалла с любым типом химической связи, обладающего трансляционной симметрией и, следовательно, вполне определенной предельной максимальной частотой колебаний атомов (молекул) $\omega_{\text{max}} = \frac{k}{\hbar} \, \Theta$?

Тем не менее на примере молекулярного кристалла фуллерита C_{60} будет показано, что такой анализ актуален как с общефизической, так и с прикладной точки зрения.

Межмолекулярные взаимодействия в кристаллической решетке наиболее изученных фуллеритов C_{60} характеризуются слабыми ван-дер-ваальсовыми силами. При $T=260~\mathrm{K}$ в фуллерите C_{60} наблюдается переход разупорядоченной высокотемпературной $(T>260~\mathrm{K})$ плотноупакованной ГЦК-фазы Fm3m в простую кубическую $(Pa\bar{3})$, а при $T=90~\mathrm{K}$ — переход в состояние ориентационного стекла [1].

Однако даже для C_{60} до сих пор нет единого мнения о параметрах парного потенциала межмолекулярного взаимодействия (см., например, [2]). Экспериментальные данные, на основе которых оценивались упомянутые параметры, крайне разноречивы. Например, величина калориметрической трансляционной температуры Дебая Θ_c колеблется от $\Theta_c^{\min} = 37 \, \mathrm{K}$ [3] до $\Theta_c^{\max} = 188 \, \mathrm{K}$ [4], параметры Грюнайзена —

от $\gamma_{\min}=1.4$ до $\gamma_{\max}=9.15$ [2], энергия сублимации $L_{00}=161-189$ kJ/mol [2].

Менее резкие различия между Θ_c фуллерита C_{60} наблюдаются при их оценках методом подобия (закона соответственных состояний) [5] и в работе [6], в которой величина Θ_c определена из экспериментальных данных теплоемкости поликристаллического фуллерита C_{60} в интервале температур $1.4-20~\mathrm{K}$.

Столь необычный для твердых тел разброс величин Θ_c фуллерита C_{60} (почти в 5 раз) и параметров Грюнайзена (в 6.5 раз) обусловлен, по-видимому, не только ограничениями закона T^3 Дебая и закона соответственных состояний, но и процедурами учета вкладов в общую теплоемкость C_V и термическое расширение $\alpha(T)$ трансляционных, либрационных, вращательных межмолекулярных, а также внутримолекулярных степеней свободы при различных температурах (о выделении из общей C_V и $\alpha(T)$ этих вкладов см., например, [7]).

Не вдаваясь в анализ и подсчет степеней свободы при различных температурах для фуллерита C_{60} , необходимо отметить следующее. Установлено [8], что закон T^3 Дебая для твердых тел проявляется в очень узкой области низких температур $T \leq \Theta_c/50 - \Theta_c/100$ (но не $T \leq \Theta_c/12$ по Дебаю). Именно в этой близкой к абсолютному нулю области справедлив истинный закон T^3 Дебая для любых твердых тел, независимо от их атомной структуры и типа химической связи. Для фуллерита C_{60} упомянутая область экстремально узка: от $T \approx 0.37$ K до $T \leq \Theta_c^{\max}/100 = 1.88$ K.

 $[\]overline{\ \ \ }^1$ Согласно [9], для чистого фуллерита C_{60} истинный закон T^3 начинает проявляться при T<1 К.

Можно поэтому утверждать, что никем из авторов цитируемых выше работ по экспериментальному определению $C_V(T)$ фуллерита C_{60} , за исключением [9], не достигалась область истинного закона T^3 , в которой $\Theta_c(0)=$ const (достигалась лишь область имитации — псевдозакона T^3 , в которой Θ_c зависит от температуры). Измерения теплоемкости кристаллических твердых тел, представленные в виде зависимостей $\Theta_c=f(T)$ [10], свидетельствуют лишь об отклонении реального объекта от дебаевской модели.

Таким образом, вопрос о величине истинной калориметрической дебаевской температуры фуллерита C_{60} остается открытым (как и вопрос об аномально высоких отрицательных величинах ориентационного аналога параметра Грюнайзена γ_0 при $T \to 0$ [11]). Поэтому представляется необходимым и существенным рассмотреть различные аспекты определения $\Theta_c(0)$ фуллерита C_{60} .

- 1) Проанализировать и сопоставить эффективные температуры Дебая Θ_{eff} , определяемые различными физическими методами.
- 2) По упругим постоянным C_{ijkl} фуллерита C_{60} выполнить расчеты $\Theta_c(0)$, которые правомерны лишь с использованием гармонических величин \widetilde{C}_{ijkl} , определяемых путем линейной экстраполяции экспериментальных зависимостей $C_{ijkl}(T)$ из области высоких температур $T > \Theta_c$ на T = 0 K [12].
- 3) Методом эквивалентных моментов продемонстрировать отклонение реальной функции спектрального распределения частот трансляционных колебаний решетки $g(\omega)$ от параболического.
- 4) Определить количественную меру ангармоничности колебаний решетки фуллерита C_{60} .

2. О величинах Θ_{eff}

Информация об эффективных величинах температур Дебая $\Theta_{\rm eff}$ твердых тел актуальна и в настоящее время. Действительно, в течение почти ста лет величины $\Theta_{\rm eff}$ определены из разнообразных экспериментальных данных: теплоемкости — Θ_c , энтропии — Θ_S , термического расширения — Θ_α , температур плавления — $\Theta_{\rm melt}$, упругих постоянных — $\Theta_{\rm elast}$, электросопротивления металлов (сплавов) — Θ_R , упругого (и неупругого) рассеяния рентгеновских лучей кристаллами — Θ_x , тепловых нейтронов — Θ_N , медленных электронов — Θ_E , спектров инфракрасного поглощения (отражения) — $\Theta_{\rm IR}$, частот остаточных лучей — Θ_0 , эффекта Мёссбауэра — Θ_M , а также рассеяния иных частиц, длина волны Де-Бройля которых соизмерима с периодом решетки.

Наблюдаемые различия между $\Theta_{\rm eff}$ данного кристалла, получаемыми названными выше методами, не слишком велики, ² однако они являются принципиальными, поскольку обусловлены избирательной чувствительностью конкретных физических методов к различным частотным

интервалам $\Delta \omega$ реальной функции спектрального распределения частот колебаний решетки $g(\omega)$ (плотности фононных состояний), совпадающей с дебаевским параболическим распределением $g_D(\omega) \sim \omega^2$ лишь в области низких частот $0 \le \omega \le 0.1 \omega_{\rm max}$.

