06,11,12,13 Влияние ограниченной геометрии на линейные и нелинейные диэлектрические свойства триглицинсульфата вблизи фазового перехода

© С.В. Барышников¹, Е.В. Чарная^{2,5}, Ю.А. Шацкая¹, А.Ю. Милинский¹, М.И. Самойлович³, D. Michel⁴, C. Tien⁵

 ¹ Благовещенский государственный педагогический университет, Благовещенск, Россия
 ² Санкт-Петербургский государственный университет, Санкт-Петербург, Россия
 ³ ЦНИИТИ "Техномаш", Москва, Россия
 ⁴ Department of Physics and Geosciences, Leipzig University, Leipzig, Germany
 ⁵ Department of Physics, National Cheng Kung University, Tainan, Taiwan

E-mail:svbar2008@list.ru

(Поступила в Редакцию 27 октября 2010 г.)

Представлены результаты исследований температуной зависимости линейной диэлектрической проницаемости и амплитуды генерации третьей гармоники для нанокомпозитов, представляющих собой нанопористые силикатные матрицы (опаловую матрицу и SBA-15) с введенным в поры триглицинсульфатом, в области сегнетоэлектрического фазового перехода. Обнаружено размытие фазового перехода и повышение его температуры по сравнению с объемным триглицинсульфатом, которое становится более существенным при уменьшении размера пор. Показано, что нелинейные диэлектрические свойста нанокомпозитов вблизи фазового перехода значительно отличаются от свойств объемного триглицинсульфата.

1. Введение

В настоящее время большой интерес вызывают исследования зависимости физических свойств малых частиц от их размеров. Одним из известных способов получения малых частиц является внедрение различных веществ в пористые матрицы, характерный размер пор которых лежит в нанометровом диапазоне. При введении в нанопористые матрицы сегнетоэлектрических частиц можно получать нанокомпозиты с сегнетоэлектрическими свойствами. Однако на сегнетоэлектричество в услових ограниченной геометрии оказывают влияние не только эффекты, обусловленные малым размером пор и, следовательно, малым размером образующихся в порах частиц, но и взаимодействие частиц со стенками пор и между собой. Сегнетоэлектрические свойства нанокомпозитов на основе пористых матриц исследованы сравнительно мало, что в значительной степени обусловлено сложностью введения сегнетоэлектрических материалов в поры. Вследствие этого преимущественно проводились исследования композитов с частицами водорастворимых сегнетоэлектриков или сегнетоэлектриков с низкой температурой плавления.

Больше всего работ посвящено изучению свойств нитрита натрия, введенного в искуссвенные опаловые матрицы, пористые стекла и силикатные матрицы, нанокомпозитов со смешанными кристаллами на основе нитрита натрия и нитрата калия, а также сегнетовой соли (см. [1,2] и ссылки в них). Имеются отдельные работы для триглицинсульфата (ТГС) в условиях ограниченной геометрии (см., например, [3]). Для сегнетоэлектрических частиц в нанопорах наблюдались нарушения структуры, сдвиги температур структурных фазовых переходов, значительное усиление ионной подвижности и изменение других физических свойств. При этом для изучения электрических свойств нанокомпозиционных материалов в основном использовались методы линейной диэлектрической спектроскопии.

В настоящей работе сообщается о применении для исследования ТГС в ограниченной геометри метода генерации третьей гармоники в сравнении с данными для линейной диэлектрической проницаемости. Цель работы состояла в выявлении особенности нелинейных свойств нанокомпозитов с сегнетоэлектрическими включениями, а также влияния размеров пор на изменение температуры фазового перехода и его размытие. В качестве пористых матриц использовались опаловые матрицы и мезопористые силикатные матрицы SBA-15.

2. Образцы и эксперимент

Использовавшиеся опаловые матрицы состоят из плотноупакованных однородных по размерам рентгеноаморфных сфер SiO₂ с диаметром 260-270 nm (рис. 1). Пусто́ты между сферами имеют регулярное периодическое распределение. Как показывают вычисления в предположении жестких сфер, пусто́ты (октаэдрические

Рис. 1. Электронная микрофотография поверхности образца опаловой матрицы перед внедрением ТГС.

и тетраэдрические) должны иметь размеры (диаметры вписанных в них сфер) ~ 110 и ~ 60 nm соответственно. При идеальной форме сфер SiO₂ пустоты в опаловой матрице соединяются каналами, имеющими в сечении форму треугольника с вогнутыми сторонами. Диаметр вписанного в него цилиндра составляет $\sim 35-45$ nm [4]. Такие каналы-капилляры обеспечивают последовательное заполнение всех пор веществом с образованием кластеров при помещении исходных опаловых матриц в соответствующую среду. Следует отметить, однако, что в реальных опаловых матрицах, прошедших процессы упрочнения, размеры пор и каналов меньше теоретических.

