Низкотемпературный фазовый переход в монокристаллах α'-(BEDT-TTF)₂IBr₂, детектируемый методом ЭПР

© М.В. Кирман, А.И. Дмитриев, А.С. Черненькая, Р.Б. Моргунов

Институт проблем химической физики,

Черноголовка, Московская обл., Россия

E-mail: morgunov2005@yandex.ru

(Поступила в Редакцию 27 октября 2010 г.)

В монокристаллах α' -(BEDT-TTF)₂IBr₂ в диапазоне температур 15–30 К обнаружен гистерезис спектров электронного парамагнитного резонанса, свидетельствующий о наличии фазового перехода первого рода. В спектрах электронного парамагнитного резонанса наблюдаются две линии, соответствующие высокотем-пературной и низкотемпературной фазам.

1. Введение

11

Органические металлы на основе молекул бис(этилендитио)тетратиофульваленов (BEDT-TTF) интересны тем, что проявляют вигнеровское упорядочение носителей зарядов [1], сверхпроводимость [2], фотоиндуцированные фазовые переходы [3], нелинейные оптические явления [4]. Слоистая структура этих соединений обеспечивает сильную анизотропию электрической проводимости, позволяя рассматривать кристаллы α' -(BEDT-TTF)₂IBr₂ как квазидвумерные системы (рис. 1, a). Молекула BEDT-TTF имеет строение, показанное на рис. 1, b. В [5-7] было обнаружено, что для кристаллов α' -(BEDT-TTF)₂IBr₂ характерно несколько критических температур. При температурах ниже 210 К наблюдается локализация носителей заряда — дырок, которая является электронным процессом и не сопровождается изменениями параметров кристаллической решетки [6]. Этот процесс детально описан в [8,9]. Еще один скачкообразный переход в этих кристаллах наблюдается при низкой температуре $T \approx 30$ K. До начала настоящей работы он был обнаружен при помощи сверхпроводящего квантового интерференционного магнитометра (СКВИД-магнитометра) [8,9]. Было показано, что при охлаждении ниже 50 К в кристаллах α' -(BEDT-TTF)₂IBr₂ происходит резкое уменьшение магнитной восприимчивости. Из данных рентгеноструктурного анализа [10] известно, что в кристаллах α' -(BEDT-TTF)₂IBr₂ во всем диапазоне температур 4-300 К параметры решетки изменяются слабо и монотонно, не претерпевая скачков. В частности, методом рентгеновской дифракции не удается обнаружить скачкообразные изменения параметров кристаллической решетки при температурах ~ 200 и ~ 30 K, при которых наблюдаются резкие изменения других физических свойств. Однако о наличии переходов в другие состояния свидетельствует то, что при циклическом нагревании и охлаждении кристаллов наблюдается гистерезис магнитной восприимчивости [11]. Метод СКВИД-магнетометрии, использованный в [11], не позволяет разделить вклады различных фаз, изучать их по отдельности, определять их количества и свойства, различать вклады дефектов структуры. Цель настоящей работы заключалась в установлении закономерностей низкотемпературной спиновой динамики и разделении вкладов высокотемпературной и низкотемпературной фаз в магнитную восприимчивость α' -(BEDT-TTF)₂IBr₂ методом ЭПР-спектроскопии.

2. Методика

Поскольку фазовые переходы обычно чувствительны к изотопному замещению, в работе были исследованы три типа монокристаллов α' -(BEDT-TTF)₂IBr₂: 1) с изотопами углерода ¹²С и водорода ¹Н в молекулах BEDT-TTF (рис. 1, *b*); 2) обогащенные изотопами углерода ¹³С и водорода ¹Н; 3) обогащенные изотопами углерода ¹²С и дейтерия ²Н (D). Далее используются следующие обозначения этих типов образцов: ¹²С, ¹³С, D соответственно. Монокристаллы представляли собой ромбовидные пластинки с естественной огран-

Рис. 1. *а*) Кристаллическая структура α' -(BEDT-TTF)₂IBr₂. Проекция вдоль оси **a**. b) Структура молекулы BEDT-TTF.

