Аналитическая теория намагничивания малых частиц во внешнем переменном поле

© Д.В. Вагин, О.П. Поляков, С.А. Поломошнов

Московский государственный университет им. М.В. Ломоносова, Москва, Россия

E-mail: vagin@physics.msu.ru

05

(Поступила в Редакцию 22 марта 2011 г.)

Проведены аналитическое и численное исследования нелинейной динамики сферической магнитной частицы и ансамбля таких частиц во внешнем осциллирующем магнитном поле на основе уравнения Ландау– Лифшица–Гильберта. Получены точные аналитические формулы, позволяющие рассчитывать проекции средней по времени намагниченности системы от частоты внешнего поля и начальной ориентации магнитных моментов. Рассмотрено поведение системы в предельных случаях малых и больших частот. Построенные асимптотические решения хорошо согласуются с непосредственными численными расчетами уравнения Ландау–Лифшица–Гильберта. Для случая наличия магнитной анизотропии и размагничивающих полей формы создана аналитическая теория эффекта нелинейной динамической поляризации и обсуждена возможность его применения для создания устройств магнитной памяти.

Работа выполнена при финансовой поддержке РФФИ (грант № 09-08-00123).

1. Введение

Традиционно исследование динамики магнитных моментов было связано с задачами магнитного резонанса. Однако за последние 10-15 лет в физике, химии и технологии разработаны методы, позволяющие манипулировать отдельными атомами и молекулами, совершать операции, которые естественно описывать в терминах конструирования на молекулярном уровне. Наибольший интерес представляют магнитные ультрамалые частицы — нанокластеры, состоящие из небольшого числа атомов (10-10000), так как наличие внутренней дополнительной степени свободы — магнитного момента придает большое разнообразие их свойствам и позволяет управлять их состоянием. В плане приложений эти объекты интересны, если их состояние удается воспроизводимым образом контролировать. Для магнитных материалов этого можно добиться при помощи внешнего магнитного поля [1-5]. Однако, как показали последние исследования, управлять динамикой магнитных моментов малых частиц можно и с помощью изменения их формы и конфигурации системы [6-13]. Варьируя форму частицы или конфигурацию системы, приводящую к эквивалентным изменениям размагничивающих полей, можно получать различные режимы динамики намагниченности (поляризацию, прецессию и хаотические колебания) или, напротив, избегать их реализации. Это является особенно важным для технических приложений, таких как конструирование магнитной памяти (MRAM), сверхчувствительных наноэлементов и т.п., поскольку при частотах внешнего поля, сравнимых с характерными частотами прецессии спинов, существенную роль начинают играть сильно нелинейные эффекты, что обусловливает сложный характер динамики магнитных моментов в системе. (Напротив, хаотические режимы были экспериментально обнаружены в ферритах и проводящих тонких ферромагнитных пленках.) Понимание этих процессов позволит с большей точностью описывать процессы перемагничивания, записи и считывания с магнитных головок и т.д.

Для описания поведения магнитных сред чаще всего используется уравнение Ландау-Лифшица-Гильберта (ЛЛГ) [14,15]. Однако в силу существенной нелинейности только в последние годы удалось применить его для всестороннего исследования особенностей временной эволюции вектора намагниченности во внешних переменных полях. В настоящее время актуальны численные исследования процессов управления динамикой и перемагничиванием малых частиц, так как устройства памяти, сенсоры, считывающие информацию элементы разрабатываются пока на базе магнитных объектов (например, тонких однослойных и многослойных прямоугольных полосок размером 1000 nm и менее и толщиной порядка 100-20 nm) [4-11]. Таким образом, математическое моделирование уравнения ЛЛГ имеет не только познавательный интерес — оно непосредственно используется при проектировании новых элементов спинтроники [12,13]. Но в подобных нелинейных системах любое малое изменение управляющих параметров способно привести к существенному изменению режима динамики, поэтому в большинстве практически интересных случаев подобные численные решения являются неустойчивыми или же требуют колоссальных затрат времени счета даже при современном уровне вычислительной техники. В связи с этим большую актуальность приобретают аналитические методы и построение простых приближенных моделей для последующего их использования в комплексных численных расчетах. Большинство таких методов в силу сложности исходного уравнения ЛЛГ базируются на теории возмущений, т.е. могут иметь предсказательную силу лишь в области слабо нелинейных эффектов [1,2]. В настоящей работе построено точное аналитическое решение уравнения динамики магнитных моментов в рамках приближения сферических частиц и частиц с формой в случае направленной вдоль внешнего поля оси анизотропии.

