Анизотропное магнетосопротивление частично релаксированных пленок SrRuO₃

© Ю.А. Бойков, В.А. Данилов

13.05

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

E-mail: yu.boikov@mail.ioffe.ru

(Поступила в Редакцию 30 ноября 2010 г.)

Пленки SrRuO₃ толщиной 50 nm, выращенные методом лазерного испарения на подложках (001)(LaAlO₃)_{0.3} + (Sr₂AlTaO₆)_{0.7}, находились под действием частично релаксированных сжимающих двухосных механических напряжений. Пленки состояли из кристаллитов с латеральными размерами 40–100 nm, относительная азимутальная разориентация которых составляла порядка 0.9°. Ферромагнитное упорядочение спинов в пленках SrRuO₃ сопровождалось резким изменением наклона температурной зависимости их электросопротивления ρ при $T \approx 155$ K. При направлении магнитного поля H, параллельном измерительному току, максимальные значения (~ 7.5%) магнетосопротивления MR = [$\rho(\mu_0 H = 5$ T) – $\rho(\mu_0 H = 0)$]/ $\rho(\mu_0 H = 0)$ пленок наблюдались при температурах порядка 100 K. При T = 95 K ($\mu_0 H = 5$ T) анизотропное магнетосопротивление пленок составляло 8% и увеличивалось примерно в 1.5 раза при понижении температуры до 4.2 K.

Финансовая поддержка данных исследований частично получена из проекта МНТЦ 3743, проекта РФФИ № 08-02-01352-а и госконтракта № 02.740.11.0544.

1. Введение

В обширной группе проводящих перовскитоподобных оксидов рутенат стронция выделяется аномально высокой концентрацией $n \approx 2 \cdot 10^{22} \text{ cm}^{-3}$ [1] носителей заряда (примерно один электрон на орторомбическую элементарную ячейку). Именно подвижные электроны способствуют ферромагнитному упорядочению электронных спинов в SrRuO₃ (SRO) при температурах ниже $T_{\text{Curie}} \approx 160 \text{ K}$ [2]. Электро- и магнетотранспортные свойства SRO определяются в значительной степени параметрами узкой π^* -зоны, возникающей в результате гибридизации Ru 4*d*- и O 2*p*-орбиталей [3]. Нарушения стехиометрии, дефекты структуры и механические напряжения оказывают существенное влияние на ширину зоны и, как следствие, на интенсивность обмена электронами между ионами рутения в цепочках Ru–O–Ru.

Рутенат стронция обладает высокой химической стабильностью [4] и хорошо сопрягается по параметрам кристаллических решеток с изоморфными по структуре сегнетоэлектриками, манганитами и купратными сверхпроводниками. Это позволяет успешно использовать наноразмерные эпитаксиальные слои SRO в качестве: а) проводящих электродов в пленочных конденсаторных гетероструктурах с промежуточным слоем (Ba,Sr)TiO₃ [5]; b) ферромагнитной прослойки в SFS контактах YBa₂Cu₃O_{7- δ}/SRO/YBa₂Cu₃O_{7- δ} [6]; с) ферромагнитного электрода в инверсных туннельных магнитных контактах [7].

В настоящей работе исследованы структура, электрои магнетосопротивление пленок SRO, механические напряжения в которых частично релаксированы. Напряжения и дефекты структуры, формирующиеся в процессе их релаксации, могут оказывать существенное влияние на анизотропию магнетотранспортных параметров оксидов с сильно коррелированной электронной системой [8].

2. Эксперимент

Метод лазерного испарения (KrF, $\lambda = 248$ nm, $\tau = 30$ nm) был использован для выращивания пленок SRO толщиной d = 50 nm на подложках (001)(LaAlO₃)_{0.3}+(Sr₂AlTaO₆)_{0.7} (LSATO) (здесь и далее использованы индексы для псевдокубических элементарных ячеек SRO и LSATO). Технологические параметры роста пленок SRO приведены в [5].