В свою очередь характер процедур усреднения при расчетах соответствующих $\Theta_{\rm eff}$ данного кристалла также оказывает влияние на различия между ними. Последнее обстоятельство проанализировано в основополагающих обзорах [12,13], где показана связь между величинами $\Theta_{\rm eff}$ и моментами функции $g(\omega)$ — средними по спектральному распределению $\langle \omega \rangle^n$, определяемыми как

$$\langle \omega \rangle^n = \int\limits_0^{\omega_{\max}} \omega^n g(\omega) d\omega / \int\limits_0^{\omega_{\max}} g(\omega) d\omega,$$
 (1)

где номер моментов $n=0,\pm 1,\pm 2,\pm 3\dots$, а знаменатель — условие нормировки.

Например,

$$\Theta_{c}^{-3} \sim \langle \omega \rangle^{-3} \quad \text{при } T < \Theta_{c}, \\
\Theta_{c}^{+2} \sim \langle \omega \rangle^{+2} \quad \text{при } T > \Theta_{c} \\
\Theta_{M}^{-1} \sim \langle \omega \rangle^{-1} \quad \text{при } T < \Theta_{M}, \\
\Theta_{\text{IR}}^{+1} \sim \langle \omega \rangle^{+1} \quad \text{при } T > \Theta_{\text{IR}} \\
\Theta_{R}^{-5} \sim \langle \omega \rangle^{-5} \quad \text{при } T < \Theta_{R}, \\
\Theta_{x}^{-2} \sim \langle \omega \rangle^{-2} \quad \text{при } T > \Theta_{x}$$

$$(1a)$$

Образно говоря, различные физические свойства (прямо или косвенно зависящие от $g(\omega)$ одного и того же кристаллического твердого тела) представляются различающимися между собой величинами $\Theta_{\rm eff}$.

Хорошо известно, что одной из величин $\Theta_{\rm eff}$, наиболее прозрачно представляющих тепловое движение атомов (молекул) в кристаллической решетке, является величина Θ_x , непосредственно связанная с величинами их среднеквадратических смещений относительно положений равновесия $\langle u \rangle_x^2$ и фигурирующая в теории упругого рассеяния рентгеновских лучей кристаллами в широких интервалах температур (в выражении для теплового M-фактора Дебая—Уолллера [14]) и давлений (барический M-фактор [15]).

Выражение для трансляционного теплового $M^t(T)$ -фактора имеет вид [14]

$$2M^{t} = \frac{12\hbar^{2}}{mk_{B}\Theta_{x}^{2}} T\left[\Phi(x) + \frac{x}{4}\right] \frac{\sin^{2}\vartheta}{\lambda^{2}}, \quad x = \frac{\Theta_{x}}{T}, \quad (2)$$

где ϑ , λ — угол скольжения и длина волны соответственно (остальные обозначения общеприняты), $\Phi(x)$ — функция Дебая—Уоллера, табулированная в [14],

$$\Phi(x) = \frac{1}{x} \int_{0}^{x} \frac{\xi d\xi}{e^{\xi} - 1}$$
 (3)

 $^{^2}$ В качестве исключения уместно привести существенные различия для бериллия [12]: $\Theta_{\text{elast}}(0)=1462\,\text{K},\,\Theta_{c}(0)=1160\,\text{K}.$

и соответственно

$$\langle u^2 \rangle_x^t = \frac{9}{\pi^2} \frac{\hbar^2 T}{m k_B \Theta_x^2} \left[\Phi(x) + \frac{x}{4} \right]. \tag{4}$$

Для либрационного теплового $M^l(T)$ -фактора, согласно [16],

$$2M^{l} = \frac{\hbar^{2}}{2Ik_{B}\Theta_{l}^{2}} \operatorname{cth}\left(\frac{1}{2}\frac{\Theta_{l}}{T}\right) \frac{\sin^{2}\vartheta}{\lambda^{2}},\tag{5}$$

где I — момент инерции молекулы, Θ_l — либрационная характеристическая температура.

Среднеквадратические либрационные отклонения определяются как

$$\langle u^2 \rangle_x^l = \frac{\hbar^2}{2Ik_B \Theta_l^2} \operatorname{cth}\left(\frac{1}{2} \frac{\Theta_l}{T}\right). \tag{6}$$

Что касается барического M-фактора, то, как показано в [17], лишь с его помощью величина ориентационного аналога параметра Грюнайзена γ_0 фуллерита C_{60} может быть определена экспериментально путем измерений зависимостей от давления M(P) и соответственно $\Theta_x(P)$ при постоянной температуре $T < 2 \, \mathrm{K}$ и сравнительно низких давлениях $(P \leq 100 \, \mathrm{bar})$.

Различия между Θ_x и Θ_c , например, можно оценить количественно, используя известные выражения для M(T) и $C_V(T)$, зависящие явно от $g(\omega)$ [13].

Соответствующие сопоставления могут быть проведены и для иных $\Theta_{\rm eff}$ — $\Theta_{\rm elast}$ и Θ_c : применительно к упругоизотропным кристаллам кубической симметрии, согласно [18],

$$\Theta_{\text{elast}}^{-2} = \frac{k^2}{3\hbar^2} \left(\frac{m}{6\pi^2}\right)^{2/3} \rho^{1/3} \left(\frac{1}{c_{11}} + \frac{2}{c_{44}}\right),\tag{7}$$

$$\Theta_c^{-3} = \frac{mk^3}{18\pi^2\hbar^3} \rho^{1/2} \left[\left(\frac{1}{c_{11}} \right)^{3/2} + 2 \left(\frac{1}{c_{44}} \right)^{3/2} \right], \quad (8)$$

где ρ — плотность; C_{ij} — упругие постоянные в обозначениях Фойгта.

В кристаллах некубических сингоний среднеквадратические смещения $\langle u \rangle_S^2$ в направлениях нормалей к отражающим рентгеновские лучи плоскостям зависят от направления колебаний решетки относительно главных кристаллографических осей. Это приводит к тому, что имеет место анизотропия M-фактора Дебая—Уоллера. Экспериментальное проявление этой анизотропии выражается в том, что отнесенные к главным осям величины Θ_{x_i} (i=1,2,3) оказываются различными [19], т. е. M-фактор представляет собой симметричный тензор второго ранга.

Применительно к некубическим модификациям фуллерита, например $2DC_{60}$ или $3DC_{60}$ с частично или полностью тетраэдрическими ковалентными связями, создаваемыми определенной термомеханической обработкой фуллерита C_{60} , соответствующие величины Θ_{x_i} могут быть определены по данным температурных зависимостей анизотропного M(T)-фактора (см., например, [19] применительно к кристаллу I_2).

