04 Диэлектрические потери в статистических смесях

© А.В. Турик, С.И. Гармашов

Южный федеральный университет, Ростов-на-Дону, Россия

E-mail: turik@sfedu.ru

(Поступила в Редакцию 9 ноября 2010 г.)

Исследованы особенности диэлектрических спектров статистических смесей в виде гетерогенных систем с хаотически расположенными в пространстве сферическими частицами. Выполнено восстановление функции распределения времен релаксации $f(\tau)$. Установлено, что времена релаксации непрерывно распределены в широком интервале $[\tau_1, \tau_2]$. Проанализированы различные способы расширения интервала распределения времен релаксации и аппроксимации функции $f(\tau)$. Показано, что $f(\tau)$ является немонотонной функцией с двумя максимумами на границах и минимумом вблизи середины интервала $[\tau_1, \tau_2]$. Эти особенности функции распределения обусловливают большое различие средних частот релаксации диэлектрической проницаемости и диэлектрических потерь (проводимости).

1. Введение

Статистическая смесь [1,2] представляет собой многокомпонентную гетерогенную систему, характеризующуюся хаотическим пространственным распределением частиц компонентов. В таких системах при определенных концентрациях компонентов возникают бесконечные кластеры, соединяющие противоположные стороны образца. Это приводит к перколяционным фазовым переходам, сопровождающимся гигантским диэлектрическим усилением [3,4], глубокой релаксацией физических констант, колоссальным ростом эффективных (усредненных по ансамблю) удельной проводимости [5] и магнитоэлектрической проницаемости [6,7]. В результате возникает возможность эффективного управления физическими свойствами путем изменения частоты прикладываемого к образцу электрического поля, что делает статистические смеси чрезвычайно интересными как с фундаментальной, так и с прикладной точки зрения.

Проводящие статистические смеси относятся к материалам с максвелл-вагнеровской поляризацией [3,4] наиболее медленным из известных релаксационных механизмов поляризации. Характерной чертой статистических смесей является недебаевский диэлектрический спектр [4,5]. Это приводит к значительному (в ряде случаев на несколько порядков [5]) различию средних частот релаксации ω_r^{ε} и ω_r^{γ} комплексной диэлектрической проницаемости (ДП) $\varepsilon = \varepsilon' - i\varepsilon''$ и комплексной удельной проводимости $\gamma = i\omega\varepsilon = \gamma' + i\gamma''$, ответственной за диэлектрические потери $p \sim \omega \varepsilon'' = \gamma' (\omega$ — частота приложенного к диэлектрику гармонического электрического поля). Величина потерь монотонно увеличивается с ростом частоты, причем при высоких частотах p и γ' достигают больших, но конечных значений (выходят на плато).

В дебаевских диэлектриках с одним временем релаксации $\omega_r^{\varepsilon} = \omega_r^{\gamma}$, и специальное исследование релаксации диэлектрических потерь не дает новой информации. Однако анализ существующей обширной литературы по физике диэлектриков [8,9] показывает, что исследование диэлектрических спектров любых релаксационных материалов проводится по аналогии с дебаевскими диэлектриками исключительно путем измерения и анализа поведения действительной $\varepsilon'/\varepsilon_0$ и мнимой $\varepsilon''/\varepsilon_0$ частей комплексной ДП ε (ε_0 — ДП вакуума). И лишь недавно нам удалось показать [5], что различие ω_r^{ε} и ω_r^{γ} ($\omega_r^{\gamma} > \omega_r^{\varepsilon}$ или $\omega_r^{\gamma} \gg \omega_r^{\varepsilon}$) для диэлектриков с недебаевскими спектрами делает необходимым исследование наряду с релаксацией ε релаксации проводимости γ .

Для недебаевских диэлектриков характерно распределение времен релаксации т в конечном или бесконечном интервале $[\tau_1, \tau_2]$, и ключевой становится проблема нахождения функции (плотности) $f(\tau)$ распределения времен релаксации. Именно $f(\tau)$ определяет частотную зависимость є и у и характерные черты спектров ДП и проводимости. Для описания непрерывного распределения времен релаксации наиболее широко используются эмпирические формулы Коула-Коула [10] и Дэвидсона-Коула [11], однако они приводят к бесконечному росту у', у" и диэлектрических потерь с увеличением частоты и поэтому неприемлемы для статистических смесей. В настоящее время функция $f(\tau)$ известна только для некоторых однородных (гомогенных) диэлектриков [5,8,12]. Для статистических смесей $f(\tau)$ неизвестна и впервые определена в настоящей работе. Сведения о зависимости $f(\tau)$ статистических смесей от концентраций и свойств компонентов могут быть использованы для разработки материалов с необходимыми для практических приложений свойствами.