Структура пленок исследовалась с использованием рентгеновской дифракции (Philips X'pert MRD, Cu $K_{\alpha 1}$, $\omega/2\theta$ - и ϕ -сканы). Рентгеновские дифрактограммы измерялись в симметричной брэгговской конфигурации, когда падающий и отраженный рентгеновские пучки находились в плоскости, перпендикулярной (001) или (101)LSATO. Параметры элементарной ячейки в пленке рутената стронция рассчитывались с использованием значений 2θ для пиков (004) и (202)SRO на визуализированных рентгеновских сканах. Морфология свободной поверхности выращенных пленок исследовалась с использованием микроскопии атомных сил (AFM, Nanoscope-IIIa, режим высоты).

Сопротивление *R* пленок SRO измерялось на постоянном токе ($I_b = 100 \,\mu$ A) в конфигурации van der Pauw в магнитном поле *H* ($\mu_0 H$ до 5 T) и без него. Магнитное поле было направлено параллельно плоскости подложки (параллельно или перпендикулярно направлению измерительного тока). Четыре серебряных контакта, расположенные на углах квадрата, напылялись термически на свободную поверхность пленок. Электросопротивление ρ пленок рассчитывалось с использованием соотношения $\rho = R\pi d/\ln 2$ [9].

3. Экспериментальные результаты и их обсуждение

Положительное рассогласование $m \approx 1.5\%$ в параметрах кристаллических решеток SRO (псевдокубическая элементарная ячейка, $a_1 = 3.928$ Å [10]) и LSATO (псевдокубическая ячейка, $a_2 = 3.868$ Å [11]) обусловило двухосное латеральное сжатие сформированных слоев рутената стронция [$m = (a_1 - a_2)/a_2$]. Температурные коэффициенты линейного расширения SRO и LSATO имеют близкие значения [12,13].

3.1. Структура и морфология свободной поверхности выращенных пленок. На ренттеновских сканах, визуализированных для гетероструктур SRO/LSATO (рис. 1 и вставка на нем), присутствуют пики только от подложки и сформированной на ее поверхности пленки, что указывает на отсутствие в объеме последней макровключений вторичных кристаллических фаз. Полученные рентгеновские данные свидетельствуют о том, что выращенные пленки четко преимущественно ориентированы как азимутально, так и относительно нормали к плоскости подложки. Параметр элементарной ячейки в слое SRO, измеренный вдоль норма-

Рис. 1. Рентгеновская дифрактограмма (Cu K_{a1} , $\omega/2\theta$) для пленки (50 nm)SRO/LSATO, визуализированная в условиях, когда плоскость, в которой находились падающий и отраженный рентгеновские пучки, ортогональна (001)LSATO. На вставке показан фрагмент дифрактограммы, полученный в условиях, когда плоскость, в которой находились падающий и отраженный рентгеновские пучки, ортогональна (101)LSATO.

Рис. 2. Изображение свободной поверхности пленки (50 nm)SRO/LSATO, полученное с использованием AFM (режим высоты, угол обзора 45°). Наличие характерного рельефа на поверхности крупных зерен, вероятно, обусловлено тем обстоятельством, что они состоят из нескольких мелких, разделенных малоугловыми границами.

ли к плоскости подложки $a_{\perp} = 3.938 \pm 0.005$ Å, больше параметра ячейки той же пленки, измеренного в плоскости подложки $a_{\parallel} = 3.919 \pm 0.005$ Å. Эффективный объем элементарной ячейки $V_{\text{eff}} = a_{\perp} \times a_{\parallel}^2 \approx 60.48$ Å³ пленок SRO незначительно отличается от соответствующего значения для массивных кристаллов рутената стронция (≈ 60.61 Å³ [10]). Таким образом, пленки (50 nm)SRO, выращенные на LSATO, имеют состав, близкий к стехиометрическому, и находятся под действием слабых сжимающих в плоскости подложки напряжений. Полученные значения параметров a_{\perp} и a_{\parallel} для пленок SRO свидетельствуют о том, что механические напряжения в их объеме частично релаксировали в процессе формирования и последующего охлаждения в атмосфере кислорода.