3. Определение истинной дебаевской величины $\Theta_{c}^{t}(0)$ фуллерита C_{60}

Для расчета $\Theta_c^t(0)$ в настоящей работе определены величины гармонических упругих постоянных \widetilde{C}_{ijkl} монокристалла фуллерита C_{60} . С помощью экспериментальных зависимостей $C_{11}(T)$, $C_{12}(T)$ и $C_{44}(T)$ в интервале $100-300\,\mathrm{K}$ [20] и линейных экстраполяций $C_{ij}(T)$ из области $T\geq 180\,\mathrm{K}$ на $T=0\,\mathrm{K}$ получены следующие величины: $\widetilde{C}_{11}=22.50,\ \widetilde{C}_{12}=13.60$ и $\widetilde{C}_{44}=10.55$ (в единицах GPa, с точностью не хуже 1% для диагональных C_{ij}).

Формула (8), обобщенная автором для упругоанизотропного кристалла кубической симметрии, с учетом неравенства двух модулей сдвига C_{44} и $(C_{11}-C_{12})/2$ преобразуется к виду

$$\Theta_c^{-3}(0) = \frac{k_B^3 M f}{18\pi^2 \hbar^3} \rho^{1/2} \times \left[\left(\frac{1}{C_{11}} \right)^{3/2} + \left(\frac{2}{C_{11} - C_{12}} \right)^{3/2} + \left(\frac{1}{C_{44}} \right)^{3/2} \right]. \tag{9}$$

Поскольку степень упругой анизотропии фуллерита C_{60} (при $T\approx 0$ K) $A=2C_{44}/(C_{11}-C_{12})=2.36$ заметно превышает A=1 изотропного кристалла, целесообразно рассчитать $\Theta_c(0)$ и по известной формуле Беттса с соавторами [8], учитывающей шесть направлений усреднения скоростей звука,

$$\Theta_c^t(0) = \frac{h}{k_B} \left(\frac{9N}{4\pi V}\right)^{1/3} \rho^{-1/2} J^{-1/3},$$
 (10)

где J является суммой шести слагаемых, выраженных через комбинации C_{ijkl} (формулы (1.22) и (1.23) в [8], которые здесь не приведены из-за их громоздкости).

Используя рентгенографическую плотность фуллерита C_{60} при $T \leq 30\,\mathrm{K},~ \rho = 1.735\,\mathrm{g\cdot cm^{-3}}$ и $V = 416.7\,\mathrm{cm^3/mol}$ [7], $N = 6.02\cdot 10^{23}\,\mathrm{mol^{-1}},~ \mathrm{табличные}$ значения $h,~ \hbar$ и $k_B,~ \mathrm{молекулярный}$ вес $M_f = 1.195\cdot 10^{-21}\,\mathrm{g}$ и приведенные выше величины $\widetilde{C}_{ij},$ с помощью формулы (9) можно получить величину $\Theta_c^i(0) = 70.24\,\mathrm{K}.$

По формуле (10) получено $\Theta_c^t(0)=77.12\,\mathrm{K}$. Этот результат демонстрирует, таким образом, влияние упругой анизотропии на результаты расчета величин $\Theta_c(0)$. Как и следовало ожидать, $\Theta_c^t(0)=77.12\,\mathrm{K}$ заметно превышает $\Theta_{\mathrm{elast}}=66\,\mathrm{K}$, определенную в [21] из экспериментальных данных C_{ijkl} монокристалла ГЦК-фазы фуллерита C_{60} при $T=300\,\mathrm{K}$.

Более чем вдвое $\Theta_c^t(0)$ превышает величину $\Theta_c=37\,\mathrm{K}$, полученную в [3], — наименьшее значение среди всех известных автору $\Theta_c^t(0)$ фуллерита. Не исключено, что Θ_c соответствует минимуму T_{\min} зависимости $\Theta_c(T)$, обусловленному псевдозаконом T^3 Дебая. Согласно [10], T_{\min} характерна для большинства экспериментальных зависимостей $\Theta_c(T)$ кристаллов кубической (и некубической) симметрии с различным характером

химической связи. Детальный анализ низкотемпературных аномалий $\Theta_c(T)$ изложен в [13] (см. также рис. 4.3 в [22]).

Следуя [23] (формула (2.4)), в молекулярных кристаллах кубической симметрии оказывается возможным, используя T_{\min} , оценить монохроматическую эйнштейновскую частоту ν_p , суперпонированную на параболическое распределение акустических колебаний $g_D(\omega) = A\omega^2$,

$$\nu_p = 4.93 \left(\frac{k_B}{\hbar}\right) T_{\text{min}}.\tag{11}$$

Поскольку в [3] кривая экспериментальной зависимости $\Theta_c(T)$ не приведена, оценим T_{\min} по (11), приравнивая ν_p суперпонированной эйнштейновской частоте ω_E в спектральном распределении акустических колебаний $g(\omega)$ фуллерита C_{60} , полученной в недавней работе автора [19], а именно $\nu_p \equiv \omega_E = 42.50 \cdot 10^{11} \, \mathrm{rad \cdot s^{-1}}.$ В результате величина $T_{\min} = 6.56 \, \mathrm{K}$ достаточно близка к $T_{\min} = 7.46 \, \mathrm{K}$, вычисленной по (11) с помощью значения $\Theta_c = 37 \, \mathrm{K}$ оригинальной работы [3].

Примечательно, что обе величины T_{\min} попадают в интервал температур 6-12 K, в котором экспериментально определена из данных термического расширения фуллерита C_{60} либрационная характеристическая температура Эйнштейна $\Theta_E^l = 39$ K [24]. Интересно отметить, что отношение $\Theta_{\widetilde{E}}^l/\Theta_c^l(0) = 0.505$, в то время как для трансляционных колебаний решетки обычных (немолекулярных кристаллов) $\Theta_{\widetilde{E}}^l/\Theta_c^l(0) = 0.75$ (см., например, [10]). Это означает, что в молекулярных кристаллах неравенство $\omega_{\max}^l < \omega_{\max}^l$ является их характерным свойством, независимо от числа атомов в молекуле.

Используя значения $\Theta_c'(0) = 77.12\,\mathrm{K}$ и $\Theta_E^l = 39\,\mathrm{K}$, можно рассчитать (в гармоническом приближении) по формулам (4) и (6) температурные зависимости среднеквадратических трансляционных $\langle u^2 \rangle^t$ и либрационных $\langle u^2 \rangle^t$ смещений молекул фуллерита C_{60} , что представляет прямой интерес для изучения динамики его кристаллической решетки, а сравнение их с экспериментальными, полученными дифракционными методами, позволило бы оценить количественно соответствующие ангармонические эффекты.