Силикатные матрицы SBA-15 имеют гексагональную структуру типа пчелиных сот с толщиной стенок 0.6–0.8 nm и калиброванным размером каналов-пор. Размер пор для матрицы SBA-15, использованной в настощей работе, вычислялся из изотерм адсорбции десорбции азота и по данным дифракции рентгеновского излучения и составляет 5.2 nm. Удельная поверхность каналов — 764 m² · g⁻¹, удельный объем пор — порядка 1 cm³ · g⁻¹.

ТГС представляет собой классический сегнетоэлектрик с фазовым переходом второго рода и уже в течение длительного времени является объектом активных теоретических и экспериментальных исследований. Выше температуры Кюри ($T_c = 49^{\circ}$ С) кристалл ТГС имеет моноклинную симметрию и принадлежит к центросимметричному классу 2/*m*. Ниже T_c кристалл принадлежит к полярной точечной группе 2 моноклинной системы (зеркальная плоскость исчезает). Полярная ось направлена вдоль моноклинной оси второго порядка. Одна элементарная ячейка кристалла ТГС содержит более 100 атомов. Структура ТГС сложна и представляет собой сетку молекул глицина CH₂NH₂COOH и тетраэдров SO₄, связанных между собой водородными связями.

Внедрение ТГС в поры опаловой матрицы и SBA-15 проводилось из насыщенного водного раствора. После

Для измерения линейной комплексной диэлектрической проницаемости использовался цифровой измеритель импеданса LCR-819 с частотным диапазоном 20–10⁵ Hz. Температура измерялась с помощью электронного термометра CENTER-304 с хромель-алюмелевой термопарой. Исследования проводились в температурном интервале от 20 до 70°С. В качестве эталонных образцов использовались монокристаллы TГС.

Установка для температурных исследований амплитуд высших гармоник содержала генератор с рабочей частотой 2 kHz и максимальной амплитудой выходного напряжения 10 V. Сигнал снимался с резистора, включенного последовательно с образцом, и подавался на цифровой анализатор спектра, в качестве которого использовался персональный компьютер с 24-разрядным аналогоцифровым преобразователем ZET 230 и программным обеспечением ZetLab. При этом регистрировался модуль амплитуды нелинейных гармоник.

3. Экспериментальные результаты и обсуждение

Известно, что генерация гармоник значительно усиливается вблизи сегнетоэлектрических фазовых переходов. Амплитуда гармоник пропорциональна нелинейным диэлектрическим проницаемостям ε_i , которые входят в разложение электрического смещения D в ряд по степеням напряженности поля E

$$D = P_s + \frac{dP}{dE}\varepsilon_0 E + \frac{1}{2!}\frac{d^2P}{dE^2}\varepsilon_0^2 E^2 + \dots$$
$$= P_s + \varepsilon_1\varepsilon_0 E + \varepsilon_2\varepsilon_0^2 E^2 + \varepsilon_3\varepsilon_0^3 E^3 + \dots, \qquad (1)$$

где P_s — спонтанная поляризация, коэффициент ε_1 обозначает линейную диэлектрическую проницаемость, ε_2 и ε_3 — диэлектрические проницаемости второго и третьего порядка соответственно.

В результате нелинейности D(E) при приложении к образцу синусоидального электрического поля в выходном сигнале появляются гармоники с частотами *по* (n = 2, 3, ...). Амплитуды второй и высших гармоник пропорциональны модулям диэлектрических проницаемостей второго и высшего порядков соответственно. Анализируя поведение амплитуд нелинейных гармоник, можно получить информацию о поведении спонтанной поляризации и характере фазового перехода [5].

Согласно феноменологической теории Ландау–Гинзбурга [6], вклад в свободную энергию сегнетоэлектрика

Рис. 2. Температурный ход относительной диэлектрической проницаемости на частоте 2 kHz $\varepsilon_{rel} = (\varepsilon - \varepsilon_{min})/(\varepsilon_{max} - \varepsilon_{min})$ для монокристалла ТГС (1), опаловой матрицы с ТГС (2) и матрицы SBA-15 с ТГС (3).