2. Основные положения и формулы

Согласно [8,9], частотные зависимости действительной и мнимой частей эффективной ДП смеси могут быть выражены через функцию $f(\tau)$ распределения времен релаксации, статическую ε_s и высокочастотную ε_{∞} ДП с

помощью интегральных уравнений Фредгольма первого рода

$$\varepsilon' - \varepsilon_{\infty} = (\varepsilon_{s} - \varepsilon_{\infty}) \int_{0}^{\infty} \frac{f(\tau)d\tau}{1 + \omega^{2}\tau^{2}},$$
$$\varepsilon'' = (\varepsilon_{s} - \varepsilon_{\infty}) \int_{0}^{\infty} \frac{\omega\tau f(\tau)d\tau}{1 + \omega^{2}\tau^{2}}, \quad \int_{0}^{\infty} f(\tau)d\tau = 1.$$
(1)

Восстановление функции $f(\tau)$ с помощью уравнений (1) требует решения обратной задачи для интегральных уравнений Фредгольма первого рода, относящейся к некорректным задачам математической физики. Некорректность проявлется в том, что полученная из уравнений (1) $f(\tau)$ может претерпевать сколь угодно значительные изменения при малых вариациях ε' и ε'' , и для нахождения $f(\tau)$ необходимо привлечение дополнительной информации. В настоящей работе мы не могли использовать известный метод регуляризации Тихонова [13], так как при отсутствии априорной информации о решениях уравнений (1) оценка погрешности вычисления $f(\tau)$ средствами регуляризации принципиально неосуществима [14].

Поэтому для восстановления функции распределения $f(\tau)$ мы решали прямую задачу для интегральных уравнений Фредгольма первого рода, подбирая вид $f(\tau)$ таким, чтобы рассчитанные по формулам (1) частотные зависимости $\varepsilon'(\omega)$, $\varepsilon''(\omega)$, $\gamma'(\omega)$ и $\gamma''(\omega)$ наилучшим образом соответствовали аналогичным зависимостям, найденным самосогласованным методом эффективной среды [1–4] для двухкомпонентной трехмерной (3D) статистической смеси с комплексными ДП $\varepsilon^{(1,2)} = \varepsilon_{1,2} - i\gamma_{1,2}/\omega$ обоих компонентов,

$$\varepsilon = A + \sqrt{A^2 + \frac{\varepsilon^{(1)}\varepsilon^{(2)}}{d-1}}, \quad \left(A = \frac{(d\theta_1 - 1)\varepsilon^{(1)} + (d\theta_2 - 1)\varepsilon^{(2)}}{2(d-1)}\right)$$
(2)

где d = 3 — мерность пространства, θ_1 и θ_2 — концентрации компонентов смеси ($\theta_1 + \theta_2 = 1$). Разделение действительной и мнимой частей эффективной ДП смеси $\varepsilon = \varepsilon' - i\varepsilon'' = \varepsilon' - i\gamma/\omega$ осуществлялось в программном пакете "Mathematica 5.2".

3. Результаты и обсуждение

В основу предлагаемого метода определения $f(\tau)$ положено предположение, что времена релаксации непрерывно распределены в ограниченной области $[\tau_1, \tau_2]$. Простейшим способом перехода от дебаевского спектра с одним временем релаксации к недебаевскому спектру с непрерывным распределением времен релаксации в ограниченной области $[\tau_1, \tau_2]$ является предположение, что $f(\tau)$ имеет вид прямоугольника, т.е. в интервале $[\tau_1, \tau_2]$ $f(\tau) = \text{const, тогда как при } \tau < \tau_1$ и $\tau > \tau_2$ $f(\tau) = 0$. Другой способ расширения интервала распределения времен релаксации предложен Фрелихом [8]: в этом случае в интервале $\tau_1 \leq \tau \leq \tau_2 f(\tau) = \text{const}/\tau$ является гиперболой, тогда как при $\tau < \tau_1$ и $\tau > \tau_2$ $f(\tau) = 0$. Расширение интервала $[\tau_1, \tau_2]$ по Дэвидсону– Коулу [11] неприемлемо по указанным выше причинам.