Нелинейная динамика векторов намагниченности в малых сферических частицах

В рамках теории Ландау–Лифшица–Гильберта поведение вектора намагниченности определяется следующим уравнением [14,15]:

$$\frac{d\mathbf{M}}{dt} = \gamma \left[\mathbf{M} \frac{\delta W}{\delta \mathbf{M}} \right] + \alpha \frac{[\mathbf{M}\dot{\mathbf{M}}]}{M},\tag{1}$$

где W — полная магнитная энергия системы, **M** — вектор намагниченности, γ — гиромагнитное отношение, α — параметр затухания Гильберта. Динамика полярного угла θ магнитного момента **M** во внешнем переменном поле частоты ω (направленном вдоль оси z) $H_{\text{ext}} \equiv H_z$ определяется уравнением [6,7]

$$\frac{d\theta}{d\tau} = \alpha p_z \sin \tau \sin \theta, \qquad (2)$$

где

$$p_z = \frac{1}{1+\alpha^2} \frac{\gamma H_z}{\omega}, \ \ \tau = \omega t$$

Оно имеет аналитическое решение

$$\ln \left| \frac{\tan \frac{\theta}{2}}{\tan \frac{\theta_0}{2}} \right| = \alpha p_z (\cos \tau - 1), \tag{3}$$

где θ_0 — полярный угол, определяющий направление вектора **М** в начальный момент времени (вывод показан

в Приложении 1). Далее выполним следующие преобразования:

$$1 + \left(\tan\frac{\theta}{2}\right)^2 = \left(\tan\frac{\theta_0}{2}\right)^2 \exp[2\alpha p_z(\cos\tau - 1)] + 1, \quad (4)$$

$$\cos[\theta(\tau)] = \frac{2}{\left(\left(\tan\frac{\theta_0}{2}\right)^2 \exp[2\alpha p_z(\cos\tau - 1)] + 1\right)} - 1.$$
(5)

Усредним выражение (5) по времени, поскольку на практике любой прибор измеряет именно средние по времени величины. Поскольку $\cos[\theta(\tau)]$ периодическая функция, усреднение по времени будет эквивалентно усреднению по периоду на временах, бо́льших величины обратной частоты внешнего воздействия,

$$\begin{aligned} \langle \cos \theta \rangle &= \frac{1}{2\pi} \int_{0}^{2\pi} \cos[\theta(\tau)] d\tau \\ &= -1 + \frac{2}{\pi} \int_{0}^{\pi} \frac{d\tau}{\left(\tan \frac{\theta_0}{2}\right)^2 \exp\left[-4\alpha p_z \left(\sin \frac{\tau}{2}\right)^2\right] + 1}. \end{aligned}$$
(6)

Необходимо отметить, что уравнение (6) является точным аналитическим решением уравнения Ландау– Лифшица–Гильберта для выбранной конфигурации системы. На рис. 1 представлена зависимость компоненты магнитного момента частицы $M_z = M(\cos \theta)$ вдоль направления внешнего поля от частоты внешнего воздействия для случая $\alpha = 0.01$, $H_{\text{ext}} = -300$ Oe, $\theta_0 = 0.01$. Видно, что результаты представленной теории полностью согласуются с данными численного моделирования.

Далее рассмотрим ансамбль слабовзаимодействующих (находящихся на достаточно больших расстояниях друг от друга) частиц сферической формы со случайной ориентацией векторов намагниченности в начальный момент времени; например, матрицу, составленную из произвольным образом "посаженных" магнитных частичек.

Чтобы найти магнитный момент такой системы, необходимо усреднить выражение (6) по всевозможным ориентациям магнитного момента в начальной момент времени

$$\langle\langle\cos\theta\rangle\rangle = -1 + \frac{2}{\pi^2} \int_0^{\pi} \int_0^{\pi} \frac{d\tau d\theta_0}{\left(\tan\frac{\theta_0}{2}\right)^2 \exp\left[-4\alpha p_z \left(\sin\frac{\tau}{2}\right)^2\right] + 1}.$$
(7)

Можно показать (см. Приложение 2), что

$$\int_{0}^{\pi} \frac{d\theta_0}{\left(\tan\frac{\theta_0}{2}\right)^2 \exp\left[-4\alpha p_z \left(\sin\frac{\tau}{2}\right)^2\right] + 1}$$
$$= \frac{\pi}{\exp\left[-2\alpha p_z \left(\sin\frac{\tau}{2}\right)^2\right] + 1}$$

Физика твердого тела, 2011, том 53, вып. 10

Рис. 2. Зависимость компоненты намагниченности вдоль внешнего поля от частоты для ансамбля частиц. Сплошная линия — аналитическая зависимость (8), точки — данные численного моделирования уравнения ЛЛГ.

