Магнитные, электрические, магнитоэлектрические и магнитоупругие свойства манганитов La_{0.9}Sr_{0.1}MnO_{3-v}

© Л.И. Королева, Д.М. Защиринский, Т.М. Хапаева, Л.И. Гурский*, Н.А. Каланда**, В.М. Трухан*, Р. Шимчак***, Б. Крзуманска***

Московский государственный университет им. М.В. Ломоносова,

Москва, Россия

* Белорусский государственный университет информатики и радиоэлектроники,

Минск, Белоруссия

** Объединенный институт физики твердого тела и полупроводников НАН Белоруссии,

Минск, Белоруссия

*** Институт физики ПАН, Варшава, Польша

E-mail: koroleva@phys.msu.ru

(Поступила в Редакцию 28 апреля 2009 г.)

Изучено влияние дефицита кислорода на намагниченность, парамагнитную восприимчивость, электросопротивление, магнитосопротивление и объемную магнитострикцию манганита La_{0.9}Sr_{0.1}MnO_{3-v} с y = 0.03, 0.1 и 0.15. Температурная зависимость намагниченности M(T) имеет сложный характер: при $T < 80 \,\mathrm{K}$ она слабо зависит от T и при $80 \le T \le 300 \,\mathrm{K}$ наблюдается спад на кривой M(T). В области $240 \le T \le 300 \,\mathrm{K}$ дальний магнитный порядок распадается на суперпарамагнитные кластеры. При $T < 80 \,\mathrm{K}$ магнитный момент на формульную единицу примерно в 4 раза меньше того, который был бы при полном ферромагнитном упорядочении моментов ионов Mn. Хотя в составе с у = 0.03, в котором часть акцепторных центров скомпенсирована донорами (вакансиями кислорода), и наблюдаются максимумы отрицательных магнитосопротивления $\Delta \rho / \rho$ и объемной магнитострикции ω в районе точки Кюри, их величины на 1-2 порядка меньше, чем у состава y = 0. В составах с y = 0.1 и 0.15 с электронным типом легирования величины $|\Delta \rho / \rho|$ и $|\omega|$ меньше на 1–2 порядка, чем в составе с y = 0.03. В них наблюдается отсутствие гигантских эффектов магнитосопротивления и объемной магнитострикции, что свидетельствует об отсутствии ферронов около неионизованных вакансий кислорода. Отсюда был сделан вывод, что роль как скомпенсированных, так и нескомпенсированных двухзарядных доноров заключается в том, что они образуют разорванные связи Mn-O-Mn, приводящие к понижению температуры Кюри с ростом у и появлению выше ее суперпарамагнитных кластеров неферронного типа.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 06-02-81050-Бел_а).

1. Введение

На основании исследования физических свойств систем $La_{1-x}Me_xMnO_{3-y}$ (Me = Sr, Ca) было показано, что в них имеет место ферро-/антиферромагнитное магнито-двухфазное состояние (МДФС), вызванное сильным s-d-обменом. При x < 0.17 оно изолирующее — в изолирующей антиферромагнитной матрице располагаются ферромагнитные капли или ферроны, в которых сосредоточены носители заряда, а при $0.17 \le x \le 0.4$ оно проводящее — в проводящей ферромагнитной матрице располагаются изолирующие антиферромагнитные капли [1,2]. При этом ферромагнетизм в ферромагнитной части образца создается и поддерживается косвенным обменом через носители тока, которыми в указанных манганитах являются дырки. В то же время температура Кюри в манганитах сильно зависит от нестехиометрии по кислороду. Однако влияние дефицита О на физические свойства манганитов исследовано всего лишь в двух работах [3,4]. В нашей недавней публикации [3] было показано, что в составах с x = 0.2 и 0.4 системы $La_{1-x}Sr_xMnO_{3-y}$

происходит переход от проводящего МДФС при y = 0к изолирующему при у = 0.13 и 0.2. При этом в изолирующем МДФС магнитосопротивление и объемная магнитострикция малы. Отсюда был сделан вывод, что нескомпенсированные двухзарядные доноры — вакансии О — находятся в состоянии с антипараллельным расположением спинов и не вызывают образования ферромагнитных (ФМ) кластеров типа ферронов. Роль как скомпенсированных, так и нескомпенсированных двухзарядных доноров заключается в том, что они образуют разорванные связи Mn-O-Mn, приводящие к понижению магнитного момента на формульную единицу (f.u.) в составах с y = 0.13 и переходу к суперпарамагнетизму в составах с y = 0.2. В работе [4], в которой был исследован состав с x = 0.15 и y < 0.055, было обнаружено, что температура Кюри, электропроводность и магнитосопротивление уменьшаются с ростом у, а постоянные орторомбической решетки b и с возрастают. По мнению авторов [4], это происходит из-за уменьшения концентрации дырок вследствие их частичной компенсации электронами вакансий кислорода.

