## 12,13 Упругие волны в углеродных 2D-супракристаллах

## © Р.А. Браже, А.И. Кочаев, Р.М. Мефтахутдинов

Ульяновский государственный технический университет, Ульяновск, Россия

E-mail: a.kochaev@ulstu.ru

## (Поступила в Редакцию 13 января 2011 г.)

Вычислены модули упругости и скорости распространения упругих волн в 2D-супракристаллических наноаллотропах углерода. Показано, что в  $sp^2$ -наноаллотропах эти скорости близки к значениям в графене и вдвое превышают скорости распространения объемных упругих волн в монокристаллическом алмазе. В углеродных 2D-супракристаллических  $sp^3$ -наноаллотропах скорости распространения как продольных, так и поперечных упругих волн в разы меньше, чем в  $sp^2$ -наноаллотропах.

Работа поддержана грантом РФФИ (проект № 10-02\_97002-р\_поволжье\_а).

В работе [1] с помощью модифицированного метода Давыдова [2] нами были рассчитаны константы центрального ( $\alpha$ ) и нецентрального ( $\beta$ ) взаимодействий атомов углерода в 2D-супракристаллах в сравнении с графеном. Используя эти константы и руководствуясь основанной на модели Китинга [3] схемой, предложенной в другой работе Давыдова [4], можно определить упругие постоянные описанных в [1] 2D-супракристаллов и оценить скорости распространения в них упругих волн, что и составляет цель настоящей работы. При этом необходимо получить отсутствующие в [4] выражения через  $\alpha$  и  $\beta$  для модулей упругости 2D-супракристалла типа (X)<sub>44</sub>, принадлежащего к классу симметрии 4*mm*.

Соответствующая структура представлена на рис. 1. Помещая начало координат в "нулевом" атомном комплексе, можно найти энергии центрального  $W_C$  и нецентрального  $W_{NC}$  взаимодействий [4]:

$$W_{C} = \frac{\alpha}{d^{2}} \sum_{i=1}^{4} \left( \mathbf{R}_{0i}^{2} - \mathbf{r}_{0i}^{2} \right)^{2},$$
$$W_{NC} = \frac{\beta}{d^{2}} \sum_{i,j>1}^{4} \left( \mathbf{R}_{0i} \mathbf{R}_{0j} - \mathbf{r}_{0i} \mathbf{r}_{0j} \right)^{2}.$$
(1)

Здесь  $\alpha$  и  $\beta$  — константы центрального и нецентрального взаимодействий соответственно, d — длина ребра супраячейки (выражается через длину связи), где  $\mathbf{R}_{0i} = \mathbf{r}_{0i} + \delta \mathbf{r}_{0i}, \, \delta \mathbf{r}_{0i} = u_{0i} \mathbf{i} + v_{0i} \mathbf{j}$  — смещение *i*-го атомного комплекса при деформации решетки. Координаты конца вектора смещения  $u_{0i}$  и  $v_{0i}$  по осям x и y соответственно имеют вид

$$u_{01} = u' - \frac{\sqrt{2}}{2} de_{xx} + \frac{\sqrt{2}}{4} de_{xy},$$
$$u_{02} = u' + \frac{\sqrt{2}}{2} de_{xx} + \frac{\sqrt{2}}{4} de_{xy},$$

$$u_{03} = u' + \frac{\sqrt{2}}{2} de_{xx} - \frac{\sqrt{2}}{4} de_{xy},$$
  

$$u_{04} = u' - \frac{\sqrt{2}}{2} de_{xx} - \frac{\sqrt{2}}{4} de_{xy},$$
  

$$v_{01} = v' + \frac{\sqrt{2}}{2} de_{yy} - \frac{\sqrt{2}}{4} de_{xy},$$
  

$$v_{02} = v' - \frac{\sqrt{2}}{2} de_{yy} + \frac{\sqrt{2}}{4} de_{xy},$$
  

$$v_{03} = v' - \frac{\sqrt{2}}{2} de_{yy} + \frac{\sqrt{2}}{4} de_{xy},$$
  

$$v_{04} = v' - \frac{\sqrt{2}}{2} de_{yy} - \frac{\sqrt{2}}{4} de_{xy},$$
 (2)

где u' и v' — внутренние смещения, а  $e_{xx}$ ,  $e_{yy}$ ,  $e_{xy}$  — компоненты тензора деформации.