Тогда величина отношения проекции вектора намагниченности ансамбля частиц на направление внешнего поля к полному магнитному моменту системы задается уравнением

$$\frac{M_z}{M} = \langle \langle \cos \theta \rangle \rangle$$
$$= -1 + \frac{2}{\pi} \int_0^{\pi} \frac{d\tau}{\exp\left[-2\alpha p_z \left(\sin \frac{\tau}{2}\right)^2\right] + 1}.$$
 (8)

На рис. 2 представлена зависимость компоненты намагниченности ансамбля частиц $M_z = M \langle \langle \cos \theta \rangle \rangle$ вдоль направления внешнего поля от частоты внешнего воздействия для случая $\alpha = 0.01$, $H_{\text{ext}} = -300$ Oe.

3. Асимптотические зависимости

Поведение магнитного момента одной сферической частицы и ансамбля таких частиц во внешнем переменном поле точно описываются выражениями (6), (8). Однако интегралы в этих уравнениях не могут быть рассчитаны аналитически. Асимптотическое разложение позволяет получить простые формулы, описывающие магнитные свойства системы в случае больших и малых частот внешнего поля.

Рассмотрим предельный случай малых частот $\alpha p_z \gg 1$ для одной частицы

$$\langle \cos \theta \rangle \approx -1 + \frac{2}{\pi} \int_{0}^{\pi} \left(1 - \left(\tan \frac{\theta_0}{2} \right)^2 \right) \times \exp \left[-4\alpha p_z \left(\sin \frac{\tau}{2} \right)^2 \right] d\tau.$$
 (9)

Физика твердого тела, 2011, том 53, вып. 10

Сделаем в (9) замену переменных $x = \tau \sqrt{\alpha p_z}$

$$\begin{aligned} \langle \cos \theta \rangle &\approx 1 - \frac{2}{\pi} \int_{0}^{\pi \sqrt{\alpha p_{z}}} \left(\tan \frac{\theta_{0}}{2} \right)^{2} \exp[-x^{2}] \frac{d\tau}{\sqrt{\alpha p_{z}}} \\ &= 1 - \frac{\left(\tan \frac{\theta_{0}}{2} \right)^{2}}{\sqrt{\alpha p_{z}}}. \end{aligned} \tag{10}$$

Зависимость модуля средней намагниченности от величины начального угла для значения управляющего параметра $\alpha p_z = 50\,000$ (фактически обратной частоты внешнего поля) представлена на рис. 3. Данное значение управляющего параметра соответствует частоте 5 kHz.

Аналогичные вычисления можно проделать и для ансамбля магнитных частиц. Разложим выражение (8) в пределе малых частот внешнего возмущения

$$\langle \langle \cos \theta \rangle \rangle \approx -1 + \frac{2}{\pi} \int_{0}^{\pi} \left(1 - \exp\left[-2\alpha p_{z} \left(\sin \frac{\tau}{2} \right)^{2} \right] \right) d\tau$$

$$= 1 - \frac{2}{\pi} \int_{0}^{\pi} \exp\left[-2\alpha p_{z} \left(\sin \frac{\tau}{2} \right)^{2} \right] d\tau \approx 1 - \sqrt{\frac{2}{\pi \alpha p_{z}}}.$$

$$(11)$$

Здесь мы применили разложение функции Бесселя мнимого аргумента при $\alpha p_z \to \infty$. Зависимость модуля сред-

Рис. 3. Асимптотическая зависимость компоненты намагниченности вдоль внешнего поля от величины начального угла для одной частицы в случае малых частот. Сплошная линия — аналитическая зависимость (10), точки — данные численного моделирования уравнения ЛЛГ.

Рис. 4. Асимптотическая зависимость модуля компоненты намагниченности вдоль внешнего поля от параметра αp_z для ансамбля частиц в случае малых частот. Сплошная линия — аналитическая зависимость (11), точки — данные численного моделирования уравнения ЛЛГ.

Рис. 5. Асимптотическая зависимость модуля компоненты намагниченности вдоль внешнего поля от величины начального угла для одной частицы в случае больших частот $\alpha p_z = 0.003$. Сплошная линия — аналитическая зависимость (12), точки данные численного моделирования уравнения ЛЛГ.

