05 Сравнение начальной стадии низкотемпературной деградации в керамике ZrO₂(Y₂O₃) и ZrO₂(MgO)

© В.А. Песин, Д.С. Рыбин, Я.Г. Дятлова, А.С. Осмаков

ООО "Вириал", Санкт-Петербург E-mail: OsmakovAS@virial.ru

Поступило в Редакцию 18 января 2012 г.

На образцах керамики из диоксида циркония, стабилизированного Y_2O_3 и MgO, рентгенодифракционным методом скользящего пучка исследовано влияние автоклавной обработки (140°C, 207 kPa, 15 h) на превращение тетрагонального ZrO₂ в моноклинную модификацию (процесс низкотемпературной деградации). Построены модели распределения *m*-ZrO₂ по глубине деградировавшего слоя. Установлено, что на полированных поверхностях ZrO₂(Y₂O₃) после автоклавной обработки доля *m*-ZrO₂ изменилась на 48%, а в случае ZrO₂(MgO) на 4%. При этом процесс гидротермальных изменений локализуется в самом приповерхностном слое толщиной примерно в одно зерно. Показано, что только метод скользящего пучка позволяет адекватно оценивать величину и параметры эффекта низкотемпературной деградации.

Низкотемпературная деградация (НТД) частично стабилизированной керамики ZrO₂ заключается в превращении тетрагональной фазы ZrO₂ (*t*-ZrO₂) в моноклинную (*m*-ZrO₂) под воздействием воды. Такое превращение может приводить к преждевременному износу из керамики ZrO₂, что при биомедицинском использовании просто недопустимо. Автоклавная обработка материала при 140°С и давлении до 250 kPA с последующим определением степени превращения $t \rightarrow m$ позволяет прогнозировать стойкость материала к НТД [1]. В работе [2] рентгеновским методом (симметричная съемка $\theta - 2\theta$) было установлено, что при автоклавной обработке в течение 49 h серийно выпускаемых эндопротезов из ZrO₂(Y₂O₃) и ZrO₂(MgO) в изделиях из ZrO₂(Y₂O₃) увеличение доли *m*-фазы составляет более 30%, а в изделиях из ZrO₂(MgO) — около 1%.

При симметричной съемке глубина анализируемого слоя составляет величину порядка 6 μ m (Си K_{α} — излучение, $2\theta \sim 30^{\circ}$), что уменьшает

51

чувствительность метода при анализе самых приповерхностных слоев. Поэтому в последнее время при анализе низкотемпратурной деградации рентгенодифракционным методом начали использовать метод скользящего пучка [3,4], который позволяет значительно уменьшить глубину анализируемого слоя [5,6]. Полученные в этих работах результаты качественно подтверждают, что превращение $t \rightarrow m$ при НТД начинается с поверхности и локализовано в приповерхностных слоях. Однако количественной оценки толщины слоя, претерпевшего превращение, и степени превращения в этом слое не делалось.

В данной работе на образцах керамик $ZrO_2(Y_2O_3)$ и $ZrO_2(MgO)$ методом скользящего пучка проведена количественная оценка степени превращения и толщины деградировавшего слоя.

Образец ZrO₂(Y₂O₃) спекался из порошка фирмы Tosoh (3 mol.% Y₂O₃) марки TZ-3YB-Е при температуре 1350°С. Образец ZrO₂(MgO) (1) спекался из порошка фирмы Saint Gobein (9 mol.% MgO) марки Mg Z02B при температуре 1700°С по режиму, рекомендованному производителем. После спекания образцы шлифовались и полировались (шлифовка осуществлялась алмазным кругом зернистостью 100/8-0, а окончательная стадия полировки проводилась на алмазной пасте 1 μ m). Образец ZrO₂(MgO) (2) был вырезан из материала радиальной пары трения производства фирмы Reda и также шлифовался и полировался. По данным рентгеновского фазового анализа образец ZrO₂(Y₂O₃) содержал только *t*-ZrO₂, а образцы ZrO₂(MgO) содержали в основном тетрагональную и кубическую модификации. Средний размер зерна в образце ZrO₂(Y₂O₃) составлял 0.25 μ m, а в образцах ZrO₂(MgO) — 0.3 μ m.

