Газонаполненные позиционно-чувствительные детекторы тепловых нейтронов в ПИЯФ РАН

© В.А. Андреев, Г.А. Ганжа, Е.А. Иванов, Д.С. Ильин, С.Н. Коваленко, М.Р. Колхидашвили, А.Г. Крившич, А.В. Надточий, В.В. Рунов, В.А. Соловей, Г.Д. Шабанов

Петербургский институт ядерной физики им. Б.П. Константинова РАН, Гатчина, Ленинградская обл., Россия

E-mail: ilin@pnpi.spb.ru

В ПИЯФ РАН создана производственная база для разработки и создания позиционно-чувствительных детекторов тепловых нейтронов. В настоящее время построены три детектора с чувствительными областями: $300 \times 170 \text{ mm}$ (опытный образец), $200 \times 200 \text{ и} 300 \times 300 \text{ mm}$. Детекторы представляют собой многопроволочные пропорциональные камеры с катодным съемом данных на линию задержки. Приборы наполнены газовой смесью ³He/CF₄.

Детекторы предназначены для модернизации детекторных систем дифрактометров "Вектор" и "Мембрана-2" (реактор ВВР-М, ПИЯФ).

Работа поддержана государственным контрактом № 02.518.11.7036 и программой РАН "Нейтронные исследования конденсированной материи".

1. Введение

Позиционно-чувствительный детектор (ПЧД) является одним из основных элементов любой установки малоуглового рассеяния нейтронов (SANS). В настоящее время в практике нейтрон-дифракционных экспериментов широко используются одно- и двухкоординатные газовые ПЧД, в которых конвертором нейтронов служат газы BF_3 и ³He.

В настоящее время в ПИЯФ РАН активно ведутся работы по созданию детекторов тепловых нейтронов, которые в первую очередь будут установлены на дифрактометрах малоуглового рассеяния нейтронов "Вектор" и "Мембрана-2". Дифрактометр "Вектор" предназначен для изучения физики магнитных критических явлений (пространственный масштаб структур 40–1000 Å). Дифрактометр "Мембрана-2" используется для исследования надатомной структуры полимеров (пространственный масштаб структур 20–1000 Å).

Использование двухкоординатных детекторов в качестве базового элемента детекторных систем дифрактометров позволит получить следующие преимущества: 1) удастся расширить динамический диапазон переданных импульсов и существенно улучшить угловое разрешение; 2) появится принципиальная возможность изучения асимметрии рассеяния от физических объектов.

Параметры детекторов выбирались в соответствии со стандартными характеристиками данного типа ПЧД; пространственное разрешение 2–4 mm (FWHM), эффективность регистрации 60–80%, дифференциальная нелинейность < 10%. Для создания детекторов с такими характеристиками потребовалось оптимизировать комплекс взаимосвязанных параметров конструкции, регистрирующей электроники и газовой смеси.

2. Конструкция и принцип работы

Конвертером тепловых нейтронов служит газ ³Не и регистрация нейтронов происходит в соответствии с

ядерной реакцией

3
He + n \rightarrow p + T + 764 keV. (1)

Выделяющаяся при взаимодействии энергия распределяется между протоном и тритоном $E_{\rm p}=573$ keV, $E_{\rm T}=191$ keV.

Заряженные частицы в чистом газе ³Не имеют довольно большие пробеги, поэтому для ограничения пробега частиц и получения нужного пространственного разрешения в детектор добавлялся газ CF₄. Кроме того, газ CF₄ выполняет функцию "гасящей" добавки и не допускает распространения лавинного разряда вдоль анодных проволок, что стабилизирует работу детектора в целом.

Задача достижения максимальной эффективности регистрации нейтронов была одной из приоритетных при конструировании детекторов. С этой точки зрения газ ³Не очень удобен, поскольку он имеет большое сечение захвата тепловых нейтронов: $\sigma = 26\,400$ barn для нейтронов с длиной волны $\lambda = 9$ Å.

Детекторы представляют собой многопроволочные пропорциональные камеры с двумя дрейфовыми промежутками (рис. 1). Стрипы катодных плоскостей X и Y ориентированы взаимно перпендикулярно для возможности регистрации двух координат. Стрипы, параллельные анодным проволокам, предназначены для измерения дискретной координаты X. Для измерения непрерывной координаты Y используются стрипы, расположенные перпендикулярно проволокам анода. Стрипы подсоединены к линии задержки (DL — delay line) с волновым сопротивлением $R_{\rm DL} = 100 \Omega$.