Рис. 6. Асимптотическая зависимость модуля компоненты намагниченности вдоль внешнего поля от параметра αp_z для ансамбля частиц в случае больших частот. Сплошная линия — аналитическая зависимость (13), точки — данные численного моделирования уравнения ЛЛГ.

ней намагниченности от параметра αp_z представлена на рис. 4. Из рис. 3 и 4 видно, что полученные асимптотические формулы с хорошей точностью описывают поведение системы в случае малых частот внешнего воздействия.

Рассмотрим поведение сферической магнитной частицы в случае больших частот внешнего поля: $\alpha p_z \ll 1$. Тогда из (6) следует, что

$$\begin{aligned} \langle \cos \theta \rangle &\approx -1 + \frac{2}{\pi \left(1 + \left(\tan \frac{\theta_0}{2} \right)^2 \right)} \\ &\times \int_0^{\pi} \left(1 + \frac{\left(\tan \frac{\theta_0}{2} \right)^2}{1 + \left(\tan \frac{\theta_0}{2} \right)^2} \, 4\alpha p_z \left(\sin \frac{\tau}{2} \right)^2 \right) d\tau \\ &= -1 + \frac{2}{1 + \left(\tan \frac{\theta_0}{2} \right)^2} + \frac{\left(\tan \frac{\theta_0}{2} \right)^2}{1 + \left(\tan \frac{\theta_0}{2} \right)^2} \, 4\alpha p_z. \end{aligned} \tag{12}$$

Из анализа выражения (12) следует, что если в начальный момент времени вектор намагниченности частицы направлен против внешнего магнитного поля ($\theta_0 \rightarrow 0$ и $H_{\text{ext}} < 0$), то в пределе больших частот магнитный момент будет направлен против внешнего воздействия: $\langle \cos \theta \rangle \rightarrow 1$. В противоположном случае ($\theta_0 \rightarrow \pi$ и $H_{\text{ext}} < 0$) их направления будут совпадать: $\langle \cos \theta \rangle \rightarrow -1$. Аналогичным образом в высокочастотных полях можно разложить и выражение (8), описывающее магнитные свойства ансамбля наших частиц,

$$\begin{split} \langle \langle \cos \theta \rangle \rangle &= -1 + \frac{2}{\pi} \int_{0}^{\pi} \frac{d\tau}{\exp\left[-2\alpha p_{z} \left(\sin \frac{\tau}{2}\right)^{2}\right] + 1} \\ &\approx -1 + \frac{1}{\pi} \int_{0}^{\pi} \frac{d\tau}{1 - \alpha p_{z} \left(\sin \frac{\tau}{2}\right)^{2}} \\ &\approx -1 + \frac{1}{\pi} \int_{0}^{\pi} \left(1 + \alpha p_{z} \left(\sin \frac{\tau}{2}\right)^{2}\right) d\tau \approx \frac{\alpha p_{z}}{2}. \end{split}$$

$$\end{split}$$
(13)

Зависимости, аналогичные рис. 3 и 4, для случая больших частот представлены на рис. 5 и 6. Видно, что полученные асимптотические формулы достаточно точно описывают поведение системы в случае больших частот внешнего воздействия.

4. Нелинейная динамическая поляразиция

Правая часть выражения (3) будет максимальна при $\cos \tau = -1$. Тогда полярный угол θ вектора магнитного момента под воздействием внешнего переменного поля осциллирует в промежутке от начального угла θ_0 до θ' , определяемого формулой

$$\ln \left| \frac{\tan \frac{\theta'}{2}}{\tan \frac{\theta_0}{2}} \right| = -2\alpha p_z. \tag{14}$$

Если в системе имеется одноосная анизотропия, направленная вдоль оси z, то на магнитный момент будет действовать дополнительно поле одноосной анизотропии. Действие этого поля будет стремиться ориентировать вектор магнитного момента при $0 < \theta < \pi/2$ вдоль оси z, а при $\pi/2 < \theta < \pi$ — против оси z. Следовательно, если p_z будет таковым, что угол $\pi - \theta'$ будет больше θ_0 , то действие поля анизотропии приведет с течением времени к ориентации вектора М вдоль оси, а при обратном неравенстве — против нее. Таким образом, начальный угол $\theta_0 = \pi - \theta'$ является критическим углом и определяет критическую кривую, разделяющую состояния системы на плоскости (θ_0, p_z), соответствующие различным ориентациям вектора М. Для всех ориентаций намагниченности в начальный момент времени, которые лежат выше критической кривой, магнитный момент с течением времени примет направление против оси z и соответственно наоборот.