**Рис. 1.** Установка структуры  $(X)_{44}$  относительно кристаллофизических осей x, y. I-4 — номера атомных комплексов.

Разложим (1) с учетом (2) в ряд по  $u_{0i}$  и  $v_{0i}$ , ограничившись членами второго порядка, затем минимизируем полную упругую энергию  $W = W_C + W_{NC}$  по внутренним смещениям, полагая  $\partial W/\partial u' = \partial W/\partial v' = 0$ . Это даст нам выражение для плотности упругой энергии w = W/S в функции  $\alpha$ ,  $\beta$ ,  $e_{xx}$ ,  $e_{yy}$ ,  $e_{xy}$ ,  $e_{xy}$ , где  $S = d^2$  площадь, приходящаяся на одну супраячейку. Его можно сравнить с соответствующим выражением для двумерной структуры класса 4*mm* из [5]

$$w = \frac{1}{2}\lambda_{xxxx}(e_{xx}^2 + e_{xy}^2) + \lambda_{xxyy}e_{xx}e_{xy} + 2\lambda_{xyxy}e_{xy}^2.$$
 (3)

Так как в (3)  $\lambda_{xxxx} = c_{11}$ ,  $\lambda_{xxyy} = c_{12}$ ,  $\lambda_{xyxy} = c_{33}$  [6], получаем выражение для отличных от нуля компонентов тензора модулей упругости для 2D-супракристалла типа (X)<sub>44</sub> в виде

$$c_{11} = \frac{4(2\alpha + 3\beta)}{(1 + \sqrt{2})^2}, \ c_{12} = \frac{4(2\alpha - \beta)}{(1 + \sqrt{2})^2}, \ c_{33} = \frac{2\alpha + \beta}{(1 + \sqrt{2})^2}.$$
(4)

Применение данной схемы к 2D-супракристаллам с гексагональной супраячейкой [1] приводит к таким же выражениям для независимых модулей упругости, что и для графеноподобных систем [4],

$$c_{11} = \frac{1}{\sqrt{3}} \left( 4\alpha + \beta + 18 \frac{\alpha\beta}{4\alpha + \beta} \right),$$
  
$$c_{12} = \frac{1}{\sqrt{3}} \left( 4\alpha + \beta - 18 \frac{\alpha\beta}{4\alpha + \beta} \right).$$
(5)

Перейдем теперь к рассмотрению особенностей распространения упругих волн в 2D-супракристаллах, трактуя их как двумерный континуум, в котором возможны смещения частиц лишь в плоскости кристалла, как это неявно предполагалось выше. Оболоченные волны типа Лява и др. на этом этапе из рассмотрения исключаем.

В произвольном направлении  $x'_1$  (рис. 1) могут распространяться в общем случае одна квазипродольная и одна квазипоперечная упругие волны, описываемые уравнением Грина–Кристоффеля [7]

$$\rho_2 v^2 u_\alpha = \lambda_{\alpha\beta\gamma\delta} \alpha_{1\beta} \alpha_{1\delta} u_\gamma, \tag{6}$$

где  $\rho_2$  — двумерная (в данном случае) плотность среды, v — фазовая скорость волны,  $u_{\alpha}$  и  $u_{\gamma}$  — компоненты смещения частиц,  $\lambda_{\alpha\beta\gamma\delta}$  — тензор модулей упругости,  $a_{1\beta}$  и  $a_{1\delta}$  — элементы матрицы-столбца направляющих косинусов

$$\begin{pmatrix} a_{11} \\ a_{12} \end{pmatrix} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}.$$
 (7)

Скорости квазипродольной и квазипоперечной волны являются корнями соответствующего характеристического уравнения

$$|\lambda_{\alpha\beta\gamma\delta}a_{1\beta}a_{1\delta} - \rho_2 v^2| = 0 \tag{8}$$

и зависят от модулей упругости кристалла, его плотности и направляющих косинусов. Подобная задача

успешно решена для трехмерных кристаллов. Более того, существуют компьютерные программы построения 3D-поверхностей фазовых скоростей упругих волн, распространяющихся в таких кристаллах [8,9]. Они могут быть использованы и для построения 2D-линий фазовых скоростей в двумерных кристаллах. Направления распространения чисто продольных и чисто поперечных упругих волн соответствуют экстремальным значениям соответствующих фазовых скоростей и перпендикулярны касательным к линиям скоростей в точках экстремумов [10].