Автоклавная обработка образцов проводилась при 140°С и 207 kPa в течение 15 h. Содержание *m*-ZrO₂ перед обработкой в автоклаве и после нее определялось с использованием скользящего пучка (угол скольжения α от 0.2° до 10°). Съемки проводились в СuK α -излучении на дифрактометре Shimadzu XRD-6100 в интервале углов $2\theta = 26-33°$ с шагом 0.01° и экспозицией 2 s (напряжение на трубке 50 kV; ток 30 mA). Содержание моноклинной фазы в весовых процентах ZrO₂X_m определялось по формуле [7]:

$$X_m = \frac{I_{(111)}^m + I_{(111)}^m}{I_{(111)}^m + I_{(111)}^m + I_{(111)}^{t,c}},\tag{1}$$

где $I_{(111)}^m$, $I_{(111)}^m$ — интегральная интенсивность соответствующих пиков моноклинной фазы ZrO₂, $I_{(111)}^{t,c}$ — суммарная интегральная интенсивность линий (111) в *t*-ZrO₂ и *c*-ZrO₂ (кубическая фаза).

Максимальная погрешность определения величины X_m на полированной поверхности для всех углов α не превышала 1.5%, а для шлифованной — 2%.

При неоднородном по глубине распределении моноклинной фазы ZrO₂ измеренные экспериментально величины $X_m(\alpha)$ являются усредненными по глубине $h(\alpha)$ значениями содержания *m*-ZrO₂, а не истинными значениями содержания *m*-ZrO₂ на этой глубине. Для определения истинного распределения моноклинной фазы ZrO₂ по глубине из экспериментальных значений $X_m(\alpha)$ можно использовать различные теоретические модели таких распределений и, сравнивая рассчитанные из этих моделей зависимости $X_m(\alpha)$ с полученными экспериментально значениями, выбрать наиболее достоверную.

Простейшей моделью при описании превращения, начинающегося с поверхности, является модель ступенчатого распределения *m*-ZrO₂ по глубине:

$$X_m = \begin{cases} C_0 + C_1, & \text{при } h \le a, \\ C_0, & \text{при } h > a, \end{cases}$$
(2)

где C_0 — содержание *m*-ZrO₂ в глубине образца, связанное с режимом спекания, C_1 — содержание *m*-ZrO₂ в слое с глубиной *a*, обусловленное обработкой материала.

В этом случае зависимость измеренного значения X_m от угла скольжения α будет иметь вид

$$X_m = (\alpha) = C_0 + C_1 \left[1 - \exp\left(-\mu a \, \frac{\sin \alpha + \sin(2\theta - \alpha)}{\sin \alpha \, \sin(2\theta - \alpha)}\right) \right], \quad (3)$$

где μ — линейный коэффициент поглощения, θ — угол дифракции.

Более сложные виды распределения могут быть получены наложением нескольких таких дискретных ступенчатых распределений.

Анализ экспериментальных результатов, полученных для полированных поверхностей исследованных материалов, показал, что в этом случае в качестве первого приближения может быть использована простейшая модель. На рис. 1 представлены полученные экспериментальные и рассчитанные по (3) (сплошные линии) значения $X_m(\alpha)$.

Рис. 1. Зависимости содержания *m*-ZrO₂ от угла скольжения α для образцов ZrO₂(Y₂O₃) (*a*), ZrO₂(MgO) (1) (*b*), ZrO₂(MgO) (2) (*c*) и исходные дифрактограммы линий (111)_{*m*}, (111)_{*m*} и (111)_{*t*,*c*} образца ZrO₂(MgO) (2) для углов скольжения $\alpha = 0.2^{\circ}$, $\alpha = 10^{\circ}$ (*d*); \circ — исходное состояние; • после автоклавной обработки; сплошные линии — расчетные кривые для соответствующих моделей (см. таблицу).

