Влияние давления на спектры комбинационного рассеяния света в монокристалле SnS₂

© А.Н. Утюж, Ю.А. Тимофеев, Г.Н. Степанов

Институт физики высоких давлений им. Л.Ф. Верещагина РАН, Троицк, Московская обл., Россия E-mail: anatu@hppi.troitsk.ru

(Поступила в Редакцю 18 мая 2009 г.)

Проведено исследование политипа 2*H* слоистого кристалла SnS_2 методом комбинационного рассеяния света при давлении до 5 GPa в камере с алмазными наковальнями. При увеличении давления рамановская частота внутрислоевой моды растет линейно с барическими коэффициентами 5.2 cm⁻¹/GPa при *P* < 3 GPa и 3.4 cm⁻¹/GPa при *P* > 3 GPa. Обнаруженное изменение барического коэффициента для рамановского спектра и литературные данные для рентгеновских измерений сжимаемости 2*H*-SnS₂ до 10 GPa позволяют сделать заключение о перестройке структуры кристалла в районе 3 GPa.

1. Введение

Большой интерес к слоистым структурам объясняется выраженной анизотропией сил связи и соответственно сильной анизотропией всех физических свойств, которая снижается при высоких давлениях. SnS₂, также известный как минерал берндтит, это слоистый полупроводник со структурой CdI₂. Монокристаллы различных политипов SnS₂ получаются при различной укладке трехслойных сандвичей, состоящих из слоев атомов олова, заключенных между двумя плотноупакованными слоями атомов серы. Атомы олова располагаются в октаэдрических пустотах между атомами серы. Атомы внутри сандвича связаны сильной ковалентной связью с ионным вкладом, сандвичи друг с другом — слабой ван-дер-ваальсовской связью. Известные политипы SnS₂ — 2H, 4H, 18R различаются порядком укладки этих сандвичей друг на друга нормально к оси с. Простейшая структура 2H-SnS₂ имеет порядок укладки $[A\gamma B, A\gamma B...]$, где γ означает слой атомов металла, а А и В — слои серы. В этом случае на элементарную ячейку приходится один слой и одна молекула SnS₂. 2H-SnS₂ имеет гексагональную элементарную ячейку с постоянными решетки a = 3.647 Å, c = 5.899 Å и пространственную группу $D_{3d}^3(P\bar{3}m1)$ [1]. У структуры 4*H* порядок укладки $[(A\gamma B), (C\alpha B)]n$, где латинские буквы обозначают трансляционно-неэквивалентные слои атомов серы, греческие — слои атомов олова. В элементарную ячейку политипа 4Н входят два трансляционнонеэквивалентных сандвича; постоянная решетки а такая же, как у политипа 2H, а постоянная c приблизительно вдвое больше, чем у 2Н.

Оптические исследования монокристаллов SnS_2 включают спектры поглощения, отражения и люминесценции [1–4]. Как инфракрасная, так и рамановская спектроскопия были использованы для изучения динамики решетки монокристаллов SnS_2 [5–9] и нанокристаллов SnS_2 [10].

При исследованиях под давлением определены зависимости края поглощения политипов 2*H*-SnS₂ и 4*H*-SnS₂ до 0.5 GPa (газовое давление) [2], сжимаемости методом рентгеновской дифракции на монокристалле 2H-SnS₂ до 3.0 GPa [11] и на порошке 2H-SnS₂ до 10 GPa [12], а также измерены спектры KPC на политипах 4H-SnS₂ и 18R-SnS₂ до 3.0 GPa [13,14].

В настоящей работе мы представляем первое исследование влияния давления на спектр КРС монокристалла 2*H*-SnS₂.