В результате реакции 3 He(n, p)T образуются протон и тритон, ионизирующие газ. Электроны первичной ионизации в виде облака зарядов дрейфуют к аноду и развивают вблизи него электронную лавину. На стрипах катодов X и Y появляются наведенные сигналы, по центру тяжести которых определяется координата лавины (рис. 1).

Рис. 1. Схема сбора информации с детектора. Показаны подключенные к стрипам линии задержки $R_{\rm DL} = 100 \,\Omega$, предусилители $R_{\rm in} = 100 \,\Omega$, преобразователи время-код (TDC) и приобразователь амплитуда-код (ADC). Временная задержка между соседними стрипами составляет $\tau = 6$ пs. Дрейфовые катоды не показаны.

Сигналы с концов линии задержки поступают на предусилители (рис. 2), обеспечивающие формирование логических импульсов с временной привязкой, не зависящи от амплитуды входного сигнала. Входное сопротивление зарядочувствительных предусилителей согласовано с волновым сопротивлением линии задержки: $R_{\rm in} = R_{\rm DL}$.

Координата электронной лавины вычисляется по разности времен прихода импульсов на соответствующие преобразователи время-код

$$X = \left(1 - \frac{t_2 - t_1}{T}\right) \frac{L_{\text{det}}}{2},\tag{2}$$

где t_1 и t_2 — время прихода сигналов на концы линии задержки, T — длина линии задержки (в ns), L_{det} — физическая длина детектора вдоль координаты X.

Preamplifier with Preamplifier- Zero-crossing «electronic cooling» shaper

Рис. 2. Функциональная схема придетекторной электроники.

Координаты зафиксированной лавины имеют следующие особенности.

1) Координата *Y*, измеряемая в направлении вдоль анодных проволок, имеет непрерывный характер. Про-

Характеристика детектора		300 × 170 mm (прототип)	200 imes 200 mm	$300 \times 300 \text{mm}$
Газовая смесь	Давление ³ Не, atm Давление CH ₄ , atm	1.5 2	4 2	2 2
Эффективность λ , %		60 (9Å)	70 (3 Å)	$80^{*} (9 \text{ Å})$
Пространственное разрешение (FWHM), mm	Дискретная координата Непрерывная координата	4 2.5	2 1.5	2 1.5*
Внутреннее разрешение (FWHM), mm Дифференциальная нелинейность, % Энергетическое разрешение ΔΕ/E _{full} , %		${\leq 0.8 \ \pm 5 \ 15{-}20}$	${\leq} 0.7 \ {\pm}10 \ 20{-}40$	$\leq 0.4 \ \pm 5{-}7^* \ 20{-}40$

Сводная таблица характеристик детекторов нейтронов

* Расчетные значения.

странственное разрешение детектора по оси *Y* определяется размерами облака первичной ионизации и величиной внутреннего разрешения детектора.

2) Координата X, измеряемая в направлении, перпендикулярном проволокам анода, имеет дискретный характер. Пространственное разрешение детектора по оси X определяется расстоянием между анодными проволоками.

3. Детекторы тепловых нейтронов

3.1. О пытный образец. На первом этапе работы был создан опытный образец детектора нейтронов с чувствительной областью $300 \times 170 \text{ mm} (X \times Y) [1-3]$. Детектор имеет следующие характеристики: эффективность регистрации 60% ($\lambda = 9$ Å), пространственное разрешение FWHM $\leq 2.5 \text{ mm}$ (вдоль непрерывной координаты Y) и FWHM = 4 mm (вдоль дискретной координаты X), внутреннее разрешение детектора FWHM $\leq 0.8 \text{ mm}$, дифференциальная нелинейность $\pm 5\%$, энергетическое разрешение $\Delta E_{\text{FWHM}}/E_{\text{full}} = 20\%$.

На рис. З приведено изомерное изображение пучка нейтронов, полученное при измерении пространственно-го разрешения детектора.

3.2. Двухкоординатный детектор 200×200 mm. С использованием накопленного опыта был создан двухкоординатный детектор с чувствительной областью 200 × 200 mm с существенно улучшенными рабочими параметрами. В частности,

 для улучшения пространственного разрешения расстояние между анодными проволоками уменьшено в 2 раза и составило 2 mm;

2) повышена механическая прочность газовой камеры, что дало возможность работать при давлениях газовой смеси до 7 atm. Это позволило получить высокую эффективность регистрации нейтронов с более короткими длинами волн (2-3 Å);

3) созданы специализированная придетекторная электроника и опытный образец электроники сбора информации в формате VME.