Изображение свободной поверхности выращенного слоя рутената стронция показано на рис. 2. Пленка SRO/LSATO состоит из кристаллитов, латеральный размер которых находится в пределах 40–100 nm. Межкристальные границы в выращенном слое декорированы характерными углублениями на его свободной поверхности. Эффективная разориентация кристаллитов в плоскости подложки составляет порядка 0.9° (оценка получена с использованием данных по полуширине пика на ϕ -скане, визуализированном для рефлекса (111)SRO, полуширина пика на ϕ -скане для соответствующего рефлекса от подложки LSATO равнялась 0.02°).

3.2. Температурные и полевые зависимости электро- и магнетосопротивления пленок. При комнатной температуре электросопротивление выращенных пленок SRO/LSATO находится в пределах $260-300 \,\mu\Omega \cdot \text{сm}$, что согласуется с соответствующими данными для гетероэпитаксиальных пленок и объемных кристаллов рутената стронция [14]. Зависимость $\rho(T, \mu_0 H = 0)$ пленки (50 nm)SRO/LSATO приведена на рис. 3. С уменьшением температуры в

Рис. 3. Температурные зависимости электропроводности ρ (1, 2) и магнетосопротивления MR (3) для пленки SRO/LSATO. $\mu_0 H = 0$ (1) и 5 T (2, 3) $H \parallel I_b$. На вставке *а* показано изменение ρ той же пленки при сканировании $\mu_0 H$ в последовательности $-2 \rightarrow 0 \rightarrow 5$ T при T = 95 K и $H \parallel I_b$, на вставке *b* приведена аналогичная зависимость, полученная при $H \perp I_b$.

интервале 300–160 К ρ пленок убывает практически линейно. При температуре $T_C \approx 155$ К, близкой к $T_{\text{Сигіе}}$ для монокристаллов SRO, наблюдается существенное изменение наклона кривой $\rho(T, \mu_0 H = 0)$, обусловленное ферромагнитным упорядочением спинов в 4*d*-электронных оболочках ионов Ru⁴⁺ [15]. Отношение $\rho(300 \text{ K})/\rho(4.2 \text{ K})$ для выращенных пленок рутената стронция равно 3.2, что примерно соответствует данным, полученным для гетероэпитаксиальных слоев SRO, сформированных на подложках с малым *m* [14]. Величина указанного отношения для монокристаллических слоев SRO, выращенных на вицинально полированных подложках SrTiO₃, может достигать нескольких десятков [16].

При $T < T_C$ электросопротивление пленок SRO существенно понижалось в магнитном поле $(H \parallel I_b, \mu_0 H = 5 \mathrm{T})$ (рис. 3). При температурах ниже T_{Curie} магнитное поле демпфирует возмущения в спиновой системе ферромагнитной пленки, индуцированные наличием в ее объеме структурных дефектов, доменных стенок и т.д., что приводит к увеличению эффективной подвижности электронов. Магнитное поле способствует ферромагнитному упорядочению спинов в пленке рутената стронция и при температурах заметно выше Т_С, что проявляется в уменьшении ее электросопротивления (см. тот же рисунок). Отрицательное магнетосопротивление $MR = [\rho(\mu_0 H = 5 T)]$ $-\rho(\mu_0 H=0)]/\rho(\mu_0 H=0)$ выращенных пленок возрастает с понижением температуры в интервале от $T_C + 30 \, {\rm K}$ до 100 К. МR достигает максимума ($\sim 7.5\%$) при T = 95-100 К (рис. 3) и незначительно уменьшается при дальнейшем понижении T. Близкие значения магнетосопротивления были получены [15,16] для пленок SRO, выращенных на подложках SrTiO₃ методом магнетронного распыления и молекулярно-лучевой эпитаксии.