2. Структура кристалла и фононный спектр

Одиночный сильно связанный слой в SnS₂ представляет собой S–Sn–S-сандвич, в котором атомы олова имеют октаэдрическую координацию с шестью ближайшими атомами серы. В кристалле 2H-SnS₂ элементарная ячейка имеет базис из трех атомов, что приводит к фононному спектру, состоящему из 9 ветвей. Это три дважды вырожденные *E*-моды, в которых атомы движутся параллельно плоскости слоя, и три невырожденные *A*-моды, в которых атомы смещаются перпендикулярно этому слою. Распределение фононов по типам симметрии точечной группы $D_{3d}(\bar{3}m1)$ дает в центре зоны Бриллюэна 9 нормальных мод колебаний

$$\Gamma = A_{1g} + 2A_{2u} + E_g + 2E_u. \tag{1}$$

Шесть оптических мод делятся на три рамановски активные моды, принадлежащие к A_{1g} и E_g , и три активные при инфракрасном поглощении, относящиеся к A_{2u} и E_u [6,8]. Моды, активные при инфракрасном поглощении, и рамановски активные моды являются взаимоисключающими вследствие наличия центра инверсии. Три акустические моды принадлежат к A_{2u} и E_u .

В спектрах КРС 2*H*-SnS₂ наблюдаются две линии первого порядка. Линия 315 cm^{-1} обусловлена модой A_{1g} , а линия 205 cm^{-1} — двукратно вырожденным колебанием E_g , что соответствует предсказаниям теории групп [6,7].

Политип SnS ₂	Пространственная группа	Симметрия моды	Частота моды, ст ⁻¹	<i>Т</i> ,К	Литература
			315.3	295	Настоящая работа
2H	$D^{3}_{3d}(P\bar{3}m1)$	A_{1g}	315.0	295	[6]
			314.8	295	[7]
			313.5	295	[6]
4H	$C_{6v}^4(P6_3mc)$	A_1^1	314.4	295	[7]
		-	314	Комнатная	[14]
18 <i>R</i>	$D_{3d}^3(P\bar{3}m1)$	A_{1g}	314	Комнатная	[14]

Таблица 1. Частоты наиболее сильной рамановской моды различных политипов SnS2 при нормальных условиях

3. Образцы и методика эксперимента

Для получения монокристаллов SnS₂ стехиометрическую смесь олова (чистота 0.9999) и серы (чистота чда) в количестве 50 mg помещали в кварцевую ампулу с внутренним диаметром 4 mm и наружным диаметром 6 mm. Ампулу откачивали форвакуумным насосом и заполняли гелием под давлением 3 kPa. Длина ампулы после запаивания составляла около 100 mm. Ампулу помещали в муфельную печь почти горизонтально, с небольшим наклоном. В центральной части печи температура составляла 500°С, в этой области располагался нижний конец ампулы. Верхний конец ампулы находился при температуре около 350°С. Ампулу выдерживали в печи в течение одного месяца. Затем ее извлекали из печи и осторожно раздавливали. В средней части ампулы под микроскопом можно было обнаружить монокристаллы SnS₂. Кристаллы прозрачны и при большой толщине имеют золотисто-коричневый цвет из-за сильного края поглощения в ультрафиолетовом диапазоне [1,4]. Для измерений рассеяния КРС были отобраны прозрачные пластинки размером около $50 \times 50 \times 10 \,\mu\text{m}$. На основании сопоставления наблюдаемых при нормальных условиях значений частоты линии КРС $\nu_0 = 315.3 \, \text{cm}^{-1}$ с литературными данными [6,7,14] (табл. 1) настоящие кристаллы были определены как политип 2*H*-SnS₂.