Существенно ближе к $\Theta_c^t(0) = 77.12 \, \mathrm{K}$ оказалась величина $\Theta_c^t(0) = 74 \, \mathrm{K}$ мелкодисперсного поликристаллического C_{60} , определенная в [6] из данных $C_p(T)$ в интервале $1.4-20 \, \mathrm{K}.^3$

Такое же значение $\Theta^t = 74\,\mathrm{K}$ получено из экспериментальных данных $C_P(T)$ в [25], достоверность которого обсуждалась авторами обзора [5] в связи с их расчетом Θ_c фуллерита на основе закона подобия. Согласно [5], $\Theta_c = 40\,\mathrm{K} < \Theta_c^t(0) = 74\,\mathrm{K}$, что может быть обусловлено отклонением потенциала межмолекулярного взаимодействия от сферически-симметричного.

Величины $\Theta_c^t(0)$ фуллерита, полученные разными авторами

$\Theta_c^t(0)$, K	Литературная ссылка	$\Theta_c^t(0)$, K	Литературная ссылка
58.75	[2]	80 66**	[9]
37	[3]	66**	[21]
188*	[4]	74	[25]
40	[5]	50	[26]
74	[6]	50 100**	[27]
55.2**	[7]	77.12	Наст. раб.

^{*} Величина $\Theta_c^l(0)$ по данным измерений теплоемкости кристаллических экстрактов C_{60}/C_{70} в интервале $4-10\,\mathrm{K}.$

Тем не менее величина $\Theta_c^l(0)$, рассчитанная в [2] с помощью модифицированного парного потенциала типа Ми—Леннард—Джонса для разупорядоченной ГЦК-фазы фуллерита C_{60} , равна 58.75 K, т.е. существенно выше рассчитанной по закону подобия и ближе к полученной в настоящей работе.

Изложенный выше анализ оценок, измерений и определений $\Theta_c^t(0)$ иллюстрируется таблицей, позволяющей заметить тенденцию в приближении к истинной дебаевской величине $\Theta_c^t(0)$.

Поскольку фуллерит C_{60} при температурах $0.1-1.8~\mathrm{K}$ находится в состоянии ориентационного стекла, обладая отрицательным коэффициентом объемного расширения и аномально высоким отрицательным параметром Грюнайзена [11], можно тем не менее ожидать, что истинная величина $\Theta_c^t(0)$ не должна слишком отличаться от полученной в настоящей работе $\Theta_c^t=77.12~\mathrm{K}$ (напомним, что истинный закон T^3 Дебая справедлив для любых твердых тел независимо от их атомной (молекулярной) структуры и типа химической связи).

Действительно, из данных таблицы видно, что наиболее близкое совпадение с $\Theta_c^t = 77.12\,\mathrm{K}$ соответствует величине $\Theta_c^t(0) = 80\,\mathrm{K}$, определенной из экспериментальных данных $C_V(T)$ мелкокристаллического фуллерита C_{60} в интервале $0.6-7.0\,\mathrm{K}$ [9], т.е., по существу, в области $0.4-1.8\,\mathrm{K}$, где для C_{60} выполняется истинный закон T^3 Дебая.

Небольшое различие между упомянутыми величинами $\Theta_c^t(0)$ может быть обусловлено влиянием ангармоничности нулевых колебаний решетки фуллерита C_{60} , несмотря на то что их амплитуды чрезвычайно малы.⁴

Как строго показано в [12], при учете ангармонизма истинный закон T^3 Дебая остается справедливым, но с температурой Θ_D , слегка отличающейся от величины Θ_D , даваемой гармонической теорией (подробные

 $^{^3}$ В поликристаллических прессованных образцах с размерами частиц $\leq 100\,\mathrm{nm}$ возможно возрастание Θ_c за счет лапласового давления.

^{**} Величины $\Theta_c^l(0)$, определенные по данным C_{ijkl} или скоростей звука при $T>4.2\,\mathrm{K}.$

 $^{^4}$ При определении параметров межфуллеренного потенциала в [2] энергия нулевых колебаний решетки фуллерита C₆₀ не учитывалась вследствие малости параметра де-Бура. Тем не менее нулевые колебания по своей природе являются ангармоничными [12]: нулевая энергия ангармонического осциллятора $\varepsilon_0=\hbar\omega(1/2-\gamma^2/4)$, где γ — константа ангармонизма.

расчеты для криокристаллов, металлов и ионных крсталлов см. в [10] (табл. 17), а также рис. 4.3 в [22]).

Таким образом, количественная оценка меры ангармоничности колебаний решетки фуллерита C_{60} (как трансляционной, так и либрационной) в широких интервалах температур представляет самостоятельный интерес и, насколько нам известно, еще никем не проводилась.⁵

В работе автора [29] показано и физически аргументировано, что обобщенной мерой ангармоничности является именно произведение $\gamma\beta$ (γ — параметр Грюнайзена, β — коэффициент объемного расширения), а не отдельно взятые сомножители, которые сами по себе также могут быть использованы при анализе ангармонических эффектов в кристаллах. Однако при $T=0\,\mathrm{K}$ (в силу третьего закона термодинамики $\beta=0$) такие оценки неправомерны. В связи с этим в [29] была предложена оценка количественной меры ангармоничности и по барическому коэффициенту интенсивностей рентгеновских интерференций $\delta=\gamma\chi/m\Theta_x^2V^{2/3}$ (χ — сжимаемость, m — масса атома (молекулы), V — атомный (молярный) объем при любых температурах).

В [29] была также проанализирована периодическая зависимость как $\gamma\beta$, так и δ от атомного номера Z элементов таблицы Менделеева и показано, что минимальными величинами $\gamma\beta$ и δ обладает алмаз. В определенном смысле алмаз можно условно считать "гармоническим" кристаллом, обладающим минимальным термическим расширением и наибольшей решеточной теплопроводностью среди неметаллических кристаллов [30] (у гармонического кристалла, как известно, термическое расширение отсутствует, а решеточная теплопроводность бесконечна).

Вполне естественно, что для фуллерита C_{60} как при $T \geq 300\,\mathrm{K}$ (ГЦК-разупорядоченная фаза), так и при $T \leq 2\,\mathrm{K}$ (фаза ориентационного стекла) количественная оценка величин $\gamma\beta$ и δ может быть проведена относительно алмаза. Используя соответствующие данные для алмаза $\gamma_d=1.0,\ \beta_d=1.02\cdot 10^{-6}\,\mathrm{K}^{-1}$ [30] и для фуллерита C_{60} при $T=290\,\mathrm{K}\ \gamma_f=2.8,\ \beta_f=5.7\cdot 10^{-5}\,\mathrm{K}^{-1}$ [7], получим $(\gamma\beta)_f^t/(\gamma\beta)_d^t=156.4$, т.е. трансляционная ангармоничность фуллерита C_{60} превосходит таковую для алмаза на два порядка. Что касается либрационной ангармоничности, то при $T<3\,\mathrm{K}$, учитывая $\gamma_f\approx-300,\ \beta_f=-0.5\cdot 10^{-6}\,\mathrm{K}^{-1}$ [11], $\gamma_d=1,\ \beta_d=1\cdot 10^{-6}\,\mathrm{K}^{-1}$ [30], получим $(\gamma_f\beta_f)^L/(\gamma_d\beta_d)^L=1500,\ \mathrm{T.e.}$ на порядок выше трансляционной.