кой. Размеры кристалла $^{12}\mathrm{C}\sim2.2\times1\times0.3\,\mathrm{mm},$ кристалла $^{13}\mathrm{C}\sim1\times0.5\times0.2\,\mathrm{mm},$ кристалла $D\sim3\times1\times0.2\,\mathrm{mm}.$

В работе был использован спектрометр электронного парамагнитного резонанса Bruker E 500, работающий в X-диапазоне частоты (~9.4 GHz), с прямоугольным резонатором типа H_{102} , частотой модуляции 100 kHz, диапазоном развертки постоянного магнитного поля 0–14 kOe. Амплитуда модуляции магнитного поля была 3 Oe при T > 40 K и 0.5 Oe при $T \le 40$ K. Микроволновая мощность составляла 0.64 mW, добротность резонатора варьировалась в диапазоне Q = 3800-4100.

Спектры ЭПР записывались в виде зависимостей первой производной поглощения микроволновой мощности по магнитному полю dP/dH. Разложение спектра на сигнал дисперсии и поглощения при 300 К показало, что доля сигнала дисперсии зависит от ориентации образца и не превышает 1.5% величины [8]. Таким образом, сигналом дисперсии можно было пренебречь во всем температурном диапазоне исследований.

В экспериментах температура изменялась в диапазоне от 4 до 280 K с относительной точностью ± 0.5 K в криостате ESR 900 Oxford Instruments. Охлаждение образца в криостате ESR 900 происходило со скоростью 0.1-0.5 K/min при $T \leq 30$ K и со скоростью 1-2.5 K/min при T > 30 K. Чувствительность спектрометра нормировалась на калибровочную кривую резонатора. В трубке с исследуемыми образцами (в термическом контакте с ними) находился калибровочный образец CuSO₄ · 5H₂O, позволяющий учитывать изменение чувствительности резонатора с температурой, а также рассчитывать абсолютные значения магнитной восприимчивости и числа спинов в образце с точностью 50–60%.

3. Экспериментальные результаты

Спектры ЭПР во всех типах кристаллов α' -(BEDT-TTF)₂IBr₂ при высоких температурах 30-300 К представляли собой одиночную линию *A* лоренцевой формы (рис. 2, *a*). При *T* < 30 К в спектрах кристаллов на фоне широкой линии *A* (ширина линии ~ 70-100 Ос) появлялась узкая дополнительная линия *B* (ширина линии ~ 2 Ос) (рис. 2, *b*).

Ширины линий ΔH были определены из аппроксимации спектра функцией Лоренца. На рис. 3 приведены зависимости ширин линий $\Delta H(T)$ для всех типов кристаллов: ширины линии *B*, существующей при *T* < 30 K, и ширины линии *A*, существующей при *T* > 30 K. В температурном диапазоне *T* = 4–15 K ширина линии *B* для всех типов кристаллов α' -(BEDT–TTF)₂IBr₂ почти не изменялась. В диапазоне температур 29–70 K ширины линий *A* для всех типов образцов возрастали. При температурах 70–190 K зависимости $\Delta H(T)$ были убывающими. При температуре *T* \approx 200 K (температура локализации дырок) [9] на зависимостях наблюдался скачок ширины линии. Как показано в [7,9], локализация

Рис. 2. Спектры ЭПР монокристалла α' -(BEDT-TTF)₂IBr₂, в котором все атомы водорода замещены дейтерием, и калибровочного образца CuSO₄ · 5H₂O при T = 290 (*a*) и 12 K (*b*). Здесь и далее на рисунках магнитное поле спектрометра **H** параллельно плоскости *ab* кристаллов. На вставке показан увеличенный участок спектра, в котором различимы линии *A* и *B*.

Рис. 3. Температурные зависимости ширин линий A и B в спектре ЭПР исследованных типов монокристаллов α' -(BEDT-TTF)₂IBr₂ (образцов ¹²C, ¹³C и D). Зависимости $\Delta H(T)$ получены при нагревании кристаллов.

дырок в образцах сопровождается резкими изменениями параметров спектров. В диапазоне 210-300 К зависимости $\Delta H(T)$ возрастали для всех типов кристаллов α' -(BEDT-TTF)₂IBr₂.