Давление создавали в камере с алмазными наковальнями, рабочая площадка которых имела диаметр 0.6 mm. Прокладка из стали Т301 имела отверстие диаметром 200 µm, где был размещен образец с размерами порядка $60 \times 50 \times 10 \,\mu\text{m}$ и кристалл рубина для определения давления по смещению линий люминесценции рубина [15]. Камера была заправлена полиэтилсилоксановой жидкостью ПЭС5 в качестве среды, передающей давление. Для возбуждения КРС-спектров использовали аргоновый лазер с $\lambda_{exc} = 514.5$ nm. Мощность излучения на образце не превышала 5 mW. При мощности, большей 15 mW, происходит разрушение образца. Спектры регистрировали, используя монохроматор Jobin-Yvon THR-1000, оснащенный двумя голографическими фильтрами (notch-filters) для подавления рассеянного света на частоте лазерной линии, и полупроводниковой светочувствительной матрицей (ССД-детектором), охлаждаемой жидким азотом. Измерения проводились при комнатной температуре в геометрии обратного рассеяния. Давление определяли с использованием шкалы на основе люминесценции рубина, учитывая поправки на изменение температуры, при которой проводятся измерения [16,17]. Измерения КРС-спектров образцов и положения линии люминесценции рубина проводили не ранее, чем через сутки после изменения давления в камере, для релаксации напряжений в ячейке высокого давления.

Результаты измерений и обсуждение

На рис. 1 представлен спектр, полученный при нормальных условиях. Наблюдается сильная линия спектра 2H-SnS₂ с частотой $\nu = 315.3 \text{ cm}^{-1}$. Положение этой единственной линии спектра KPC согласуется с литературными данными [6,7,14] для политипа 2H-SnS₂. Линия, соответствующая $\nu = 0 \text{ cm}^{-1}$, — это линия возбуждения аргонового лазера, подавленная двумя нотч-фильтрами, а подъем спектра около 100 cm^{-1} определяется положением края обрезания нотч-фильтра, подавляющего

Рис. 1. Спектр КРС образца 2*H*-SnS₂ при нормальных условиях.

Политип	cm^{ν_0} , cm^{-1}	dv/dP, cm ⁻¹ /GPa	P _{max} , GPa	Параметр Грюнайзена	Фононная мода	Литература
2H-SnS ₂	315.3	5.2(P < 3 GPa) 3.4(P > 3 GPa)	5.1	0.358	Внутрислоевая	Настоящая работа
4H-SnS ₂	27.3 314	3.8 4.7	3	3.0 0.32	Межслоевая Внутрислоевая	[14]
18R-SnS ₂	23.6 314	3.4 4.6	3	3.1 0.31	Межслоевая Внутрислоевая	[14]

Таблица 2. Зависимости от давления частот рамановских линий в различных политипах SnS₂, измеренные при комнатной температуре в камерах с алмазными наковальнями

люминесцентный фон, в основном обусловленный средой ПЭС5.

Результаты исследования влияния давления на КРС-спектр 2H-SnS₂ приведены на рис. 2, 3 и в табл. 2. На рис. 2 представлены КРС-спектры, полученные при высоких давлениях. Не было обнаружено никаких качественных изменений, мы наблюдали единственную линию в спектре КРС. Острая линия поглощения около 216.3 сm⁻¹ на рис. 1 и 2 практически не смещается по частоте под давлением. Широкая полоса поглощения

Рис. 2. Спектры КРС образца 2*H*-SnS₂ при высоких давлениях.

Рис. 3. Изменение частоты линии КРС для образцов SnS_2 при увеличении давления. 1 - 2H-SnS₂, настоящая работа; 2 - 4H-SnS₂.

слева от линии SnS_2 под давлением практически не смещается, она отсутствует на спектрах, измеренных при нормальных условиях (рис. 1). Обе эти особенности мы относим к аппаратурным эффектам.