Это означает, что либрационные движения молекул фуллерена ответственны за фазовые переходы в фул-

лерите C_{60} , в то время как в атомных криокристаллах отвердевших благородных газов при атмосферном давлении либрационные движения вообще отсутствуют и никаких фазовых переходов в интервале от $0 \, \mathrm{K}$ до T_{melt} не наблюдается.

Существенно подчеркнуть, что оценки меры ангармоничности по $\delta=\gamma\chi/m\Theta_x^2V^{2/3}$ обладают более высокой "разрешающей способностью", чем по $\gamma\beta$, как это показано в [30]. Действительно, для фуллерита C_{60} при $T=300~\mathrm{K}~\gamma_f=2.8,~m_f=1.19\cdot 10^{-21}~\mathrm{g},~\Theta_f^t(0)=77.12~\mathrm{K},$ $\chi_f=0.92\cdot 10^{-9}~\mathrm{cm}^2/\mathrm{dyn},~V_f=416.7~\mathrm{cm}^3/\mathrm{mol}$ [7] и для алмаза $\gamma_d=1.0,~m_d=1.99\cdot 10^{-23}~\mathrm{g},~\Theta_d=1890~\mathrm{K},$ $\chi_d=2.26\cdot 10^{-13}~\mathrm{cm}^2/\mathrm{dyn},~V_d=3.4~\mathrm{cm}^3/\mathrm{mol}$ [30] получим $\delta_f/\delta_d=3.52\cdot 10^4,~\mathrm{T.e.}$ мера трансляционной ангармоничности фуллерита C_{60} более чем на четыре порядка выше, чем у алмаза (напомним, что оценки $(\gamma\beta)_f^t/(\gamma\beta)_d^t=1.56\cdot 10^2,~\mathrm{T.e.}$ на два порядка).

Достоверность оценок по δ_f/δ_d можно проверить сравнением таких фундаментальных ангармонических эффектов, как решеточные теплопроводности алмаза и фуллерита. По известному соотношению Лейбфрида—Шлемана [10] при $T>\Theta_c$

$$\kappa = \frac{Ma\Theta_D^3}{\gamma^2},\tag{12}$$

где M — молекулярный вес, $a^3=4/3\pi r^3$ — объем, приходящийся на один атом. Принимая $M_f/M_d=60$, $\gamma_f/\gamma_d=2.8$, $\Theta_D^f=77.12\,\mathrm{K}$, $\Theta_D^d=1890\,\mathrm{K}$ и, согласно [1], радиус сфероида C_{60} $r_f=3.52\,\mathrm{\mathring{A}}$, ковалентный радиус углерода $r_c=0.77\,\mathrm{\mathring{A}}$, получим $\kappa_f/\kappa_d=3.8\cdot 10^{-4}$, т.е. κ_f на четыре порядка ниже κ_d . Можно полагать, что мы не слишком ошибаемся в оценке κ_f , поскольку погрешности, вносимые в (12) при ее выводе, автоматически сокращаются для отношения κ_f/κ_d . Используя экспериментальную величину $\kappa_d=2020\,\mathrm{W}\cdot(\mathrm{m/K})$ при $T=300\,\mathrm{K}$ [30], получим $\kappa_f=0.80\,\mathrm{W}\cdot(\mathrm{m/K})$. По данным температурной зависимости $\kappa_f(T)$ фуллерита C_{60} работы [32], величина $\kappa_f(250\,\mathrm{K})=0.78\,\mathrm{W}\cdot(\mathrm{m/K})$, т.е. фактически совпадает с рассчитанной κ_f (300 K).

Не проявляя излишнего оптимизма при таких эмпирических оценках κ , можно тем не менее утверждать, что экстремальные величины κ_d и κ_f образуют естественную шкалу теплопроводностей неметаллических кристаллов в области $T > \Theta_D$. Такую шкалу можно прокалибровать, поместив в интервал $[\kappa_d - \kappa_f]$ соответствующие "реперные" величины κ материалов с высоким и низким значениями теплопроводности. Входным параметром шкалы является величина $Ma\Theta_x^3/\gamma^2$, причем a, Θ_x и γ определяются экспериментально из данных температурной зависимости $M^t(T)$ -фактора (2) с точностью, не меньшей, чем прямые измерения κ .

 $^{^5}$ В работе [28] при учете влияния нецентральных взаимодействий на законы дисперсии $\omega(q)$ и отклонения от соотношений Коши применительно к ГЦК-решеткам криокристаллов и фуллерита C_{60} утверждается, что при $T=300\,\mathrm{K}$ ангармонизмом колебаний решетки C_{60} можно пренебречь. Далее показано, что такое утверждение слишком категорично.

 $^{^6}$ Эта уникальная ситуация в оценке произведения $\gamma_f\beta_f$ имеет место только для фуллерита C_{60} в связи с катастрофическим изменением γ_f в области T<3 K, $\beta_f<0$ [24].

 $^{^7}$ Структурные модификации квантовых Бозе- и Ферми-кристаллов $^4{\rm He}$ и $^3{\rm He}$ (ОЦК-, ГЦК-, ГПУ-фазы при давлении $P>30\,{\rm bar})$ обусловлены другими причинами [31].

Подобные оценки неизвестных величин κ были предприняты ранее в [33] для кристаллов с высокими значениями κ — от алмаза до фосфида галлия. Расширение интервала в направлении малых значений κ , вплоть до экспериментального значения κ_f , окажется полезным и в прикладном смысле.

