07 Особенности ослабления пропускания жидкокристаллическими твист-ячейками в постоянном и переменном электрическом поле

© Е.А. Коншина, Л.П. Амосова

Санкт-Петербургский национальный исследовательский университет информационных технологий механики и оптики E-mail: eakonshina@mail.ru

Поступило в Редакцию 27 февраля 2012 г.

Сравнение твист-ячеек с двухчастотным нематическим жидким кристаллом и разными ориентирующими слоями (натертым полиимидом и наклонно напыленной двуокисью церия) показало, что изменение оптического порога и динамического диапазона ослабления пропускания зависит не только от граничных условий, влияющих на экранирование приложенного напряжения но и от параметров приложенного электрического поля. Наибольший динамический диапазон, равный 49.5 dB, был получен в ячейке с ориентирующим слоем CeO₂ при приложении постоянного потенциала. Динамический диапазон уменьшался при приложении к ячейке переменного напряжения, что связано с понижением эффективного напряжения.

Перестраиваемые оптические аттенюаторы (variable optical attenuator — VOA) играют важную роль в телекоммуникационных системах и позволяют плавно регулировать мощность оптического излучения в широком спектральном диапазоне по каждому каналу независимо. Одним из основных параметров таких устройств является динамический диапазон ослабления модулируемого излучения. Жидкокристаллическая

1

технология является относительно простой и широко апробированной на примере ЖК-дисплеев. Динамический диапазон VOA на основе нематических жидких кристаллов (ЖК), включая двухчастотные смеси и полимердиспергированные ЖК, не превышает 30 dB [1]. Использование новых ЖК-материалов на основе кремнийорганических соединений с однородной ориентацией молекул и оптимальным углом наклона 22.5° позволило увеличить ослабление модулируемого отклика аттенюатора до 54 dB [2]. VOA на основе ЖК поляризационной решетки, исключающей необходимость использования системы управления поляризацией, обеспечивает ослабление до 50 dB при минимальных поляризационнозависимых и вносимых потерях [3].

Использование твист-эффекта в VOA связано с возможностью получения наибольшего динамического диапазона. Исследование оптических характеристик твист-ячеек с нематическим двухчастотным жидким кристаллом (ДЧЖК) на длине волны $1.55\,\mu$ m показало, что на оптический порог твист-эффекта и область рабочих напряжений влияют свойства ориентирующих слоев [4]. Наибольший динамический диапазон модуляции сигнала на этой длине волны с наименьшим оптическим порогом (3.6 V), равным 44 dB, был получен в твист-ячейках с ориентирующим слоем моноокиси германия, наклонно напыленным в вакууме, при приложении переменного электрического поля (меандр) с частотой 1 kHz [5].

Использование в VOA двухчастотного ЖК дает возможность управления включением и выключением оптического сигнала с помощью электрического поля в отличие от других нематических ЖК. Одним из направлений улучшения характеристик VOA на основе ДЧЖК является совершенствование способов управления оптическим сигналом. В связи с этим нами было исследовано изменение динамического диапазона двух твист-ячеек с ДЧЖК и разными граничными условиями, в зависимости от параметров, приложенных к ним электрических полей.

Твист-ячейки заполняли ЖК-1001 (НИОПИК, Москва). В качестве ориентирующих слоев были использованы слои двуокиси церия CeO₂, напыленные наклонно в вакууме [6], и натертый слой полиимида (ПИ). Измерения оптического пропускания в зависимости от приложенного напряжения проводили на длине волны $1.55\,\mu\text{m}$ с использованием электрооптической схемы, описанной ранее [7]. Динамический диапазон сигнала вычислялся как $-10\log I_{\min}/I_{\max}$, где I_{\max} соответствует наибольшей, а I_{\min} — наименьшей величине оптического пропускания

No	Ориенти-	dic	U V	U V	Динамический диапазон, dB		
1 1 2	рующий	<i>u_{L,C}</i> ,	(\mathbf{DC})	(ΛC)	DC	AC	AC
яченки	слой	μ m	(DC)	(AC)		(меандр)	(синусоида)
1	CeO ₂	6.9	3.0	< 1.0	49.5	48.5	45.8
2	ПИ	8.2	3.0	3.6-4.4	43.5	42	41

Характеристики ЖК-твист-ячеек

ЖК-ячейки. Толщина слоя ДЧЖК в ячейках, оптические пороги и динамический диапазон при разных параметрах электрического поля приведены в таблице.