Рис. 7. Зависимость критического угла от безразмерной частоты осцилляций внешнего магнитного поля.

Используя эти соображения, получим

$$\ln\left|\frac{\tan\frac{\pi-\theta_0}{2}}{\tan\frac{\theta_0}{2}}\right| = -2\alpha p_z,\tag{15}$$

$$\tan\frac{\theta_0}{2} = \exp(\alpha p_z),\tag{16}$$

где $\theta_0 \in (0, \pi)$.

Таким образом, выражение (16) является аналитической формулой для упомянутой выше критической кривой, если внешнее синусоидальное магнитное поле направлено против оси z ($p_z < 0$). В этом случае наблюдается эффект нелинейной динамической поляризации, при котором системе энергетически выгодно подавить прецессионное движение магнитных моментов и выстроить их строго вдоль или против внешнего поля. Данный эффект, отсутствующий в случае сферических частиц, указывает на существенное влияние геометрии образца на возникновение квазистационарных состояний в процессе динамической эволюции.

Сравнение формулы (16) для критической кривой с результатами непосредственного численного моделирования показало их хорошее совпадение. Данный эффект может быть использован при конструировании элементов MRAM, когда необходимо выстраивание магнитных моментов строго вдоль и против внешнего поля для получения логических нуля либо единицы.

Как следует из работ [4,6,7], изложенная выше теория будет справедлива и в случае наличия размагничивающих полей (учета формы частицы) для аксиальносимметричных частиц, если ось анизотропии направлена вдоль магнитного поля. Зависимость критического угла от частоты внешнего воздействия будет аналогичной рис. 7, если в качестве безразмерной частоты выбрать $\Omega = 1/\alpha p_K$, где управляющий параметр p_K определяется следующим образом [6,7]:

$$p_K = \frac{1}{1+\alpha^2} \frac{\gamma H_K}{\omega}$$

(здесь H_K — эффективное поле анизотропии, включающее в себя поле магнитной одноосной анизотропии и размагничивающее поле формы). В случае более сложной геометрии системы зависимости магнитного момента от частоты качественно будут соответствовать рис. 1, 2, но количественно формулами (6), (8) описываться уже не будут.

5. Заключение

Таким образом, нами рассмотрена нелинейная динамика магнитного момента малой сферической частицы в однородном переменном магнитном поле, а также ансамбля таких частиц без использования теории возмущений и предположения малости внешних воздействий. Получены аналитические зависимости усредненного магнитного момента системы в зависимости от частоты внешнего поля, которые совпадают с результатами непосредственного численного расчета уравнения Ландау-Лифшица-Гильберта. Построены асимптотические формулы, хорошо описывающие поведение намагниченности в случае малых и больших частот внешнего поля. Также показано, что в зависимости от конфигурации системы могут наблюдаться как прецессия магнитного момента, так и состояние нелинейной динамической поляризации с выстраиванием намагниченности вдоль или против направления магнитного поля. Получена аналитическая теория для описания этого явления.

Приложение 1

Умножим обе части (2) на $\sin \theta$ и сделаем замену переменных $y = \cos \theta$

$$\frac{dy}{d\tau} = -\alpha p_z \sin \tau (1 - y^2). \tag{\Pi1}$$

Разделим переменные и проинтегрируем обе части (П1)

$$\int \frac{dy}{1-y^2} = \int -\alpha p_z \sin \tau \, d\tau, \qquad (\Pi 2)$$

$$\frac{1}{2}\ln\left(\frac{1+y}{1-y}\right) = \alpha p_z \cos \tau + C. \tag{II3}$$

Здесь *С* — константа, определяемая начальными условиями. Очевидно, что в данном случае

$$C = \frac{1}{2} \ln \left(\frac{1 + y_0}{1 - y_0} \right) = \alpha p_z, \qquad (\Pi 4)$$

где y_0 — значение y в момент времени $\tau = 0$. Таким образом, выражение (ПЗ) примет вид

$$\frac{1}{2}\ln\left(\frac{1+y}{1-y}\cdot\frac{1-y_0}{1+y_0}\right) = \alpha p_z \cos\tau - \alpha p_z \qquad (\Pi 5)$$

$$\frac{1}{2}\ln\left(\frac{1+\cos\theta}{1-\cos\theta}\frac{1-\cos\theta_0}{1+\cos\theta_0}\right) = \frac{1}{2}\ln\left(\frac{2\cos^2\frac{\theta}{2}}{2\sin^2\frac{\theta}{2}} \cdot \frac{2\sin^2\frac{\theta_0}{2}}{2\cos^2\frac{\theta_0}{2}}\right)$$

$$= \ln \left| \frac{\tan \frac{\theta}{2}}{\tan \frac{\theta_0}{2}} \right| = \alpha p_z (\cos \tau - 1), \tag{\Pi6}$$

что совпадает с (3).