Аналитические методы расчета направлений распространения чистых мод упругих волн предложены в работах [11–16]. Их применение приводит для эффек-



**Рис. 2.** Линии фазовых скоростей (km/s) продольных (1) и поперечных (2) упругих волн в 2D-супракристалле (C)<sub>44</sub> (a) и графене (b).

| Структура  |                             | Удельная поверхность                                          |                           |  |  |
|------------|-----------------------------|---------------------------------------------------------------|---------------------------|--|--|
| Вид ячейки | Обозначение                 | Формула                                                       | $s, 10^6 \mathrm{m^2/kg}$ |  |  |
|            | ( <i>C</i> ) <sub>6</sub>   | $s = \frac{3\sqrt{3}}{2} \frac{N_A}{\mu} l^2$                 | 2.63                      |  |  |
|            | ( <i>C</i> ) <sub>44</sub>  | $s = rac{1}{2}  (1 + \sqrt{2})^2  rac{N_A}{\mu}  l^2$       | 2.99                      |  |  |
|            | $(C)_{63(6)}$               | $s = \frac{4\sqrt{3}}{2} \frac{N_A}{\mu} l^2$                 | 4.01                      |  |  |
|            | $(C)_{63(12)}$              | $s = rac{\sqrt{3}}{6} (2 + \sqrt{3})^2 rac{N_A}{\mu} l^2$   | 5.79                      |  |  |
|            | ( <i>C</i> ) <sub>664</sub> | $s = rac{\sqrt{3}}{12} (3 + \sqrt{3})^2 rac{N_A}{\mu} l^2$  | 3.94                      |  |  |
|            | ( <i>C</i> ) <sub>634</sub> | $s = \frac{\sqrt{3}}{6} (1 + \sqrt{3})^2 \frac{N_A}{\mu} l^2$ | 5.09                      |  |  |

|  | Таблица 1. | Удельные пове | ерхности угле | родных 2D- | структур |
|--|------------|---------------|---------------|------------|----------|
|--|------------|---------------|---------------|------------|----------|

**Таблица 2.** Характеристики упругих волн в углеродных 2D-структурах

| Параметр                     | $(C)_6$ | $(C)_{44}$ | $(C)_{63(6)}$ | $(C)_{63(12)}$ | $(C)_{664}$ | $(C)_{634}$ |
|------------------------------|---------|------------|---------------|----------------|-------------|-------------|
| c <sub>11</sub> , N/m        | 533     | 328        | 9.84          | 75.7           | 361         | 10.5        |
| <i>c</i> <sub>12</sub> , N/m | 331     | 215        | 6.15          | 47.1           | 226         | 6.52        |
| c 33, N/m                    |         | 68         |               |                |             |             |
| $v_L$ , 10 <sup>3</sup> m/s  | 37.4    | 31.3-31.9  | 6.30          | 20.9           | 37.7        | 7.30        |
| $v_T$ , 10 <sup>3</sup> m/s  | 29.5    | 13.0-14.3  | 5.00          | 16.5           | 29.8        | 5.80        |

тивных модулей упругости в случае чисто продольной и чисто поперечной волн в 2D-кристаллах к следующим выражениям:

класс 4тт

$$\lambda'_{1111} = (\sin^4 \varphi + \cos^4 \varphi)c_{11} + 2\sin^2 \varphi \cos^2 \varphi (c_{12} + 2c_{33}),$$
  

$$\lambda'_{2121} = (\cos^4 \varphi + \sin^4 \varphi)c_{33} + 2\sin^2 \varphi \cos^2 \varphi (c_{11} - c_{12} - c_{33}), \qquad (9)$$
  

$$\varphi = n\frac{\pi}{4}, \qquad n = 0, 1, 2, \dots, 7;$$

класс 6тт

$$\lambda'_{1111} = c_{11}, \qquad \lambda'_{2121} = \frac{1}{2} (c_{11} - c_{12}).$$
 (10)

Скорости распространения чисто продольной и чисто поперечной волн соответственно находятся из выражений

$$v_L = \sqrt{\lambda'_{1111}s}, \qquad v_T = \sqrt{\lambda'_{2121}s}, \qquad (11)$$

где  $s = \rho_2^{-1}$  — удельная поверхность кристалла. Ее значения для углеродных 2D-супракристаллов в сравнении с графеном (С)<sub>6</sub> представлены в табл. 1. В соответствующих формулах  $N_A$  — число Авогадро,  $\mu = 0.012$  kg/mol — молярная масса (углерода), l — длина связи [1].