Изменение электросопротивления пленки SRO в процессе сканирования $\mu_0 H$ в последовательности $-2 \rightarrow 0 \rightarrow +5$ T при T = 95 K и $H \parallel I_b$ показано на вставке *а* к рис. 3. Увеличение ρ при изменении $\mu_0 H$ от -2 до 0Т обусловлено усилением рассеяния электронов на магнонах и доменных стенках вследствие переориентации вектора намагниченности М в ферромагнитных доменах вдоль оси легкого намагничивания. Согласно [17], ось легкого намагничивания в пленках SRO, выращенных на подложках с положительным *m*, отклонена от нормали к плоскости подложки на угол $\gamma \approx 30^\circ$ при низких температурах, а при T, близких к T_{Curie}, γ достигает 45°. Экстремум на кривой $ho(\mu_0 H, T = 95 \, {
m K})$ наблюдается при $\mu_0 H \approx 0.35$ T, когда пространственная разориентация намагниченности в ферромагнитных доменах была максимальна. При увеличении $\mu_0 H$ от 0.35 до 5Т в пленке увеличивается объемная доля доменов, в которых вектор намагниченности параллелен магнитному полю. При этом электросопротивление пленок уменьшается вследствие ослабления рассеяния электронов на доменных границах и спиновых волнах.

При $T < T_C$ и $\mu_0 H = 5 \text{ T}$ электросопротивление пленок SRO, измеренное при направлении магнитного поля, перпендикулярном I_b, превышает величину ρ той же пленки при H, параллельном I_b (вставки a и b на рис. 3). Причиной наблюдавшейся зависимости ρ пленок от угла между направлением измерительного тока и направлением магнитного поля является значительное магнетосопротивление (AMR). Зависимость электросопротивления ферромагнетика от угла ϑ между вектором намагниченности *M* и направлением *I*_b следует соотношению $\rho \sim \Delta \rho \sin^2 \vartheta$ [18], где $\Delta \rho$ — разность значений электросопротивления, измеренных при направлении М, параллельном и перпендикулярном току. Учитывая, что поле анизотропии в эпитаксиальных пленках SRO, выращенных на подложках с положительным *m*, имеет величину порядка 2 Т [17] (при T > 10 K), можно полагать, что вектор намагниченности в исследованных пленках при $\mu_0 H = 5 \text{ T}$ был направлен параллельно направлению поля во всем исследованном интервале температур. В [3,16] для оценки анизотропного магнетосопротивления было использовано соотношение

$$AMR = 3\Delta\rho/(\rho_{\parallel} + 2\rho_{\perp}), \qquad (1)$$

где ρ_{\parallel} и ρ_{\perp} — значения электросопротивления ферромагнетика при M, параллельном и перпендикулярном направлению измерительного тока соответственно.

Используя соотношение (1) для AMR пленок SRO при 95 К и $\mu_0 H = 5$ Т, мы получили значение ~ 8%, а

Рис. 4. Зависимости отношения ρ/ρ_0 для пленки SRO/LSATO от $\mu_0 H$ при T = 4.2 К. $1 - H \perp I_b$, $2 - H \parallel I_b$. $\rho_0 \equiv \rho(\mu_0 H = 0)$.

максимальные значения (до 12%) анизотропного магнетосопротивления имели место при температурах ниже 30 К. Четко выраженный гистерезис наблюдается на кривых $\rho(H, T = 4.2 \,\mathrm{K})$, полученных при сканировании $\mu_0 H$ в последовательности $5 \rightarrow 0 \rightarrow -5 \rightarrow 0 \rightarrow 5 \mathrm{T}$ (рис. 4). Гистерезис прослеживался вплоть до значений $\mu_0 H = \pm 2$ T, что хорошо согласуется с величиной поля анизотропии. При T = 4.2 К максимум на зависимости магнетосопротивления от $\mu_0 H$ сдвинут примерно на 0.5 T относительно точки $\mu_0 H = 0$, что примерно соответствует оценке эффективной величины коэрцитивного поля в эпитаксиальных пленках SRO, выращенных на подложках SrTiO₃, методом магнетронного распыления [15]. Неоднородность релаксации напряжений в выращенных пленках рутената стронция обусловливает появление различий в величине коэрцитивного поля для доменов, сформировавшихся в различных кристаллических зернах. Это является одной из причин того, что гистерезис на кривых $\rho(\mu_0 H, T = 4.2 \text{ K})/\rho_0$ четко проявляется в широком интервале изменения $\mu_0 H$ (рис. 4).