Результаты расчетов по формулам (1) для $f(\tau)$ в виде прямоугольника и гиперболы иллюстрируются рис. 1 и 2 (величины $\varepsilon_s = 3200$ и $\varepsilon_{\infty} = 64$ взяты такими же, как для рассматриваемой статистической смеси). Из рис. 1 и 2 видно, что при расширении интервала [τ_1, τ_2] в первом случае спектр $\gamma(\omega)$, а во втором случае спектр $\varepsilon(\omega)$ размывается и при $\tau_2 \gg \tau_1$ становится чрезвычайно диффузным, что не наблюдается в статистических смесях [5,12].

В целях более точного воспроизведения дисперсии как ε , так и γ нами была выбрана гиперболическая функция в сочетании с параболой: $f(\tau) = a_{-1}\tau^{-1} + a_0$ $+ a_1\tau + a_2\tau^2$. Использование членов со степенями τ выше 2 лишь несущественно улучшает воспроизведение рассчитанных по формулам (2) частотных зависимостей ε и γ . Значения коэффициентов a_i (i = -1-2) и меньшего времени релаксации τ_1 определялись методом наименьших квадратов из условия минимума погрешностей более трудно аппроксимируемых зависимостей $\gamma'(\omega)$ и $\gamma''(\omega)$. Наибольшее время релаксации τ_2 выбиралось таким образом, чтобы условие нормировки (последнее уравнение (1)) выполнялось с заданной точностью (не хуже $10^{-2}\%$).

Рис. 1. Рассчитанные по формулам (1) частотные зависимости $\varepsilon'/\varepsilon_0$, $\varepsilon''/\varepsilon_0$, γ' и γ'' однородного диэлектрика с функцией распределения времен релаксации в виде прямоугольника. $\varepsilon_s = 3200$, $\varepsilon_{\infty} = 64$, $\tau_2 = 1$ s, $\tau_1 = 10^{-3}$ (сплошные линии) и 10^{-4} s (штриховые линии).

Рис. 2. Рассчитанные по формулам (1) частотные зависимости $\varepsilon'/\varepsilon_0$, $\varepsilon''/\varepsilon_0$, γ' и γ'' однородного диэлектрика с функцией распределения времен релаксации в виде гиперболы. $\varepsilon_s = 3200$, $\varepsilon_{\infty} = 64$, $\tau_2 = 1$ s, $\tau_1 = 10^{-3}$ (сплошные линии) и 10^{-4} s (штриховые линии).

Рис. 3. Рассчитанные по формулам (2) (сплошные линии) и восстановленные по формулам (1) (штриховые линии) частотные зависимости $\varepsilon'/\varepsilon_0$, $\varepsilon''/\varepsilon_0$, γ' и γ'' 3D статистической смеси ПКР-73-полиэтилен при концентрации менее проводящего компонента $\theta_1 = 1/3$. Значения коэффициентов аппроксимации: $a_{-1} = 1.325 \cdot 10^{-2}$, $a_0 = 2.253 \cdot 10^{-1} \text{ s}^{-1}$, $a_1 = -7.010 \cdot 10^{-2} \text{ s}^{-2}$, $a_2 = 5.407 \cdot 10^{-3} \text{ s}^{-3}$, $\tau_1 = 4.289 \times \times 10^{-3}$ s, $\tau_2 = 12.676$ s. На вставке показана восстановленная функция распределения времен релаксации $f(\tau)$.

1131

Как и в [5], мы рассматривали двухкомпонентную 3D статистическую смесь, компоненты которой представляют собой хаотически расположенные в пространстве сферические частицы неполяризованной сегнетокерамики ПКР-73 ($\varepsilon_1/\varepsilon_0 = 3200$ [15], $\gamma_1 = 10^{-12} \,\Omega^{-1} \cdot m^{-1}$) и полиэтилена ($\varepsilon_2/\varepsilon_0 = 2.5$ [4] с повышенной проводимостью $\gamma_2 = 10^{-8} \Omega^{-1} \cdot m^{-1}$ с концентрациями θ_1 и θ_2 соответственно. Рассчитанные по формуле (2) частотные зависимости $\varepsilon'(\omega)$, $\varepsilon''(\omega)$, $\gamma'(\omega)$, $\gamma''(\omega)$ и результаты проведенного по формулам (1) восстановления $f(\tau)$ представленны на рис. 3. (Мы приводим данные расчетов только для концентрации $\theta_1 = \theta_{cd} = 1/3$, соответствующей порогу перколяции перехода проводникдиэлектрик. Однако основные особенности зависимости $f(\tau)$ сохраняются и при других концентрациях компонентов.)