В диапазоне температур 4-30 K для образцов ¹²C, ¹³C, D было проведено несколько циклов охлаждения и нагрева. Для всех типов образцов наблюдался темпера-

Рис. 4. Температурные зависимости ширины линии ΔH спектров ЭПР монокристаллов α' -(BEDT-TTF)₂IBr₂ при термоциклировании. a — образец ¹²С, b — образец ¹³С, c — образец ⁰С, c — образ

Рис. 5. Температурные зависимости *g*-факторов монокристалла α' -(BEDT-TTF)₂IBr₂ (образец ¹²C) при термоциклировании. Темными кружками показаны зависимости, полученные при нагревании кристаллов, светлыми — при охлаждении. На вставках — спектры ЭПР при температурах T = 5.5, 26 и 40 К.

турный гистерезис ширин линий (рис. 4). Гистерезис заключался в том, что исчезновение и появление линий A и B происходило при разных температурах, зависящих от того, в режиме охлаждения или нагрева записывались спектры. Например, в кристалле α' -(BEDT-TTF)₂IBr₂ (с изотопами ¹²C) линия B появлялась при 21 K в режиме охлаждения, а исчезала эта линия при последующем нагреве при 26 K, т.е. с задержкой по температуре. Для образца ¹³C диапазон температур, в котором наблюдался описанный гистерезис, составляет ~ 24–29 K, для образца D он составляет ~ 15–18 K.

Из аппроксимации спектров ЭПР функцией Лоренца были найдены резонансные поля, которые были пересчитаны в g-факторы для каждой температуры для всех типов кристаллов. На рис. 5 приведены температурные зависимости g-фактора для образца ¹²С при термоциклировании. Зависимости g-фактора от температуры для образцов ¹³С и D аналогичны показанным на рис. 5. При температурах T < 21 К значения g-фактора практически не изменялись. Термоциклирование приводит также к температурному гистерезису g-фактора в диапазоне 21-26 К.

Ha рис. фрагмент 6 показан зависимости магнитной восприимчивости $\chi(T)$ монокристаллов углерода α' -(BEDT-TTF)₂IBr₂ с изотопами ^{12}C при термоциклировании. Зависимости суммарной восприимчивости магнитной $\chi(T) = \chi_A(T) + \chi_B(T),$ учитывающей вклады обеих линий А и В, были получены с помощью двукратного интегрирования спектров ЭПР. При охлаждении кристаллов в диапазоне температур 30-21 К наблюдалось уменьшение магнитной восприимчивости χ . При температурах $T < 21 \, {\rm K}$ (когда линия А исчезла и наблюдалась только линия В)

Рис. 6. Фрагмент зависимости суммарной интегральной магнитной восприимчивости $\chi(T)$ монокристаллов α' -(BEDT-TTF)₂IBr₂ (образец ¹²C) при термоциклировании. Темными кружками показана магнитная восприимчивость высокотемпературной фазы (χ_A), светлыми — магнитная восприимчивость низкотемпературной фазы (χ_B).

Рис. 7. Температурные зависимости высокочастотных интегральных магнитных восприимчивостей $\chi_A(T)$ и $\chi_B(T)$ монокристалла α' -(BEDT-TTF)₂IBr₂ (образец ¹³C).

значения магнитной восприимчивости χ не зависели от температуры. В температурном диапазоне 21-26 К наблюдался гистерезис магнитной восприимчивости. На рис. 7 приведены температурные зависимости магнитных восприимчивостей, соответствующих линиям A и B, для образца ¹³С в диапазоне температур 20-26.5 К. С увеличением температуры вклад магнитной восприимчивости χ_A увеличивается, а вклад χ_B — уменьшается. Таким образом, рис. 7 позволяет судить по отдельности о температурных зависимостях вкладов линий A и B в магнитную восприимчивость кристалла.

4. Обсуждение

Две резонансные линии A и B (рис. 2, b) мы относим к двум различным фазам, сосуществующим в диапазоне температур 21–26 К для ¹²C, 24–29 К для ¹³C, 15–18 К для D.