Изменение пропускания ЖК-твист-ячеек в скрещенных поляризаторах происходит в результате поворота плоскости поляризации линейно поляризованного излучения на угол $\pi/2$ при приложении к их электродам электрического поля. При напряжении электрического поля, превышающем оптический порог твист-эффекта, пропускание начинает снижаться и, когда в центральной части слоя молекулы ЖК переориентируются в вертикальное положение, слой становится непрозрачным.

Кривые изменения пропускания ячейки № 1 со слоем CeO₂ в зависимости от напряжения показаны на рисунке, *a*. Максимальное ослабление, около 49.5 dB, было получено при приложении импульса постоянного напряжения (кривая *I*, на рисунке, *a*), когда эффективное напряжение электрического поля соответствует приложенному напряжению. Динамический диапазон снижался незначительно до 48.5 dB (кривая *2*, на рисунке, *a*) при приложении к ячейке переменного напряжения в форме меандра (прямоугольный импульс). В случае приложения синусоидального напряжения с той же частотой он уменьшался до 45.8 dB (кривая *3*, на рисунке, *a*). Наибольший оптический порог около 3 V наблюдался при приложении постоянного напряжения. В переменном электрическом поле с частотой 1 kHz он уменьшался независимо от формы колебаний (см. рисунок, *a*). При этом изменялся наклон кривых пропускания и расширялся интервал рабочих напряжений от 7 до 11 V на уровне ослабления 40 dB (см. рисунок, *a*).

В ячейке с ориентирующим слоем ПИ тенденция изменения динамического диапазона пропускания в зависимости от параметров

Изменение оптического пропускания ЖК-ячеек \mathbb{N}_2 1 с ориентирующим слоем CeO₂ (*a*) и \mathbb{N}_2 с ориентирующим слоем ПИ (*b*), при приложении к ним постоянного напряжения (*1*) и переменного напряжения с частотой 1 kHz: меандр (*2*) и синусоида (*3*).

электрического поля сохранялась. Динамический диапазон при постоянном напряжении (см. таблицу) был равен 43.5 dB и понижался при приложении к этой ячейке переменного электрического поля на 1−2 dB. Однако оптический порог увеличивался при приложении переменного электрического поля в отличие от ячейки № 1, как видно на рисунке, *b*.

Наблюдаемое снижение порога в переменном электрическом поле у ячейки \mathbb{N}_2 1 со слоем CeO_2 (рисунок, *a*, кривые 2 и 3) свидетельствует о том, что падение напряжения на слое ЖК не происходит. Объяснить увеличение порога в ячейке \mathbb{N}_2 при приложении переменного электрического поля можно только тем, что на границе раздела сохраняется какой-то остаточный потенциал, который препятствует переориентации молекул. Для слоя полиимида характерно более высокое пороговое напряжение по сравнению с другими ориентирующими слоями [4,5], обусловленное его высоким удельным сопротивлением, которое может

приводит к уменьшению амплитуды сигнала и понижению динамического диапазона у ячейки № 2. Следует заметить, что увеличение порога до 4.4 V при приложении синусоидального напряжения пропорционально уменьшению эффективного напряжения в $\sqrt{2}$ раз. Это указывает на то, что даже в случае приложения переменного поля к ячейке № 2 на поверхности ПИ сохраняется остаточный потенциал, экранирующий приложение.