у	θ, Κ	<i>T</i> _C ,K (12 kOe)	<i>T</i> _C ,K (50 kOe)	$m_0,$ emu/g (12kOe)	$m'_0, \ \mu_{ m B}/{ m f.u.} \ (12{ m kOe})$	$m_0,$ emu/g (50 kOe)	$m'_0, \ \mu_{\rm B}/{ m f.}{ m u.} \ (50{ m kOe})$	μ, μ _B (12 kOe)	μ, μ _B (50 kOe)	E, eV	$\lg \rho(T = 200$ K	0.1-2у, нескомпен- сированные носители
0.03	261	150	212	18.9	0.8	28.2	1.19	36 250-300 K	24.6 260 K	0.4	3.63	0.04, дырки,
0.1	275	112	175	23.8	1.00	29.4	1.24	25.5 210-300 K	19.8 245-300 K	0.47	3.99	0.1, электроны
0.15	290	107	161	24.4	1.02	31.3	1.31 255–300 K	22.7 250–300 K	17.8	0.54	5.41	0.2, электроны

Магнитные и электрические характеристики La_{0.9}Sr_{0.1}MnO_{3-y}

В настоящей работе исследовано влияние дефицита кислорода на магнитные, электрические, магнитоэлектрические и магнитоупругие свойства состава с x = 0.1, находящегося в изолирующем МДФС.

2. Техника эксперимента, получение образцов и их анализ

В настоящей работе изучены намагниченность M, парамагнитная восприимчивость ρ , магнитосопротивление $\Delta \rho / \rho = (\rho_H - \rho_{H=0}) / \rho_{H=0}$ и магнитострикция поликристаллических образцов высокой плотности La_{0.9}Sr_{0.1}MnO_{3-y} с y = 0.03, 0.1 и 0.15. Однофазные образцы были получены по методике, описанной в нашей публикации [3].

Измерение намагниченности производилось в полях до 50 kOe с помощью СКВИД-магнитометра (Quantum Design, MPMS-5). Парамагнитная восприимчивость измерялась весовым методом с электромагнитной компенсацией. Электросопротивление и магнитосопротивление определялись стандартным четырехзондовым методом, а магнитострикция — с помощью тензодатчиков.

3. Результаты эксперимента и их обсуждение

На рис. 1 показана температурная зависимость намагниченности M(T) состава с y = 0.1, которая типична и для составов с y = 0.03 и 0.15. Из этого рисунка видно, что в области низких температур намагниченность слабо зависит от T. Экстраполяцией этого участка кривой M(T) до пересечения с осью T была определена величина спонтанной намагниченности m_0 ; ее значения для всех исследованных образцов приведены в таблице. После этого участка начинается спад на кривых M(T), который продолжается в широкой температурной области. Очевидно, понятие температуры Кюри T_C образца, находящегося в изолирующем МДФС, каким является исследуемый состав La_{0.9}Sr_{0.1}MnO_{3-y} весьма условно. Ее определение невозможно методом термодинамических коэффициентов Белова–Арротта из-за магнитной неоднородности системы. Неправомерно определение Т_С и по намагниченности в слабых магнитных полях, так как эта намагниченность обусловлена в основном размагничивающим фактором. Размагничивающий фактор ФМ-фазы зависит от ее конфигурации, которая меняется с температурой. Поэтому в качестве температуры Кюри была взята температура, полученная путем экстраполяции наиболее крутой части кривой M(T), измеренной в максимальном поле измерения 50 kOe, до ее пересечения с осью температур. Ее величины представлены в таблице для всех изученных образцов. Там же представлены температуры Кюри, полученные таким же способом из кривых M(T), измеренных в магнитном поле 12 kOe. Из таблицы видно, что разница между величинами Т_с, измеренными в полях 50 и 12 kOe, достигает ≈ 60 K. Это является дополнительным свидетельством магнитной неоднородности образцов. В пользу существования МДФС свидетельствует и смещение петли гистерезиса намагниченности образца, охлажденного до 5К в магнитном поле (кривая FC), как показано на рис. 2.

Из рис. 1 видно, что выше T_C существует "хвост" намагниченности, при этом величины намагниченности при 300 и 5К различаются всего в 5 раз. Высокотемпературная часть последнего участка кривой M(T),

Рис. 1. Температурная зависимость намагниченности состава $La_{0.9}Sr_{0.1}MnO_{2.9}$.

Рис. 2. Петли гистерезиса намагниченности образца La_{0.9}Sr_{0.1}MnO_{2.9} при температуре 5 K, измеренные после охлаждения образца в магнитном поле 4.5 kOe (кривая FC) и после охлаждения в отсутствие магнитного поля (кривая ZFC).