Вычисление количества спинов на ячейку показало, что в высокотемпературной фазе (при $T = 290 \,\mathrm{K}$) один спин приходится на 0.7 ± 0.4 элементарные ячейки, а в низкотемпературной фазе (при $T = 12 \,\mathrm{K}$) один спин приходится на $1.42 \pm 0.5 \cdot 10^8$ ячеек. Магнитная восприимчивость высокотемпературной фазы (при $T = 290 \,\mathrm{K}$) в 10⁷ раз больше магнитной восприимчивости низкотемпературной фазы (при T = 12 K). Можно было бы предположить, что при низких температурах сигнал ЭПР дают парамагнитные дефекты кристалла, образующиеся при термоциклировании. Однако при нагревании образца узкая линия обратимо исчезает, а при циклическом нагревании-охлаждении наблюдается гистерезис — задержка температуры появления узкой линии В для всех типов кристаллов ¹²C, ¹³C и D (рис. 6). Гистерезис невозможно было бы наблюдать для изолированных невзаимодействующих дефектов. Поэтому мы приписываем малое количество спинов низкотемпературной антиферромагнитной фазе соединения α' -(BEDT-TTF)₂IBr₂. Ее образование и исчезновение при термоциклировании происходит с задержкой. Таким образом, мы имеем дело со структурным, а не магнитным гистерезисом.

Обсудим теперь различия температур фазового перехода для кристаллов 12 C, 13 C и D. Сдвиг температуры фазового перехода в принципе может быть связан с изотопным замещением углерода 12 C на 13 C или водорода 1 H на дейтерий D. Оценим сначала эту возможность для объяснения сдвига температур на рис. 4.

Изотопное замещение водорода на дейтерий $H \rightarrow D$ (или ${}^{12}C \rightarrow {}^{13}C$) приводит к укорачиванию длины связи C-D (или C-C), что приводит к уменьшению объема элементарной ячейки V и увеличению интеграла перекрытия волновых функций соседних атомов в кристаллической решетке I. Оценим изменение температуры фазового перехода ΔT , обусловленное изотопным замещением, по формуле [12]

$$\Delta T/T = \frac{[P\Delta T/(T\Delta P)]}{[P\Delta V/(V\Delta P)] \cdot [V\Delta I/(I\Delta V)]}.$$
 (1)

Из анализа зависимостей электрического сопротивления α' -(BEDT-TTF)₂IBr₂ от внешнего прикладываемого гидростатического давления *P* в [6] был определен коэффициент

$$P\Delta T / (T\Delta P) = -6.5 \cdot 10^{-5}.$$
 (2)

Из рентгеноструктурных изменений α'-(BEDT-TTF)₂I₃ под давлением в [13] определили другой коэффициент

$$P\Delta V/(V\Delta P) = -1.0 \cdot 10^{-5},$$
 (3)

который мы используем, имея в виду сходство кристаллической структуры α -(BEDT-TTF)₂I₃ с исследуемой структурой α' -(BEDT-TTF)₂IBr₂.

И последний коэффициент был вычислен по данным рентгеноструктурных измерений α' -(BEDT-TTF)₂IBr₂ в [10,12,13]

$$V\Delta I/(I\Delta V) = -11.2,\tag{4}$$

где $\Delta I = I_{^{12}\text{C}} - I_{\text{D}}$ — разность между интегралами перекрытия волновых функций для образцов ¹²C [10] и D [13], V — объем элементарной ячейки ¹²C, $\Delta V = V_{^{12}\text{C}} - V_{\text{D}}$ — изменение объема элементарной ячейки при изотопном замещении [12].

В результате подстановки (2), (3) и (4) в (1) получим $\Delta T/T = 0.016$, $\Delta T = 0.416$ К — сдвиг температуры фазового перехода для образца D при T = 21 К.

Уменьшение объема при замещении $^{12}{\rm C}$ на $^{13}{\rm C}$ в $\alpha' \cdot ({\rm BEDT} - {\rm TTF})_2 {\rm IBr}_2 \ \Delta V/V = 0.0001 \ [12]$ (что на порядок меньше, чем при замещении H на D), интегралы перекрытия волновых функций и коэффициенты теплового расширения для образцов $^{12}{\rm C}$ и $^{13}{\rm C}$ одинаковы по величине, поэтому для образца $^{13}{\rm C}$ ожидаемое значение $\Delta T \approx 0 \, {\rm K}.$

Сдвиг температур фазового перехода, наблюдаемый в наших экспериментах, значительно больше расчетного значения: при замещении H на D и 12 C на 13 C сдвиг составляет $\Delta T = -8$ и 4K соответственно.