На рис. 2 показаны линии фазовых скоростей упругих волн в 2D-супракристалле (C)<sub>44</sub> и графене, построенные с использованием компьютерной программы, основанной на решении уравнения Грина–Кристоффеля. Из него видно, что в структуре (C)<sub>44</sub>, принадлежащей к классу симметрии 4*mm*, существуют четыре направления (через каждые 45°), в которых могут распространяться чистые моды упругих волн. Графен, как и остальные 2D-супракристаллы, принадлежащие к классу симметрии 6*mm*, является акустически изотропной двумерной средой.

В табл. 2 представлены результаты вычислений скоростей распространения продольной и поперечной упругих волн в углеродных 2D-структурах из табл. 1 по формулам (9)–(11). Края диапазона значений скорости соответствуют чисто продольным и чисто поперечным волнам, распространяющимся под углами  $\varphi_1 = 0$  и  $\varphi_2 = 45^{\circ}$  к оси  $x_1$ .

1617

Из анализа результатов, представленных на рис. 2 и в табл. 2, следует, что скорости распространения упругих волн в графене почти вдвое превышают их значения для объемных волн в алмазе [17]. Близки к ним значения скоростей упругих волн и в 2D-супракристаллах (C)<sub>44</sub>, (C)<sub>664</sub>. Правда, за счет малой величины  $c_{33}$  по сравнению с  $c_{11}$  и  $c_{12}$  скорость чисто поперечной волны в структуре (C)<sub>44</sub> существенно меньше, чем в графене и в структуре (C)<sub>664</sub>. Несколько меньшими значениями характеризуются скорости распространения упругих волн в структуре (C)<sub>63(12)</sub>. Что касается двумерных углеродных  $sp^3$ -наноаллотропов, то в них скорости распространения упругих волн в неколько раз меньше, чем в  $sp^2$ -наноаллотропах углерода, что связано с их гораздо худшими упругими характеристиками [1].

Приведенные результаты носят оценочный характер и нуждаются в экспериментальной верификации. Тем не менее они представляют интерес с точки зрения перспектив использования 2D-супракристаллов в устройствах двумерной акустоэлектроники и акустооптики.

## Список литературы

- [1] Р.А. Браже, А.А. Каренин, А.И. Кочаев, Р.М. Мефтахутдинов. ФТТ **53**, **7**, 1406 (2011).
- [2] С.Ю. Давыдов. ФТТ 52, 756 (2010).
- [3] P.N. Keating. Phys. Rev. 145, 637 (1966).
- [4] С.Ю. Давыдов. ФТТ 52, 172 (2010).
- [5] Л.Д. Ландау, Е.М. Лифшиц. Теория упругости. Наука, М. (1987). 248 с.
- [6] Дж. Най. Физические свойства кристаллов. Мир, М. (1967). 386 с.
- [7] E.B. Christoffer. Ann. di matematica pura ed applicata 8, 193 (1877).
- [8] M. Duarte, C. Piedrahita, T. Salinas, H. Altamar, K. Pachano. Earth Sci. Res. J. 8, 1, 63 (2004).
- [9] Laboratory for scientific visual analysis. URL: http://www.sv.vt.edu.
- [10] T.C.T. Ting. Acta Mechanica 185, 147 (2006).
- [11] F.E. Borgnis. Phys. Rev. 98, 1000 (1955).
- [12] K. Brugger. J. Appl. Phys. 36, 759 (1965).
- [13] Z.P. Chang. J. Appl. Phys. **39**, 5669 (1968).
- [14] Р.А. Браже, М.А. Григорьев, В.И. Наянов. ФТТ 17, 886 (1975).
- [15] Р.А. Браже, А.И. Кочаев. Изв. вузов. Поволжский регион. Физ.-мат. науки 3, 116 (2010).
- [16] Р.А. Браже, А.И. Кочаев. Радиоэлектронная техника. Межвуз. сб. науч. тр. УлГТУ, Ульяновск (2010). Т. 40.
- [17] C.M. Flannery, M.D. Whitfield, R.B. Jackman. Semicond. Sci. Technol. 18, S86 (2003).