На рис. З представлена зависимость от давления частоты наблюдаемой внутрислоевой моды KPC SnS₂. Размер точек на графике приблизительно соответствует погрешности определения частоты линии, которая составляет ± 0.5 сm⁻¹. Рамановская частота ν для всех политипов SnS₂ растет линейно с барическим коэффициентом $A = d\nu/dP$

$$\nu = \nu_0 + AP, \tag{2}$$

где $v_0 = v(P = 0)$. Барический коэффициент для образцов 2*H*-SnS₂, исследованных в настоящей работе, существенно изменяется в районе 3 GPa от $A = 5.2 \text{ cm}^{-1}$ /GPa при P < 3.0 GPa до $A = 3.4 \text{ cm}^{-1}$ /GPa при P > 3 GPa. Для политипов 4*H*-SnS₂ и 18*R*-SnS₂ имеются литературные данные для зависимости от давления частоты внутрислоевой моды KPC, измеренные в камере с алмазными наковальнями до 3 GPa [13,14]. Все экспериментальные точки v(P), представленные на рисунке работы [13], хорошо аппроксимируются линейными зависимостями. Барические коэффициенты для этих измерений приведены в работе [14] (табл. 2). Полученный в настоящей работе барический коэффициент для политипа 2H-SnS₂ — $dv/dP = 5.2 \text{ cm}^{-1}$ /GPa при P < 3 GPa заметно выше, чем у других политипов. Наблюдается монотонное снижение барического коэффициента при переходе от 2H-SnS₂ к более сложным политипам SnS₂ (табл. 2).

Зависимость от давления частоты фононных мод обычно представляется с помощью параметра Грюнайзена, который определяется как

$$\gamma_i = -\frac{d\ln v_i}{d\ln V} = \frac{1}{\beta} \frac{d\ln v_i}{dP},\tag{3}$$

где v_i — частота *i*-й фононной моды, V — объем, β — объемная сжимаемость, а P — давление. Для расчета параметра Грюнайзена наблюдаемой моды при P = 0 мы использовали значение объемной сжимаемости 2*H*-SnS₂, полученное методом дифракции рентгеновских лучей на монокристалле при давлениях до 3.0 GPa, $\beta = 4.7 \cdot 10^{-2}$ GPa⁻¹ [11]. Полученное значение параметра Грюнайзена $\gamma = 0.358$ хорошо согласуется с данными для внутрислоевых фононных мод других политипов SnS₂ (табл. 2).

Ранее мы наблюдали аналогичные резкие изменения барических коэффициентов линейных зависимостей $\nu(P)$ для решеточных мод нафталина при фазовых переходах под давлением в окрестности 3.0 ± 0.3 GPa и 8.0 ± 0.5 GPa [18]. Изменение спектров КРС является чувствительным признаком фазовых переходов; так, переходы второго рода (или слабого первого рода) в бензоле и нафталине, едва различимые методами смещения поршня и рентгеновской дифракции, хорошо регистрируются по изменению спектров КРС [18,19].

Имеются литературные данные для рентгеновских измерений сжимаемости монокристалла 2H-SnS₂ при 1.2, 2.0 и 3.0 GPa [11] и измерения сжимаемости на порошке 2H-SnS₂ до 10 GPa [12]. В работе [12] на графиках, представляющих зависимости от давления параметров $a/a_0, c/c_0, V/V_0$, заметны особенности в районе 3.0 GPa (рис. 2–4 этой работы), которые так же, как и обнаруженное нами изменение dv/dP для спектра KPC, могут указывать на изменения структуры политипа 2H-SnS₂ в районе 3.0 GPa. В работе [12] механизм сжатия SnS₂ при P > 3 GPa описывается как сильное уменьшение расстояния между атомами серы S–S соседних слоев, сопровождающееся небольшим возрастанием толщины слоя и длины внутрислоевой связи S–S.

Монокристалл CdI₂ (политип 4*H*) исследован методом KPC в камере с алмазными наковальнями в среде силиконового масла до 9 GPa при комнатной температуре [14]. В этой работе не обнаружено особенностей на зависимостях v(P) для внутрислоевых (A_1 и E_2) и межслоевой (RL)-мод. Монокристалл TiS₂, также имеющий структуру CdI₂, исследован методом рентгеновской дифракции в камере с алмазными наковальнями (среда этанол-метанол) [20]. В нем при P > 4 GPa происходит изоструктурный фазовый переход полупроводникполуметалл, и сильное межслоевое сжатие также сопровождается небольшим увеличением толщины слоя [20].