измеренной в магнитных полях H = 12 и 50 kOe, подчиняется следующему соотношению:

$$M = M_0 L(\mu H/kT), \qquad (1)$$

где

$$L = \operatorname{cth}(\mu H/kT) - kT/\mu H \tag{2}$$

— функция Ланжевена, описывающая намагниченность в зависимости от H и T ансамбля суперпарамагнитных кластеров, обладающих моментом $\mu = 25.5 \mu_{\rm B}(H = 12 \, {\rm kOe})$. В таблице приводятся величины суперпарамагнитных кластеров в составах с y = 0.03, 0.1 и 0.15 и интервалы температур, в которых наблюдалось суперпарамагнитное поведение. Там же для этих составов приводятся парамагнитная точка Кюри θ и величины удельного электросопротивления ρ при $T = 200 \, {\rm K}$. Оказалось, что T-зависимость ρ имеет полупроводниковый характер, как видно из рис. 3, с энергией активации E, представленной в таблице.

Рассмотрим теперь систему $La_{0.9}Sr_{0.1}MnO_{3-y}$ с y = 0.03, 0.1 и 0.15. В ней имеются одноразрядные акцепторы — ионы Sr^{2+} и двухзарядные доноры вакансии кислорода. Энергетические уровни доноров расположены выше энергетических уровней акцепторов, поэтому электроны с донорных уровней частично (у составов с y = 0.1 и 0.15) или полностью (у состава с y = 0.03) перейдут на акцепторные уровни, т.е. полу проводник будет частично компенсирован. Количество нескомпенсированных электронов и дырок на f. u., которое равно 0.1–2y, приведено в таблице.

В составах с y = 0.1 и 0.2 имеется электронный тип проводимости, а в составе с y = 0.03 — дырочный. Если считать, что одна дырка приводит к образованию одного иона Mn⁴⁺ с магнитным моментом $3\mu_{\rm B}$, а один электрон — к образованию иона Mn²⁺ с магнитным моментом 5 $\mu_{\rm B}$, то при полном ФМ-упорядочении в составе с y = 0.03 магнитный момент на f. u. равнялся бы 3.96 $\mu_{\rm B}$ /f. u., в составе с $y = 0.1-4.1\,\mu_{\rm B}$ /f. u., в составе с $y = 0.15-4.2\,\mu_{\rm B}$ /f. u.. Как видно из таблицы, величины экспериментально полученных значений магнитного момента на f. u. (m'_0), определенного из m_0 , оказались близкими к $\sim 1\,\mu_{\rm B}$, т. е. в ~ 4 раза меньше. Вследствие этого можно предположить, что и при самых низких температурах, при которых производились измерения (5 K), лишь 0.25 объема образца ферромагнитно упорядочено.

Из таблицы видно, что по мере возрастания дефицита кислорода температура Кюри и моменты суперпарамагнитных кластеров уменьшаются, а парамагнитная точка Кюри, намагниченность m_0 , удельное электросопротивление и энергия активации увеличиваются. Магнитосопротивление $\Delta \rho / \rho$ и магнитострикция в составе с y = 0.03 отрицательны в районе T_C . Хотя и наблюдается максимум на кривой $|\Delta \rho / \rho|(T)$ при T_C

Рис. 3. Зависимость натурального логарифма удельного электросопротивления ρ от обратной температуры составов La_{0.9}Sr_{0.1}MnO_{3-y} с y = 0.03, 0.1 и 0.15.

Рис. 4. Температурная зависимость магнитосопротивления $\Delta \rho / \rho$ состава La_{0.9}Sr_{0.1}MnO_{2.97} в разных магнитных полях.

(рис. 4), этот максимум на 1-2 порядка ниже, чем у состава с y = 0 по данным [5]. Как видно из рис. 5, модуль объемной магнитострикции ω также проходит через максимум в районе Тс, но его величина всего лишь $\sim 10^{-5}$, что на порядок ниже, чем у состава с y=0 [6]. Следует отметить, что кривые $\{\Delta
ho/
ho\}(H)$ и $\omega(H)$ далеки от насыщения в максимальных полях измерения H = 12.1 kOe (рис. 6,7), что присуще магнитным полупроводникам в районе Т_С и объясняется присутствием ферронов [1,2]. Занижение максимальных величин $|\Delta \rho / \rho|$ и $|\omega|$ в районе T_C в составе с y = 0.03по сравнению с составом с у = 0, по-видимому, связано с уменьшением концентрации ферронов из-за частичной компенсации дырок электронами. В составах с у = 0.1 и 0.5 с электронным типом легирования величины $|\Delta \rho / \rho|$ и $|\omega|$ меньше на 1–2 порядка, чем в составе с y = 0.03. В них наблюдается отсутствие гигантских эффектов

Рис. 5. Температурная зависимость объемной магнитострикции ω состава La_{0.9}Sr_{0.1}MnO_{2.97} в разных магнитных полях. Здесь $\omega = \lambda_{\parallel} + \lambda_{\perp}, \lambda_{\parallel}$ — продольная, λ_{\perp} — поперечная по отношению к магнитному полю магнитострикция.