Модели, описывающие электрическое поведение ЖК и формирование пространственного (или объемного) заряда вблизи электродов при приложении к слою постоянного потенциала, основаны на присутствии в жидком кристалле носителей заряда обоих знаков, которые возникают при диссоциации примесей или самого ЖК. Процесс диссоциации и рекомбинации ионов в объеме находится в равновесии, так что плотность положительных и отрицательных ионов постоянна [8]. При приложении к слою ЖК постоянного потенциала происходит разделение зарядов вблизи электродов формируется пространственный

заряд, который экранирует приложенное напряжение. Если к слою ЖК приложено переменное напряжение, то пространственный заряд вблизи электродов не должен формироваться из-за смены знака на них. Падение напряжения на слое ЖК, или экранирующий эффект, зависит от толщины слоя ЖК и ориентирующего слоя, а также из диэлекрических проницаемостей [9]. Однако этих представлений не достаточно, чтобы объяснить различия в изменении оптического порога в зависимости от граничных условий, наблюдаемые в наших экспериментах. Объяснение физической природы наблюдаемых особенностей требует дополнительных исследований, которые выходят за рамки этой работы.

Экспериментальные результаты, полученные в этой работе, показывают, что характер ослабления оптического пропускания и оптический порог твист-эффекта зависят не только от свойств ориентирующих слоев, но и от параметров электрического поля, приложенного к ЖКячейках. Наибольший динамический диапазон ослабления пропускания достигается при приложении к ЖК-ячейке постоянного напряжения электрического поля, которое способствует поддержанию объемного заряда на границе раздела фаз поверхность твердого тела-жидкий кристалл независимо от свойств ориентирующего слоя. Приложение к ЖКячейкам переменного электрического поля вызывает снижение эффективного напряжения и расширение интервала напряжений, в которых наблюдается изменение динамического диапазона. Наи более широкий динамический диапазон, равный 49.5, был получен в ЖК-твист-ячейке с ориентирующим слоем двуокиси церия при приложении постоянного напряжения. Использование переменного напряжения в этом случае позволяет осуществлять плавную регулировку оптического сигнала. Однако в зависимости от электрических свойств ориентирующего слоя при этом наблюдалось как снижение порога твист-эффекта в случае СеО₂, так и его повышение в случае ПИ.

Полученные в работе результаты имеют перспективу технического применения при разработке технологии оптических компонентов на основе двухчастотного ЖК для телекоммуникационных систем и совершенствования способов управления модуляцией оптического сигнала с их помощью. В зависимости от требований к разрабатываемому оптическому устройству, связанных с повышением динамического диапазона или, напротив, необходимостью плавного регулирования оптического

пропускния, следует учитывать выбор типа управляющего электрического сигнала.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации по ГК № 11.519.11.4010.

Список литературы

- [1] Амосова Л.П., Васильев В.Н., Иванова Н.Л., Коншина Е.А. // Опт. журн. 2010. Т. 77. В. 2. С. 3–14.
- [2] Hu Xuesong, Hadaler Oliver, Coles Harry J. // IEEE Photonics Technology Letters. 2011. V. 23. Is. 22. P. 1655–1657.
- [3] Nicolescu E., Chongchang Mao, Fardad A., Escuti M. // J. Lightwave Technology. 2010. V. 28. Is. 21. P. 3121–3127.
- [4] Коншина Е.А., Федоров М.А., Рыбникова А.Е., Амосова Л.П., Иванов Н.Л., Исаев М.В., Костомаров Д.С. // ЖТФ. Т. 79. В. 4. С. 111–116.
- [5] Рыбникова А.Е. // Сб. трудов конференции молодых ученых. Оптоинформатика, наносистемы и теплотехника. В. З. СПб.: СПбГУ ИТМО, 2009. С. 86– 90.
- [6] Коншина Е.А., Иванова Н.Л., Парфенов П.С., Федоров М.А. // Опт. журн. 2010. Т. 77. В. 12. С. 45–51.
- [7] Коншина Е.А., Федоров М.А., Амосова Л.П., Исаев М.В., Костомаров Д.С. // Опт. журн. 2008. Т. 75. В. 10. С. 73–80.
- [8] Turnbull R.J. // J. Phys. D: Appl. Phys. 1973. V. 6. P. 1745-1754.
- [9] Meizi Jiao, Zhibing Ge, Qiong Song, Shin-Tson Wu. // Appl. Phys. Lett. 2008.
 V. 92. P. 061 102 (1–3).