5. Заключение

Проведено исследование политипа 2H слоистого кристалла SnS_2 методом комбинационного рассеяния света при давлении до 5 GPa в камере с алмазными наковальнями. Спектр КРС не претерпевает качественного изменения в исследованном диапазоне давлений.

При увеличении давления рамановская частота внутрислоевой моды растет линейно с барическими коэффициентами 5.2 сm⁻¹/GPa при P < 3 GPa и 3.4 сm⁻¹/GPa при P > 3 GPa. Полученный в настоящей работе барический коэффициент для политипа 2*H*-SnS₂ — dv/dP = 5.2 сm⁻¹/GPa при P < 3 GPa выше, чем у других политипов. Наблюдается монотонное снижение барического коэффициента при переходе от 2*H*-SnS₂ к более сложным политипа 4*H*-SnS₂ и 18*R*-SnS₂.

Обнаруженное изменение барического коэффициента для рамановского спектра и литературные данные для рентгеновских измерений сжимаемости 2H-SnS₂ до 10 GPa позволяют сделать заключение о перестройке структуры кристалла в районе 3 GPa.

Список литературы

- T. Shibata, N. Kambe, Y. Muranishi, T. Miura, T. Kishi. J. Phys. D.: Appl. Phys. 23, 719 (1990).
- [2] M.J. Powell. J. Phys. C.: Solid State Phys. 10, 2967 (1977).
- [3] H. Nozaki, I. Imai. Physica **105B**, 74 (1981).
- [4] S. Mandalidis, J.A. Kalomiros, K. Kambas, A.N. Anagnostopoulos. J. Mater. Sci. 31, 5975 (1996).
- [5] D.G. Mead, J.C. Irwin. Solid State Commun. 20, 885 (1976).
- [6] A.J. Smith, P.E. Meek, W.Y. Liang. J. Phys. C: Solid State Phys. 10, 1321 (1977).
- [7] И.С. Горбань, В.А. Губанов, В.Ф. Орленко. ФТТ 23, 525 (1981).
- [8] G. Lucovsky, J.C. Mikkelsen, W.Y. Liang, R.M. White, R.M. Martin. Phys. Rev. B 14, 1663 (1976).
- [9] A. Cingolani, M. Lugara, G. Scamarcio. Nuovo Cimento 10, 519 (1988).
- [10] C. Wang, K. Tang, Q. Yang, Y. Qian. Chem. Phys. Lett. 357, 371 (2002).
- [11] R.M. Hazen, L.W. Finger. Phys. Rev. B 14, 289 (1976).
- [12] K. Knorr, L. Ehm, M. Hytha, B. Winkler, W. Depmeier. Phys. Status Solidi B 223, 435 (2001).
- [13] S. Nakashima, H. Katahama, A. Mitsuishi. Physica 105B, 343 (1981).
- [14] H. Katahama, S. Nakashima, A. Mitsuishi. J. Phys. Chem. Solids 44, 1081 (1983).
- [15] G.J. Piermarini, S. Block, J.D. Barnett, R.A. Forman. J. Appl. Phys. 46, 2774 (1975).
- [16] W.L. Vos, J.A. Schouten. J. Appl. Phys. 69, 6744 (1991).
- [17] А.Н. Утюж, Ю.А. Тимофеев, А.В. Рахманина. ЖЭТФ 131, 634 (2007).
- [18] A.N. Utjuzh, V.V. Struzhkin. Rev. High Pressure Sci. Technol. 7, 742 (1998).
- [19] M.M. Thiery, J.M. Leger. J. Chem. Phys. 89, 4255 (1988).
- [20] D.R. Allan, A.A. Kelsey, S.J. Clark, R.J. Angel, G.J. Ackland. Phys. Rev. B 57, 5106 (1998).