Рис. 6. Зависимость магнитосопротивления $\Delta \rho / \rho$ состава La_{0.9}Sr_{0.1}MnO_{2.97} от магнитного поля при различных температурах (указаны в K).

Рис. 7. Зависимость объемной магнитострикции ω состава La_{0.9}Sr_{0.1}MnO_{2.97} от магнитного поля при различных температурах (указаны в K).

магнитосопротивления и объемной магнитострикции, что свидетельствует об отсутствии ферронов около неионизованных вакансий кислорода. По-видимому, в $La_{0.9}Sr_{0.1}MnO_{3-v}$ s-d-обмен у электронов значительно слабее, чем у дырок, и при низких температурах спины двух электронов вакансии кислорода упорядочены антипараллельно, как в немагнитных полупроводниках $(состояние (1S)^2$ в гелиоподобной модели, а не (1S)(2S), в котором 2S-электрон образует феррон). Роль как скомпенсированных, так и нескомпенсированных двухзарядных доноров заключается в том, что они образуют разорванные связи Mn-O-Mn, приводящие к понижению температуры Кюри с ростом у и появлению выше ее супермагнитных кластеров неферронного типа. Это видно из данных таблицы; из нее также следует, что при этом возрастает парамагнитная температура Кюри. По-видимому, это связано с тем, что с ростом у изоляция суперпарамагнитных кластеров возрастает, что препятствует их разрушению.

4. Заключение

На основании исследования магнитных, электрических, магнитоэлектрических и магнитоупругих свойств состава $La_{0.9}Sr_{0.01}MnO_{3-y}$ показано, что с ростом дефицита кислорода от y = 0.03 до 0.15 удельное электросопротивление увеличивается на ~ 2 порядка и исчезают колоссальное магнитосопротивление и гигантская объемная магнитострикция, присущие системе $La_{1-x}Sr_xMnO_3$. Одновременно понижается температура Кюри, а кривая температурной зависимости намагниченности M(T) изменяет свой вид по сравнению с кривой M(T) стехиометрического по кислороду образца. Именно низкотемпературная область со слабой зависимостью M от T сокращается до 80 K, и далее происходит значительно более сильное падение M с ростом T.

Это падение выше точки Кюри описывается функцией Ланжевена с моментом суперпарамагнитных кластеров 19–34 $\mu_{\rm B}$. Магнитный момент на f.u. при $T = 5 \,\rm K$ приблизительно в 4 раза меньше того, который был бы при полном ферромагнитном упорядочении ионов Mn, т.е. лишь 25% объема образца ферромагнитно упорядочено. Перечисленные особенности объясняются тем, что рассматриваемые составы при у $\neq 0$ оказываются частично скомпенсированными полупроводниками, и оставшиеся нескомпенсированными двухзарядные доноры — вакансии кислорода — не образуют магнитно-примесных состояний типа ферронов. Это указывает на то, что в данных соединениях *s*-*d*-обмен у электронов значительно слабее, чем у дырок, и двухзарядный донор находится в состоянии $(1S)^2$ с антипараллельным расположением спинов в гелиоподобной модели. Двухзарядные доноры, как скомпенсированные, так и нескомпенсированные, образуют разорванные связи Mn-O-Mn, вследствие чего понижаются температура Кюри, магнитный момент на ион Mn при T = 5 K, а также выше T_C появляется "хвост" намагниченности, состоящий из суперпарамагнитных кластеров неферронного типа.

Список литературы

- Л.И. Королева. Магнитные полупроводники. Изд-во физич. фак-та МГУ, М. (2003). 312 с.
- [2] E.L. Nagaev. Phys. Rep. 346, 381 (2001).
- [3] Л.И. Королева, Д.М. Защиринский, Т.М. Хапаева, Л.И. Гурский, Н.А. Каланда, В.М. Трухан, Р. Шимчак, Б. Крзуманска. ФТТ 50, 2201 (2008).
- [4] A.M. De Leon-Guevara, P. Berhet, J. Berhon, F. Millot, A. Revcolevschi, A. Anane, C. Dupas, K. Le Dang, J.P. Renard, P. Veillet. Phys. Rev. B 56, 6031 (1997).
- [5] A. Urishibara, Y. Morimoto, T. Arima, A. Asamitsu, G. Kido, Y. Tokura. Phys. Rev. B 51, 14103 (1995).
- [6] Р.В. Демин, Л.И. Королева, Р. Шимчак, Г. Шимчак. Письма в ЖЭТФ 75, 402 (2002).