4. Об отклонении реальной функции $g(\omega)$ фуллерита C_{60} от параболического распределения

Как отмечалось в (1а), величины $\Theta_{\rm eff}$ с точностью до постоянного множителя определяются различными моментами $\langle \omega \rangle^n$ $(n=0,\pm 1,\pm 2,\pm 3,\ldots)$ реальной функции спектрального распределения частот $g(\omega)$ в широких интервалах температур. В [34] изложена процедура так называемых эквивалентных моментов параболического распределения для оценок $\Theta_{\rm eff}$ применительно к молекулярному кристаллу I_2 . Сущность таких оценок $\Theta_{\rm eff}(n)$ сводится к следующему. Определяется эквивалентная дебаевская "обрезающая" частота $\omega_D(n)$ такая, чтобы для заданного момента $\langle \omega \rangle^n = \int\limits_0^\infty \omega^n g(\omega) d\omega / \int\limits_0^\infty g(\omega) d\omega$ реального спектрального представления частот $g(\omega)$ параболическое распределение с этой искомой частотой $\omega_D(n)$ давало бы в точности такой же n-й момент, т. е. для трансляционных колебаний

$$\langle \omega \rangle^n = \frac{3N}{\omega_D^3} \int_0^{\omega_D(n)} \omega^{n+2} d\omega / \frac{3N}{\omega_D^3} \int_0^{\omega_D(n)} \omega^2 d\omega = \frac{3}{n+3} (\omega_D(n))^n$$
(13)

или

$$\omega_D(n) = \left\lceil \frac{n+3}{3} \left\langle \omega \right\rangle^n \right\rceil^{\frac{1}{n}} \tag{14}$$

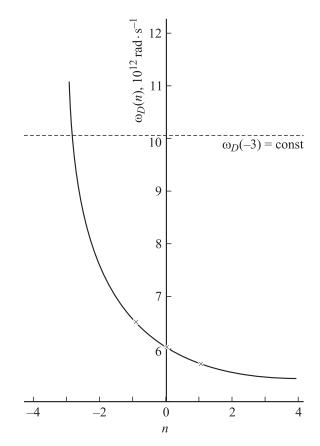
для n > -3; $n \neq 0$.

При этом существуют пределы $\lim_{n \to -3} \omega_D(n) = \omega_D(-3);$ $\lim_n \omega_D(n) = \omega_D(0).$

Можно строго показать, что предельные значения $\omega_D(-3)=\frac{k}{\hbar}\,\Theta_c,\;\omega_D(0)=e^{1/3}\omega_g=\frac{k}{\hbar}\,\Theta_S,\;$ где e — основание натуральных логарифмов, $\omega_g=\left(\prod_{i=1}^{3N}\omega_i\right)^{(1/3)N}$ — среднегеометрическая частота.

Это означает, что для любого спектрального распределения $g(\omega)$ можно построить графически зависимость $\omega_D(n)$ как функцию номера момента, и отклонение полученной кривой от горизонтальной прямой $\omega_D(-3)=$ const демонстрирует, таким образом, меру отклонения реальной функции $g(\omega)$ от параболического распределения $g(\omega)=A\omega^2$.

С помощью экспериментальных величин $\Theta_c(+2)=$ = 43.7 K [7], т.е. высокотемпературного предельного значения $\Theta_{\infty}^2=\left(\frac{\hbar}{k_B}\right)^2\langle\omega^2\rangle$, фигурирующего в известном разложении Тирринга, $\Theta_{x}(-2)=53.9\,\mathrm{K}$ [35],



Зависимость эквивалентных дебаевских частот ω_D от номера моментов n.

 $\Theta_c^t(-3)=77.12\,\mathrm{K}$ настоящей работы и соответствующих им частот $\omega_D(+2)=5.74\cdot 10^{12}\,\mathrm{rad\cdot s^{-1}},$ $\omega_D(-2)=7.08\,\mathrm{rad\cdot s^{-1}},$ $\omega_D(-3)=10.13\cdot 10^{12}\,\mathrm{rad\cdot s^{-1}},$ на рисунке представлена зависимость $\omega_D(n)$ и прямая $\omega_D(-3)=\mathrm{const.}$

Кривая $\omega_D(n)$ демонстрирует не только отклонение реальной функции $g(\omega)$ фуллерита C_{60} от параболической, но, что не менее существенно, позволяет определить неизвестные частоты $\omega_D(+1)$, $\omega_D(0)$ и $\omega_D(-1)$. Соответствующие этим величинам $\omega_D(n)$ величины $\Theta_{IR}(+1) = 44.2 \,\mathrm{K}, \ \Theta_S(0) = 46.3 \,\mathrm{K} \ \mathrm{M} \ \Theta_x(-1) = 45.5 \,\mathrm{K}.$ Так, например, $\Theta_S = \frac{\hbar}{k_B} \omega_D(0) = 46 \, {\rm K}$ фактически совпадает с таковой, использованной в [36] для восстановления температурной зависимости энтропии S(T) в интервале 5–86 K; что касается $\Theta_{IR}(+1)$ и $\Theta_x(-1)$, то автору, к сожалению, неизвестны их экспериментальные значения. Тем не менее на основании кривой $\omega_D(n)$ легко сделать вывод, что во всяком случае выполняется неравенство $\Theta_x < \Theta_c \approx \Theta_{\text{elast}}$, которое, согласно [13], является достаточно общим свойством кристаллических твердых тел.

В прикладном смысле для количественных оценок величины L — размерной границы, ниже которой проявляются существенные отличия физических свойств нанокристаллов любой сингонии от макроскопических объектов, в [37] предложено и физически аргументиро-

вано определение величин $L_{x_i}^{\mathrm{theor}}=230\Theta_{x_i}^{-1/2}$ (nm) с помощью именно Θ_x , а не иных эффективных величин Θ_{eff} . Сравнивая с экспериментом, оценим, например, для α -Fe величину $L_{x_i}^{\mathrm{theor}}$, при которой возникает размерный эффект — переход ферромагнитного α -Fe в суперпарамагнитное состояние. Согласно [38], соответствующее экспериментальное значение $L^{\mathrm{exp}}=10\,\mathrm{nm}$ оказалось в хорошем согласии с величиной $L_x^{\mathrm{theor}}=11.08\,\mathrm{nm}$, оцененной по Θ_x^{α} -Fe = 430 K при $T\approx300\,\mathrm{K}$.

Совсем недавно в [39] определена величина $L_{x_i}^{\rm exp}=20\,{\rm nm}$ для широко используемого термоэлектрика ${\rm Bi}_2{\rm Te}_3$, при которой термоэлектрическая добротность $Z=\alpha^2\sigma/\kappa$ (α , σ , κ — коэффициент Зеебека, электрои теплопроводность соответственно) достигает максимального значения. Используя $\Theta_x^{{\rm Bi}_2{\rm Te}_3}=152\,{\rm K}$. получим $L_{x_i}^{{\rm theor}}=18.7\,{\rm nm}$.

Для фуллерита C_{60} получаем $L_{x_i}^{\mathrm{theor}}=31.2$ nm, и, таким образом, в исследованиях размерных эффектов (как классических, так и квантовых) нет необходимости в диспергировании монокристаллов C_{60} до размеров, меньших L_x .

Весьма существенно и то обстоятельство, что определение Θ_x менее трудоемко в методическом и экспериментальном отношениях при любых температурах $T <> \Theta_x$, чем Θ_c или $\Theta_{\rm elast}$. Точность определения Θ_x современными рентгенодифрактометрическими методами составляет 3–3.5%, а в случае квазисовершенных монокристаллов методом маятниковых полос (так называемых Pendellősung frings) — на порядок выше.