Приложение 2

Рассмотрим интеграл

$$\int_{0}^{\pi} \frac{dx}{A\left(\tan\frac{x}{2}\right)^{2} + 1} = \int_{0}^{\pi} \frac{\left(\cos\frac{x}{2}\right)^{2} dx}{A\left(\sin\frac{x}{2}\right)^{2} + \left(\cos\frac{x}{2}\right)^{2}}$$
$$= \frac{1}{2} \int_{0}^{\pi} \frac{(1 + \cos x) dx}{(A - 1)\left(\sin\frac{x}{2}\right)^{2} + \left(\cos\frac{x}{2}\right)^{2} + \left(\sin\frac{x}{2}\right)^{2}}$$
$$= \frac{1}{2} \int_{0}^{\pi} \frac{(1 + \cos x) dx}{\frac{1}{2}(A - 1) \cdot (1 - \cos x) + 1}$$

$$= \int_{0}^{1} \frac{(1+\cos x) dx}{(A+1) + (1-A) \cdot \cos x}.$$

Далее воспользуемся табличным интегралом $\int \frac{(A+B\cos a)dx}{a+b\cdot\cos x}$ [16,17]

$$\int \frac{(A+B\cos x)dx}{a+b\cdot x} = \frac{B}{b}x$$
$$+ \frac{Ab-Ba}{b} \frac{2}{\sqrt{a^2-b^2}} \arctan\left[\frac{\tan\frac{x}{2}\sqrt{a^2-b^2}}{a+b}\right]$$

Получим

$$\int_{0}^{\pi} \frac{dx}{A\left(\tan\frac{x}{2}\right)^{2} + 1} = \frac{\pi}{1 + \sqrt{A}}.$$

Список литературы

- [1] Yu.L. Reikher, O.V. Stolbov. J. Cond. Matter **20**, 204126 (2008).
- [2] Yu.L. Reikher, V.I. Ctepanov. Stohastic Phys. Rev. B 52, 5, 3493 (1995).
- [3] L.F. Alvarez, O. Pla, O. Chubykalo. Phys. Rev. B 61, 11613 (2000).
- [4] C. Serpico, G. Bertotti, I. Mayergoyz. Phys. Rev. Lett. 86, 724 (2001).

- [5] Z. Li, C. Li, S. Zhang. Phys. Rev. B 74, 054417 (2006).
- [6] D.V. Vagin, O.P. Polyakov. J. Appl. Phys. 105, 3, 033 914 (2009).
- [7] D.V. Vagin, O.P. Polyakov. Magn. Magn. Mater. 320, 3394 (2008).
- [8] Д.В. Вагин, О.П. Поляков. Нанотехнологии: разработка, применение 1, *I*, 4 (2009).
- [9] Д.В. Вагин, О.П. Поляков. Нелинейный мир 5, 10–11, 369 (2007).
- [10] Ф.В. Лисовский, О.П. Поляков. Письма в ЖЭТФ 73, 9, 546 (2001).
- [11] Ф.В. Лисовский, О.П. Поляков. Письма в ЖЭТФ 68, 8, 643 (1998).
- [12] Д.В. Вагин, С.И. Касаткин, О.П. Поляков. Автоматика и телемеханика 10, 168 (2008).
- [13] Д.В. Вагин, С.И. Касаткин, П.А. Поляков. Микроэлектроника 36, 2, 104 (2007).
- [14] У.Ф. Браун. Микромагнетизм. Физматгиз, М. (1979). 159 с.
- [15] А.И. Ахиезер, В.Г. Барьяхтар, С.В. Пелетминский. Спиновые волны. Наука, М. (1967). 368 с.
- [16] М. Абрамовица, И. Стиган. Справочник по специальным функциям. Наука, М. (1979). 832 с.
- [17] H.B. Dwight. Tables of integrals and other mathematical data. The Macmillan Company, N.Y. (1957). 191 p.