Кроме того, сдвиг температуры фазового перехода в кристаллах одного типа оказывается чувствительным к режиму нагревания и охлаждения. В кристаллах ¹²С при охлаждении происходит уменьшение температуры фазового перехода на 5 K, в ¹³С и D температура перехода увеличивается на 5 и 3–5 K соответственно.

На основании этих данных можно сделать вывод, что термическая предыстория и образование дефектов при термоциклировании играют определяющую роль в температурном гистерезисе. Эти факторы сильнее влияют на температуру фазового перехода T = 21 K, чем изотопное замещение.

5. Заключение

В монокристаллах α' -(BEDT-TTF)₂IBr₂ всех типов (¹²C, ¹³C и D) при температурах 15–30 К наблюдается температурный гистерезис *g*-факторов, ширины линий, магнитных восприимчивостей. В образцах происходит фазовый переход первого рода. Высокотемпературная и низкотемпературная фазы дают разные сигналы ЭПР. Термическая предыстория и образование дефектов при термоциклизации в α' -(BEDT-TTF)₂IBr₂ играют определяющую роль в температурном гистерезисе. Эти факторы дают больший эффект, чем изотопное замещение.

Авторы выражают благодарность К. Yakushi (Osaka–Ohtani University, Japan) за предоставление образцов для исследований.

Список литературы

- K. Yamamoto, A.A. Kowalska, K. Yakushi. Appl. Phys. Lett. 96, 122 901 (2010).
- [2] H. Wang, K. Carlson, U. Geiser, W.K. Kwok, M.D. Vashon, J.E. Thompson, N.F. Larsen, G.D. McCabe, R.S. Hulscher, J.M. Williams. Physica C 166, 1–2, 57 (1990).
- [3] S. Iwati, K. Yamamoto, F. Hiramatsu, H. Nakaya, Y. Kawakami, K. Yakushi. Phys. Rev. B 77, 125 131 (2008).
- [4] K. Yamamoto, S. Iwati, S. Boyko, A. Kashiwazaki, F. Hiramatsu, C. Okabe, N. Nishi, K. Yakushi. J. Phys. Soc. Jpn. 77, 074 709 (2008).
- [5] Э.Б. Ягубский, И.Ф. Щеголев, Р.П. Шибаева, Д.Н. Федутин, Л.Р. Розенберг, Е.М. Согомонян, Р.М. Лобковская, В.Н. Лаухин, А.А. Игнатьев, А.В. Зварыкина, Л.И. Буравов. Письма в ЖЭТФ 42, 167 (1985).
- [6] Y. Yue, C. Nakano, K. Yamamoto, M. Uruichi, R. Wojciechowski, M. Inokuchi, K. Yakushi. J. Phys. Soc. Jpn. 78, 044 701 (2009).
- [7] Р.Б. Моргунов, Р.П. Шибаева, Э.Б. Ягубский, Т. Каto, Y. Tanimoto. ЖЭТФ 129, 139 (2006).
- [8] Р.Б. Моргунов, А.И. Дмитриев, А.С. Черненькая, К. Якуши, К. Ямамото, Й. Танимото. ЖЭТФ 138, 5, 970 (2010).
- [9] R. Morgunov, A. Dmitriev, A. Chernenkaya, K. Yamamoto, K. Yakushi, Y. Tanimoto. Physica B 405, 11, 138 (2010).
- [10] M. Watanabe, M. Nishikawa, Y. Nogami, K. Oshima, G. Saito. J. Korean Phys. Soc. 31, 95 (1997).
- [11] Y. Yue, K. Yamamoto, C. Nakano, M. Uruichi, K. Yakushi, M. Inokuchi, T. Hiejima, A. Kawamoto. Physica B 405, 11, 232 (2010).
- [12] M. Uruichi. Report 06.05.2010. Institute for Molecular Sciences. Division of Electron Properties (K. Yakushi group).
- [13] I. Tamura, H. Kobayashi, A. Kobayashi. J. Phys. Chem. Solids
 63, 6-8, 1255 (2002).