Представляется интересным сравнение твердости монокристаллов фуллерита C_{60} H_f с H_d алмаза — "мировым" эталоном твердости. С этой целью воспользуемся значением $\Theta_c^t(0)=77.12\,\mathrm{K}$ для определения сжимаемости χ ГЦК-кристаллов по известному соотношению [40]:

$$\chi = \frac{9}{2} \left(\frac{\hbar}{k} \right) \cdot \frac{a}{m\Theta_D^2},\tag{15}$$

где a — период решетки, m — масса атома (молекулы). Следует отметить, что соотношение (15) является достаточно общим и не зависит от аналитической формы потенциалов, широко используемых в физике молекулярных кристаллов — типа (6-12) Леннарда—Джонса, Бакингхэма, Китайгородского и их модификаций.

Подставляя в (15) $a_f=14.156\, \mbox{Å}$ [1], $m_f=1.195\cdot 10^{-21}\, \mbox{g}$ и $\Theta_D=\Theta_c^t(0)=77.12\, \mbox{K}$, получаем $\chi_f=0.115\, \mbox{GPa}^{-1}$, и соответственно модуль всестороннего сжатия $B_f=1/\chi_f=17.8\, \mbox{GPa}$. Величина B_f согласуется с $B_f=18.1\, \mbox{GPa}$ работы [41], а также с "гармонической" величиной $\widetilde{B}_f=(\widetilde{C}_{11}+2\widetilde{C}_{12})/3=16.56\, \mbox{GPa}$, вычисленной по экстраполированным на $T=0\, \mbox{K}$ величинам \widetilde{C}_{ijkl} , приведенным выше. Удовлетворительное согласие между полученными величинами B_f можно рассматривать как независимое подтверждение близости $\Theta_c^t(0)=77.12\, \mbox{K}$ фуллерита C_{60} к истинной температуре Дебая $\Theta_D=$ const.

Вместе с тем следует иметь в виду, что оценка твердости фуллерита С60 только по упругим свойствам (по отношению модулей В алмаза и фуллерита) не совсем адекватна, поскольку твердость — свойство комплексное. Она определяет способность кристалла сопротивляться пластической деформации при внедрении в него индентора, вследствие чего происходит образование новых поверхностей, на что затрачивается энергия. Поэтому для анализа твердости необходимо выделить ее составляющие (упругая деформация, пластическая деформация, работа по образованию трещин и свободной поверхности), используя различные полуэмпирические соотношения. Однако в "нулевом" приближении можно оценить твердость фуллерита H_f по твердости алмаза H_d , испоьзуя соответствующие модули B_f и $B_d = 630 \,\text{GPa} \, [30]: B_d/B_f = 35.4.$

Измеренные недавно H_d с помощью индентора из ультратвердого фуллерита [42] оказались равными 137 ± 6 и 167 ± 5 GPa соответственно для плоскостей (100) и (111), и для фуллерита C_{60} получим $H_f=3.87$ и 4.72 GPa. К сожалению, автору неизвестны экспериментальные значения H_f для сравнения их с оценочными.

Следует подчеркнуть, что рассчитанная в настоящей работе впервые по гармоническим значениям \widetilde{C}_{ijkl} монокристалла фуллерита C_{60} величина $\Theta_c^t=77.12$ К представляет собой вполне реальную величину трансляционной дебаевской температуры фуллерита C_{60} , поскольку она (в отличие от иных девяти Θ_c^t , приведенных в таблице) наиболее близка к $\Theta_c^t=80$ К — экспериментальному значению, определенному фактически в области истинного закона T^3 Дебая [9], и хорошо согласуется с измеренной гидростатическим методом [41] величиной изотермического модуля сжатия B_f . Это означает, что близость сравниваемых величин Θ_c^t не является случайной.

Уместно напомнить, что более утонченная по сравнению с континуальной атомистическая теория теплоемкости Борна—Кармана приводит в пределе низких температур к теории Дебая, а в пределе высоких — к теории Эйнштейна [13]. Оказалось поэтому целесообразным представлять экспериментальные данные $C_p(T)$ многих веществ в области низких температур порядка $T \leq \Theta_D/12$ в виде температурных зависимостей $\Theta_D = f(T)$: наблюдаемые аномалии $\Theta_D(T)$ к тому же отражают в известной мере характер межатомных (межмолекулярных) сил взаимодействия в кристаллической решетке. Именно по этой причине (как и около ста лет тому назад) измерения $C_p(T)$ в настоящее время интерпретируются физиками-экспериментаторами на основе однопараметрической теории Дебая.

В заключение несколько замечаний общефизического характера. Следовало бы подчеркнуть, что Θ_D — своеобразный "паспорт" любого твердого тела с присущей только ему максимальной частотой $\omega_{\rm max}$, который является "пограничным столбиком", отделяющим квантовую область температур от классической. Можно полагать,

что по аналогии с температурой Дебая возникли следующие термины: температура Ферми, температура Фарадея (при которой твердые электролиты типа AgI переходят в суперионное состояние), температура Кондо, температура Мори́на, температура Лэмба—Мёссбауэра и т.д. Более того, в микроскопической теории сверхпроводимости БКШ величина Θ_D определяет теоретический предел температуры сверхпроводящего перехода: $T_c = 0.135\Theta_D$.

В недавней работе [43] показано, каким образом точность определения Θ_D при расчетах нулевой энергии существенно влияет на кривую плавления металлического водорода при высоких давлениях, жидкая фаза которого представляет собой новый класс квантовых жидкостей и новое состояние материи — сверхпроводящую жидкость, которая не переходит в твердое состояние при любых давлениях и температурах.

Обратим внимание на то, что к настоящему времени не проанализированы и не объяснены неравенства $\Theta_D > T_{\rm melt}$ некоторых криокристаллов нулевой группы таблицы Менделеева (Ne, Ar) и применимость для них правила Линдемана.

И наконец, уместно привести слова Займана о значимости Θ_D для физики твердого тела [22] (С. 137): "...дебаевская температура — это параметр, в который мы пытаемся вложить всю динамику решетки данного твердого тела".