Видно хорошее совпадение между расчетными и экспериментальными значениями, что указывает на то, что простейшая модель удовлетворительно описывает распределение *m*-ZrO₂ по глубине. В таблице

Материал	Состояние	$C_0, \%$	$C_1, \%$	$a, \mu m$
$ZrO_2(Y_2O_3)$	Исходный	0	0	0
	После автоклава	0	48	0.27
$ZrO_2(MgO)$ (1)	Исходный	4	24	0.30
	После автоклава	4	28	0.30
$ZrO_2(MgO)$ (2)	Исходный	3	15	0.30
	После автоклава	3	18	0.30

Расчетные параметры распределения моноклинной фазы в $ZrO_2(Y_2O_3)$ и $ZrO_2(MgO)$

представлены расчетные значения для концентрации *m*-ZrO₂ и толщины деградированного слоя.

Значение толщины слоя, затронутого превращением $t \to m$, примерно совпадает с размером зерна в исследованных образцах. При этом из экспериментальных данных видно, что в исходном состоянии при одном и том же режиме шлифовки и полировки в $ZrO_2(MgO)$ (1) и (2) создается слой толщиной в одно зерно, претерпевший частичное превращение $t \to m$. В $ZrO_2(Y_2O_3)$ полировка не приводит к заметному превращению $t \to m$. На дифрактограммах наблюдается только дополнительное искажение профиля дифракционной линии (111)_t, что обусловлено изменением напряженного состояния. Автоклавная обработка $ZrO_2(Y_2O_3)$ приводит к тому, что примерно 50% слоя толщиной в одно зерно претерпевает превращение в m-ZrO₂ и вглубь не идет. Для $ZrO_2(MgO)$ (1) и (2) превращение в m-ZrO₂ практически в 10 раз меньше и также сосредоточено в приповерхностном слое.

Необходимо подчернуть, что при стандартной симметричной съемке для $ZrO_2(MgO)$ различий в содержании моноклинной фазы в исходных образцах и в образцах, прошедших гидротермальную обработку в автоклаве, практически не наблюдалось. Сравнение полученных нами результатов с результатами [2], полученными при симметричной съемке, позволяет предположить, что увеличение содержания *m*-ZrO₂ в поверхностном слое эндопротезов из $ZrO_2(MgO)$ в течение 49 h было значительно выше, чем 1%.

Для оценки влияния характера абразивной обработки на распределение m-ZrO₂ по глубине до и после автоклавной обработки был проведен анализ шлифованной поверхности ZrO₂(MgO) (2). На рис. 2 показаны

Рис. 2. Распределение *m*-ZrO₂ в шлифованной керамике ZrO₂(MgO) (2) до и после автоклавной обработки. ○ — исходное состояние; ● — после автоклавной обработки; сплошные линии — расчетные кривые.

экспериментальные зависимости $X_m(\alpha)$ для образца после шлифовки и автоклавной обработки. Зависимости $X_m(\alpha)$ носят немонотонный характер и резко отличаются от зависимостей, полученных на полированной поверхности (рис. 1, *c*).

Шлифованная поверхность отличается значительной шероховатостью. С точки зрения глубины проникновения рентгеновских лучей этот шероховатый слой можно рассматривать как материал с более низким μ по сравнению с коэффициентом поглощения в глубине образца, что, безусловно, влияет на интенсивность дифракционных линий. Но так как содержание *m*-ZrO₂ определяется как отношение интенсивностей близколежащих линий *m*- и *t*-ZrO₂ (1) с очень близкими множителями поглощения, то распределение $X_m(\alpha)$ в первом приближении не зависит от шероховатости поверхности.

Для определения распределения m-ZrO₂ по глубине использовались более сложные по сравнению с простейшей модели (рис. 3). На рис. 2 (сплошные кривые) представлены рассчитанные для этих распределений значения $X_m(\alpha)$. Сравнение экспериментальных и расчетных значений $X_m(\alpha)$ показывает, что выбранные модели удовлетворительно описывают распределение m-ZrO₂.