4. Заключение

Сжимающие в плоскости подложки двухосные напряжения в пленках SRO, выращенных на подложках со значительным рассогласованием в параметрах кристаллических решеток, частично релаксировали. При температурах ниже температуры ферромагнитного упорядочения спинов электросопротивление рутената стронция существенно зависело от угла между направлением магнитного поля и направлением измерительного тока в пленочном образце.

Список литературы

- P.A. Cox, R.G. Egdell, J.B. Goodenough, A. Hamnett, C.C. Naish. J. Phys. C: Solid State Phys. 16, 6221 (1983).
- [2] I. Mazin, D.J. Singh. Phys. Rev. B 56, 2556 (1997).
- [3] G. Herranz, B. Martinez, J. Fontcuberta, F. Sanchez, C. Ferrater, M.V. Garcia-Cuenca, M. Varela. Phys. Rev. B 67, 174 423 (2003).
- [4] C.B. Eom, R.J. Cava, R.M. Fleming, Julia M. Phillips, R.B. van Dover, J.H. Marshall, J.W.P. Hsu, J.J. Krajewski, W.F. Peck, jr. Science 258, 5089, 1766 (1992).
- [5] Yu. A. Boikov, T. Claeson. Physica B **311**, 250 (2002).
- [6] L. Antognazza, K. Char, T.H. Geballe, L.L.H. King, A.W. Sleight. Appl. Phys. Lett. 63, 7, 1005 (1993).
- [7] K.S. Takahashi, A. Sawa, Y. Ishii, H. Akoh, M. Kawasaki, Y. Tokura. Phys. Rev. B 67, 094 413 (2003).
- [8] J. Manhart, D.G. Schlom. Science **327**, 1607 (2010).
- [9] T.I. Kamins. J. Appl. Phys. 42, 4357 (1971).
- [10] J.C. Jiang, W. Tian, X. Pan, Q. Gan, C.B. Eom. Mater. Sci. Eng. B 56, 152 (1998).
- [11] M. Ziese, H.C. Semmelhack, K.H. Han, S.P. Sena, H.J. Blythe. J. Appl. Phys. **91**, 9930 (2002).
- [12] J.M. Phillips. J. Appl. Phys. 79, 1829 (1996).
- [13] J.-P. Maria, H.L. McKinstry, S. Trolier-McKinstry. Appl. Phys. Lett. 76, 3382 (2000).
- [14] M.R. Choi, W. Jo, Y.S. Oh, K.H. Kim, Y.-M. Kang, S.I. Yoo, S.H. Moon, H.S. Ha, S.S. Oh. Physica C 463–465, 584 (2007).
- [15] O. Mora'na, W. Saldarriagab, E. Baca. Physica B **390**, 281 (2007).
- [16] L. Klein, A.F. Marshall, J.W. Reiner, C.H. Ahn, T.H. Geballe, M.R. Beasley, A. Kapitulnik. J. Magn. Magn. Mater. 188, 319 (1998).
- [17] L. Klein, J.S. Dodge, C.H. Ahn, J.W. Reiner, L. Mieville, T.H. Geballe, M.R. Beasley, A. Kapitulnik. J. Phys.: Cond. Matter 8, 10111 (1996).
- [18] E.D. Dahlberg, K. Riggs. J. Appl. Phys. 63, 4270 (1988).