Детектор 200 × 200 mm наполнен газовой смесью 4 atm ³He + 2 atm CF₄ и имеет следующие характеристики: эффективность регистрации 70% ($\lambda = 3$ Å), пространственное разрешение FWHM ≤ 1.5 mm (вдоль непрерывной координаты *Y*) и FWHM = 2 mm (вдоль дискретной координаты *X*), внутреннее разрешение детектора FWHM ≤ 0.7 mm, дифференциальная нелинейность $\pm 10\%$, энергетическое разрешение $\Delta E_{\text{FWHM}}/E_{\text{full}} = 30\%$.

В ходе испытаний детектора на дифрактометре "Мембрана-2" были получены координатные спектры от рассеивающих образцов фторопласта и пористого стекла Vycor (рис. 4–6). В первом случае наблюдалось рассеяние нейтронов на большой угол (характерный раз-

Рис. 3. Узкий пучок нейторонов d = 4 mm (пик в центре), вырезанный из исходного пучка $40 \times 10 \text{ mm}$. Измерения проводились на дифрактометре "Вектор". Оси на графике: *X*, *Y* — каналы TDC (1 мм = 12 каналов), *Z* — число событий.

Рис. 4. *а*) Двумерный спектр рассеяния нейтронов ($\lambda = 3 \text{ Å}$) на образце фторопласта (CF₂)_{*n*}. Расстояние образец–детектор 100 mm. Угол рассеяния $\alpha \approx 32^{\circ}$. *b*) Изомерное изображение.

мер неоднородностей $D \approx 2\pi/q = 5.5$ Å), во втором рассеяние на малые углы ($D \approx 100 \text{ Å}$).

3.3. Двухкоординатный детектор 300×300 mm. В настоящее время закончена работа по созданию детектора с апертурой 300 × 300 mm и проводятся его испытания (рис. 7). Детектор наполнен газовой смесью $2 \text{ atm } {}^{3}\text{He} + 2 \text{ atm } \text{CF}_{4}$. В конструкцию детектора были заложены следующие характеристики: эффективность регистрации 70-80% ($\lambda = 9 \text{ Å}$), пространственное разрешение FWHM = 1.5 mm (вдоль непрерывной координаты Y) и FWHM = 2 mm (вдоль дискретной координаты X).

На данный момент измерены следующие характеристики детектора: внутреннее разрешение FWHM \leq 0.4 mm, энергетическое разрешение $\Delta E_{\rm FWHM}/E_{\rm full} = 30\%$.

а

h

Рис. 5. *a*) Двумерный спектр рассеяния нейтронов ($\lambda = 3 \text{ \AA}$) на вытянутом в горизонтальном направлении образце фторопласта $(CF_2)_n$. Расстояние образец-детектор 100 mm. b) Изомерное изображение.

Рис. 6. Двумерный спектр рассеяния нейтронов ($\lambda = 3 \text{ Å}$) на образце пористого стекла Vycor. Расстояние образецдетектор 300 mm.

Рис. 7. Двумерный спектр, полученный при облучении рассеянным пучком нейтронов (источник Cf-252) пластины кадмия с надписью PNPI.

Заключение 4.

В ПИЯФ РАН в Отделении физики высоких энергий на базе отдела трековых детекторов создана производственная линия по изготовлению детекторов тепловых нейтронов. В настоящее время построено три детектора (см. таблицу).

Детекторы нейтронов с чувствительными областями 300×300 и 200×200 mm будут установлены на дифрактометры "Вектор" и "Мембрана-2" после соответствующей модернизации измерительных трактов установок.

Существующая технологическая база позволяет создавать детекторы нейтронов с большей чувствительной областью и лучшим пространственным разрешением. Возможно создание изогнутых детекторов, радиус изгиба которых определяется геометрическими параметрами экспериментальных установок.

Список литературы

- V. Andreev, G. Ganzha, D. Ilyin, E. Ivanov, S. Kovalenko, A. Krivshich, A. Nadtochy, V. Runov. Nucl. Instr. Meth. A 581, 123 (2007).
- [2] В.А. Андреев, Е.А. Иванов, Д.С. Ильин, С.Н. Коваленко, А.Г. Крившич, А.В. Надточий, В.В. Рунов. Изв. РАН. Сер. физ. 72, 7, 1059 (2008).
- [3] В.А. Андреев, Г.А. Ганжа, Е.А. Иванов, Д.С. Ильин, С.Н. Коваленко, А.Г. Крившич, А.В. Надточий, В.В. Рунов. Препринт ПИЯФ № 2780. Гатчина (2008). 24 с.