5. Выводы

- 1) Анализ экспериментальных величин калориметрических температур Дебая $\Theta_c^t(0)$ фуллерита C_{60} показал, что их разброс (\sim 5 раз) обусловлен псевдозаконом T^3 Дебая.
- 2) Установлено, что наиболее близкой к истинной дебаевской величине $\Theta_c^t(0)$ фуллерита C_{60} является $\Theta_c^t(0)=77.12\,\mathrm{K}$, вычисленная автором из гармонических упругих постоянных \widetilde{C}_{ijkl} монокристалла C_{60} в пределе $T=0\,\mathrm{K}$ по шестичленным формулам Беттса.
- 3) Методом эквивалентных моментов продемонстрировано отклонение реальной функции спектрального распределения частот трансляционных колебаний решетки фуллерита C_{60} от параболического, а также определены некоторые величины $\Theta_{\rm eff}$, используемые в прикладных задачах физики кристаллов.
- 4) Определена количественная мера ангармоничности трансляционных и либрационных колебаний решетки фуллерита C_{60} , оценена решеточная теплопроводность монокристалла C_{60} , которая оказалась в хорошем согласии с экспериментальной.
- 5) Предложена расширенная шкала теплопроводностей неметаллических кристаллов, входными параметрами для которой являются Θ_x и γ_x .
- 6) Кратко прокомментирована общефизическая значимость температуры Дебая Θ_D кристаллических твердых тел.

Автор признателен Л.И. Анатычуку, Л.Н. Вихор, О.Я. Лусте и Н.Д. Раранскому за подддержку работы и полезные дискуссии.

Список литературы

- [1] В.Л. Колесниченко, В.М. Локтев. Энциклопедический словарь. Физика твердого тела. Наук. думка, Киев (1988). Т. 2. С. 466.
- [2] М.Н. Магомедов. ФТТ 47, 758 (2005).
- [3] Б.В. Лебедев. ЖФХ 75, 775 (2001).
- [4] E. Graivei, B. Mysten, M. Grossart, A. Demain, J.-P. Issi. Solid State Commun. 85, 73 (1993).
- [5] В.Н. Безмельницын, А.В. Елецкий, М.В. Окунь. УФН 168, 1195 (1998).
- [6] W.P. Beyermann, M.F. Hundey, J.D. Thompson. Phys. Rev. Lett. 68, 2046 (1992).
- [7] Н.А. Аксенова, А.Т. Исакина, А.И. Прохватилов, М.А. Стржемечный. ФНТ 25, 964 (1999).
- [8] Дж. Алерс. В кн.: Динамика решетки (физическая акустика) / Под ред. У. Мэзона. Мир, М. (1968). С. 13.
- [9] J.R. Olson, K.A. Tropp, R.O. Pohl. Science 259, 1145 (1993).
- [10] Г. Лейбфрид. Микроскопическая теория механических и тепловых свойств кристаллов. Физматгиз, М.–Л. (1963). 312 с.
- [11] В.Д. Нацик, А.В. Подольский. ФНТ 26, 1155 (2000).
- [12] Г. Лейбфрид, В. Людвиг. Теория ангармонических эффектов в кристаллах. ИЛ, М. (1963). 231 с.
- [13] M.Blackman. Handbuch der Physik/ Ed. S. Flügge. Springer-Verlag, Berlin (1955). V. 7. Pt. I. P. 325.
- [14] Р. Джеймс. Оптические принципы дифракции рентгеновских лучей. ИЛ, М. (1950). С. 653.
- [15] В.П. Михальченко, В.А. Меленевский-Грищенко. УФЖ **13**, 874 (1968).
- [16] D.W.J. Cruickshank. Acta Cryst. 9, 1005 (1956).
- [17] В.П. Михальченко, В.В. Моцкин. ФТТ 48, 1318 (2006).
- [18] H. Hahn, W. Ludviw. Z. Phys. 161, 404 (1963).
- [19] В.П. Михальченко, С.А. Чорней. УФЖ 20, 1014 (1975).
- [20] Н.П. Кобелев, Р.К. Николаев, Н.С. Сидоров, Я.М. Сойфер. ФТТ 43, 2244 (2001).
- [21] Н.П. Кобелев, Р.К. Николаев, Я.М. Сойфер, С.С. Хасанов. ФТТ **40**, 173 (1998).
- [22] Дж. Рейсленд. Физика фононов. Мир, М. (1975). С. 365.
- [23] A.J. Leadbetter. Proc. Roy. Soc. A 287, 403 (1965).
- [24] A.N. Aleksandrovskii, A.S. Bakai, A.V. Dolbin, V.B. Esel'son, G.E. Gadd, V.G. Gavrilko, V.G. Manzhelii, S. Moricca, B. Sundqvist, B.G. Udovidchenko. ΦΗΤ 29, 432 (2003).
- [25] A. Hebard. Ann. Rev. Mater. Sci. 23, 159 (1993).
- [26] T. Atake, T. Tanaka, H. Kavai, H.K. Kikuchi, K. Saito, S. Suzuki, Y. Ashiba, I. Ikemoto. Phys. Lett. 196, 321 (1992).
- [27] S. Hoen, N.G. Chopra, X.D. Chiang, J. How, W.A. Wareca, A. Zettl. Phys. Rev. B 46, 12737 (1992).
- [28] Е.В. Манжелий. ФНТ 23, 443 (2003).
- [29] В.П. Михальченко. ЖФХ 53, 476 (1979).
- [30] Физические свойства алмаза / Под ред. Н.В. Новикова. Наук. думка, Киев (1987). 275 с.
- [31] Квантовые кристаллы. Сб. статей / Под ред. С.В. Вонсовского. Мир, М. (1975). 275 с.

[32] В.Б. Ефимов, Л.П. Межов-Деглин, Н.К. Николаев, Н.С. Сидоров. ФНТ 27, 558 (2001).

- [33] G.A. Slack. J. Phys. Chem. Solids 34, 321 (1973).
- [34] В.П. Михальченко, С.А. Чорней. УФЖ 20, 1021 (1975).
- [35] L. Shebanovs, J. Maniks, J. Kainas. J. Cryst. Growth 234, 202 (2002).
- [36] В.В. Дикий, Г.Я. Кабо. Успехи химии 69, 107 (2000).
- [37] В.П. Михальченко. О количественных оценках размеров нанокристаллов. Сб. Междунар. научн. конф. ФТТ-2007. Изд-во НАНБ, Минск (2007). Т. 3. С. 312.
- [38] В.В. Скороход, А.В. Рагуля. В кн.: Прогрессивные материалы и технологии / Под ред. И.К. Походни. Академпериодика, Киев (2003). Т. 2. С. 14.
- [39] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Zh. Ren. Science 320, 5876, 634 (2008).
- [40] S.S. Mitra, S.K. Joshi. Physica 27, 376 (1961).
- [41] M.C. Abramo, C. Cassato. J. Phys. Chem. Solids 57, 1751 (1996).
- [42] В.Д. Бланк, М.Ю. Попов, Н.А. Львова, К.В. Гоголинский, В.Н. Решетов. Письма в ЖТФ 23, 14, 25 (1997).
- [43] В.В. Кечин. Письма в ЖЭТФ 79, 46 (2004).