Функция распределения времен релаксации $f(\tau)$ гладкая и имеет немонотонную зависимость от τ с одним минимумом и двумя максимумами при значениях τ_1 и τ_2 , ограничивающих интервал $[\tau_1, \tau_2]$. Причем максимум $f(\tau)$ при τ_1 значительно выше максимума при τ_2 . Это существенно отличает $f(\tau)$ статистической смеси от функции распределения Коула-Коула [10], имеющей неограниченный интервал изменения $\tau[0,\infty]$ без скачков, и функции Дэвидсона-Коула [11], имеющей только один скачок при $\tau = \tau_2$ на правой границе ограниченного интервала $[0, \tau_2]$ [16]. Минимум $f(\tau)$ статистической смеси расположен в центральной части интервала $[\tau_1, \tau_2]$; при этом соответствующее минимуму $f(\tau)$ значение $au= au_{\min}pprox 1/\omega_r^{arepsilon}$. Четкие спектры $\gamma'(\omega)$ и $\gamma''(\omega)$ (рис. 2 и 3 в сравнении с рис. 1) возникают только при использовании $f(\tau)$ с высокой вероятностью реализации малых величин т. Следовательно, определяющий вклад в диэлектрические потери вносят абсорбционные токи с малыми временами релаксации.

4. Заключение

Необходимым условием существования двух областей релаксации, различных для эффективной ДП и эффективной проводимости, является наличие конечной (ограниченной с двух сторон, $\tau_1 \leq \tau \leq \tau_2$) области распределения времен релаксации. Функция распределения времен релаксации $f(\tau)$ является немонотонной с двумя максимумами на границах и минимумом вблизи середины интервала $[\tau_1, \tau_2]$, что обусловливает большое различие средних частот релаксации ДП и диэлектрических потерь (проводимости). Вид $f(\tau)$ статистической смеси свидетельствует о том, что определяющий вклад в диэлектрические потери вносят абсорбционные токи с малыми временами релаксации.

Список литературы

- [1] D.A.G. Bruggeman. Ann. Phys. B 24, 636 (1935).
- [2] S. Torquato. Random heterogeneous materials. Microstructure and macroscopic properties. Springer-Verlag, N.Y.–Berlin– Heidelberg (2002). 702 p.

- [3] A.L. Efros, B. Shklovskii. Phys. Status Solidi B 76, 475 (1976).
- [4] А.В. Турик, А.И. Чернобабов, Г.С. Радченко, С.А. Турик. ФТТ 46, 2139 (2004).
- [5] А.В. Турик, М.Ю. Родинин. Письма в ЖТФ 36, 1, 37 (2010).
- [6] А.В. Турик, А.И. Чернобабов, М.Ю. Родинин, Е.А. Толокольников. ФТТ 51, 1395 (2009).
- [7] А.В. Турик, А.И. Чернобабов, М.Ю. Родинин. ФТТ 51, 1580 (2009).
- [8] Г. Фрёлих. Теория диэлектриков. ИИЛ, М. (1960). 252 с.
- [9] В. Браун. Диэлектрики. ИИЛ, М. (1961). 328 с.
- [10] K.S. Cole, R.H. Cole. J. Chem. Phys. 9, 341 (1941).
- [11] D.W. Davidson, R.H. Cole. J. Chem. Phys. 19, 1484 (1951).
- [12] А.В. Турик, М.Ю. Родинин. Термодинамика неупорядоченных сред и пьезоматериалов. Тр. Первого Междунар. междисциплинар. симп. (ТDM&PM). Изд-во СКНЦ ВШ ЮФУ АПСН, Ростов н/Д (2009). С. 217.
- [13] А.Н. Тихонов, В.Я. Арсенин. Методы решения некорректных задач. Наука, М. (1979). 285 с.
- [14] В.А. Винокуров. ДАН СССР 246, 792 (1979).
- [15] А.Я. Данцигер, О.Н. Разумовская, Л.А. Резниченко, С.И. Дудкина. Высокоэффективные пьезокерамические материалы. Оптимизация поиска. Пайк, Ростов н/Д (1995). 94 с.
- [16] E. Tuncer, B. Nettelblad, S.M. Gubanski. J. Appl. Phys. 92, 4612 (2002).