с фазовым переходом второго рода, обусловленный поляризацией *P*, может быть представлен в виде

$$F = \frac{1}{2}\alpha P^2 + \frac{1}{4}\beta P^4 - EP,$$
 (2)

где $\alpha = \alpha_0(T - T_c)$, α_0 и β — не зависящие от температуры положительные коэффициенты, T_c — температура Кюри. Авторами работы [7] были получены выражения для ε_2 и ε_3 через коэффициенты Ландау в случае фазового перехода второго рода

$$\varepsilon_2 = -3\chi^3 \beta P_s \varepsilon_0, \qquad (3)$$

$$\varepsilon_3 = -\chi^4 (\beta \varepsilon_0 - 18 \chi \beta^2 P_s^2 \varepsilon_0^2). \tag{4}$$

В (3) и (4) χ — линейная восприимчивость. Используя выражение для спонтанной поляризации через феноменологические коэффициенты разложения Ландау, можно получить, что $\varepsilon_3 = 8\beta\chi^4\varepsilon_0$ ниже фазового перехода и $\varepsilon_3 = -\beta\chi^4\varepsilon_0$ выше фазового перехода. Выражение (4) показывает, что модуль амплитуды третьей гармоники должен возрастать в сегнетофазе при повышении температуры и приближении к переходу, обращаться в нуль при переходе и после быстрого небольшого роста уменьшаться при дальнейшем повышении температуры.

Проведенные исследования показали, что для монокристалла ТГС при приложении переменного поля вдоль P_s максимум сигнала на основной частоте совпадает с температурой фазового перехода, а амплитуда третьей гармоники имеет максимум несклько ниже T_c (ниже 47°С) и обращается в нуль при T_c (рис. 2, 3). Такое поведение нелинейной гармоники в целом согласуется с выражением (4).

Для опаловой матрицы и SBA-15, заполненных ТГС, фазовые переходы сильно размываются и смещаются в сторону высоких температур. При этом размытие фазового перехода по данным для линейной проницаемости сильнее для композита на основе опаловой матрицы (рис. 2), несмотря на значительно больший размер пор. В то же время сдвиг температуры сегнетоэлектрического фазового перехода, соответствующей положению максимума диэлектрической проницаемости, демонстрирует размерную зависимость (рис. 2). Для силикатных матриц SBA-15, заполненных TГС, температура фазового перехода повышается на $4-5^{\circ}$ С относительно монокристалла, тогда как сдвиг температуры перехода для частиц TГС в опаловой матрице составляет величину порядка $1-2^{\circ}$ С.

Результаты измерений амплитуды третьей гармоники для матриц опала и SBA-15, заполненных ТГС, представлены на рис. 3. Для композитов коэффициент генерации третьей гармоники $\gamma = |U_{3\omega}|/U_{\omega}$ (U_{ω} и $U_{3\omega}$ амплитуды подаваемого напряжения и снимаемого сигнала на утроенной частоте соответственно) в области фазового перехода значительно меньше по величине, чем в монокристаллическом образце. Причинами ослабления нелинейности являются, вероятно, уменьшение относительного объема ТГС и размытие фазового перехода. Для матрицы SBA-15 максимум амплитуды третьей гармоники сдвинут относительно того же максимума в монокристалле в сторону высоких температур, но заметно слабее, чем сдвигается фазовый переход по данным для линейной диэлектрической проницаемости. При этом минимум генерации, которому в отсутствие размытия, согласно теоретическому соотношению (4), отвечает температура перехода в параэлектрическую фазу, сдвинут вверх относительно монокристалла примерно на 8°С.

Для ТГС в порах опаловой матрицы характер температурной зависимости коэффициента генерации третьей гармоники существенно различается. Наблюдается усиление генерации при увеличении температуры в параэлектрической фазе и сдвиг максимума генерации

Рис. 3. Температурные зависимости коэффициентов генерации третьей гармоники γ для монокристалла ТГС (1), ТГС в опаловой матрице (2) и ТГС в матрице SBA-15 (3).

Рис. 4. Уменьшение амплитуды коэффициента генерации третьей гармоники γ для ТГС в матрице SBA-15 при проведении двух последовательных циклов (1-2 и 3-4) нагрев—охлаждение. Светлые символы — нагрев, темные — охлаждение.

в глубь сегнетоэлектрической фазы. Учитывая размытие фазового перехода, проявляющееся в уширении максимума линейной проницаемости для TГС в опаловой матрице (рис. 2), можно предположить, что оно играет основную роль и в изменении нелинейных свойств этого композита. Возможно, на размытие сегнетоэлектрического перехода для ТГС в опаловой матрице сказывается влияние остаточной воды, которая труднее удаляется из сплошной матрицы в сравнении с порошком SBA-15.

Следует отметить, что при первом прогреве максимумы коэффициентов генерации третьей гармоники ярко выражены как для опаловой матрицы, так и для SBA-15. Однако при следующих циклах максимумы уменьшаются и размываются (рис. 4), становясь практически назаметными уже при пятом проходе. После выдержки образцов на воздухе в течение порядка 10 h при комнатной температуре их нелинейные параметры восстанавливаются. Такой результат согласуется с существенной ролью адсорбированной воды в порах.