Рис. 3. Ступенчатая модель распределения *m*-ZrO₂ в шлифованной керамике ZrO₂(MgO) (2): *a* — исходный образец; *b* — образец после автоклавной обработки.

Анализ распределения *m*-ZrO₂, формирующегося в результате шлифовки, показывает, что в поверхностном слое толщиной до 1 μ m (приблизительно 3 зерна в глубину) идут два конкурирующих процесса: увеличение содержания *m*-ZrO₂ за счет значительных деформаций обрабатываемого материала и уменьшение *m*-ZrO₂ за счет удаления материала абразивом. В зависимости от соотношения скоростей этих процессов результирующее содержание *m*-ZrO₂ может уменьшаться или увеличиваться. Так, с увеличением глубины накопление моноклинной фазы ZrO₂ превалирует над ее удалением. Важно отметить, что все эти процессы приводят к постепенному уменьшению содержания *t*-ZrO₂ в поверхностном слое. Более выражено эти процессы наблюдались нами на поверхностях износа после трибологических испытаний этого же материала. В слое толщиной около 2 μ m присутствовала только *c*-ZrO₂, а *m*- и *t*-ZrO₂ отсутствовали.

Гидротермальная автоклавная обработка шлифованной поверхности $ZrO_2(MgO)$ приводит к заметному возрастанию содержания *m*- ZrO_2 в поверхностном слое, что может быть объяснено меньшей устойчивостью *t*- $ZrO_2(MgO)$ в поврежденном шлифовкой материале.

Полученные результаты по шлифовке показывают, что при выборе режимов шлифования изделий из керамики на основе ZrO₂(MgO) необходимо учитывать возникновение тонкого поверхностного слоя, в котором стабильность материала при одновременном механическом и гидротермальном воздействии понижена. Вероятно, за счет выбора режимов шлифования возможно снизить такое негативное влияние и получить оптимальные эксплуатационные свойства изделий.

Таким образом, показано следующее:

1. Использование рентгеновского метода скользящего пучка для определения распределения содержания m-ZrO₂ по глубине в керамике на основе ZrO₂ позволяет количественно описать процессы, происходящие при различных видах обработки материала. При анализе начальных стадий превращения $t \rightarrow m$ только метод скользящего пучка позволяет адекватно описывать процесс низкотемпературной деградации.

2. Распространение превращения $t \to m$ на полированных поверхностях как керамик $ZrO_2(Y_2O_3)$ и $ZrO_2(MgO)$ ограничено поверхностным слоем $\sim 0.3 \,\mu$ m, что совпадает с размером зерна в исследованных керамиках. Гидротермальная устойчивость полированной керамики из $ZrO_2(MgO)$ значительно выше, чем в керамике $ZrO_2(Y_2O_3)$.

3. По сравнению с полированной поверхностью шлифованная поверхность $ZrO_2(MgO)$ обладает гораздо более низкой гидротермальной устойчивостью.

Список литературы

- Chevalier J., Gremillard L., Vircar A.V., Clarke D.R. // J. Am. Ceram. Soc. 2009. V. 92. N 9. P. 1901–1920.
- [2] Roy M.E., Whiteside L.A., Katerberg B.J., Streiger J.A. // Clin. Orthop. Rel. Res. 2007. V. 465. P. 220–226.
- [3] Shneider J., Kapsi Ch. // J. AM. Ceram. Soc. 2008. V. 91. N 11. P. 3613-3618.
- [4] Kawai Y, Uo M, Wang Y, Kono S, Ohnuki S, Watari F. // Dental Materials Journal. 2011. V. 30 (3). P. 286–292.
- [5] Иванов А.Н., Фомичева Е.И., Шелехов Е.В. // Заводская лаборатория. 1989. Т. 55. N 12. С. 41–47.
- [6] Rigaku Co. XRD handbook 4th ed. Rigaku Co. Tokyo, Japan, 2003. P. 107-109.
- [7] Garvie R.C., Nicholson R.S. // J. Amer. Ceram. Soc. 1972. V. 55. N 6. P. 303-305.