Возрастание температуры структурного фазового перехода для ТГС в условиях ограниченной геометрии не согласуется с предсказаниями теоретических моделей размерных эффектов в сегнетоэлектриках, основанных на теории Ландау или модели Изинга [8,9]. Эти модели предсказывают сдвиг сегнетоэлектрического перехода в глубь сегнетоэлектрической фазы, т.е. в случае ТГС к низким температурам. Ранее для нитрита натрия в порах молекулярных сит MCM-41 и SBA-15 и опалов, а также сегнетовой соли в порах молекулярных сит было получено понижение температуры фазового перехода [10-12]. С другой стороны, для тех же сегнетоэлектриков в пористом оксиде алюминия наблюдалось расширение области существования сегнетоэлектрической фазы [3,13,14]. Повышение фазового перехода связывалось со взаимодействием сегнетоэлектрических частиц в порах со стенками матриц [13–16], с геометрией пор (см. [14] и ссылки в этой работе), а также с дипольдипольным взаимодействием между отдельными сегнетоэлектрическими частицами композита [17]. Учитывая, что для композита с ТГС возрастание температуры перехода наблюдалось для тех же матриц, в которых для ряда других сегнетоэлектриков было обнаружено понижение температуры перехода, следует предположить, что основную роль в сдвиге фазового перехода играет взаимодействие частиц со стенками пор.

4. Заключение

Таким образом, можно отметить следующие особенности свойств ТГС в наноразмерных матрицах в сравнении с объемными монокристаллическими образцами. Наблюдается повышение температуры сегнетоэлектрического фазового перехода, которое становится более существенным при уменьшении размера пор. Фазовый переход для частиц ТГС в порах значительно размывается, что сказывается на линейных и нелинейных свойствах композитов в области перехода.

Список литературы

- S.V. Baryshnikov, E.V. Charnaya, A.Yu. Milinskiy, Yu.A. Shatskaya, C. Tien, D. Michel. Physica B 405, 3299 (2010).
- [2] S.V. Baryshnikov, E.V. Charnaya, A.Yu. Milinskiy, E.V. Stukova, Cheng C. Tien, D. Michel. J. Phys.: Cond. Matter 21, 325 902 (2009).
- [3] О.В. Рогазинская, С.Д. Миловидова, А.С. Сидоркин, В.В. Чернышев, Н.Г. Бабичева. ФТТ 51, 1430 (2009).
- [4] В.Н. Богомолов, Л.М. Сорокин, Д.А. Курдюков, Т.М. Павлова, Дж. Хатчисон. ФТТ **39**, 2090 (1997).
- [5] С.Г. Юдин, Л.М. Блинов, Н.Н. Петухова, С.П. Палто. Письма в ЖЭТФ 70, 625 (1999).
- [6] В.Г. Гинзбург. УФН 38, 490 (1949).
- [7] S. Ikeda, H. Kominami, K. Koyama, Y.J. Wada. Appl. Phys. 62, 3339 (1987).
- [8] C.L. Wang, Y. Xin, X.S. Wang, W.L. Zhong. Phys. Rev. B 62, 11423 (2000).
- [9] W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu. Phys. Rev. B 50, 698 (1994).
- [10] S.V. Pankova, V.V. Poborchii, V.G. Solovev. J. Phys.: Cond. Matter 8, L 203 (1996).
- [11] C. Tien, E.V. Charnaya, M.K. Lee, S.V. Baryshnikov, S.Y. Sun,
 D. Michel, W. Böhlmann. Phys. Rev. B 72, 104105 (2005).
- [12] C. Tien, E.V. Charnaya, M.K. Lee, S.V. Baryshnikov, D. Michel, W. Böhlmann. J. Phys.: Cond. Matter 20, 215 205 (2008).
- [13] С.В. Барышников, Е.В. Чарная, Е.В. Стукова, А.Ю. Милинский, С. Тіеп. ФТТ 52, 1347 (2010).
- [14] C. Tien, E.V. Charnaya, M.K. Lee, S.V. Baryshnikov. Phys. Status Solidi B 246, 2346 (2009).
- [15] X.Y. Lang, Q. Jiang. J. Nanoparticle Res. 9, 595 (2007).
- [16] C.C. Yang, Q. Jiang. Acta Mater. 53, 3305 (2005).
- [17] E.V. Charnaya, A.L. Pirozerskii, C. Tien, M.K. Lee. Ferroelectrics **350**, 75 (2007).