05 Дисперсия диэлектрических параметров в модифицированных слоях триселенида мышьяка

© Р.А. Кастро, В.А. Бордовский, Г.И. Грабко

Российский государственный педагогический университет им. А.И. Герцена, Санкт-Петербург E-mail: recastro@fromru.com

Поступило в Редакцию 6 апреля 2010 г.

Впервые представлены результаты исследования дисперсии диэлектрической проницаемости и тангенса угла диэлектрических потерь в модифицированных пленках $As_2Se_3\langle Bi \rangle_x$ в области частот $f \sim 10^{-2} - 10^4$ Hz. Полученные экспериментальные данные свидетельствуют о значительном влиянии висмута на процесс диэлектрической поляризации исследуемых систем. Обсуждаются механизмы наблюдаемых эффектов.

В настоящее время халькогенидные стеклообразные и аморфные полупроводники (ХСП) остаются объектом пристального внимания, что обусловлено постоянно расширяющейся областью их практического применения в различных областях твердотельной электроники [1,2]. Особенно большой интерес вызывает изучение влияния примесей на процессы электропереноса и зарядообразования данных структур, что связано с перспективами получения полупроводниковых материалов с p- и n-типом проводимости и, как следствие, конструирования p-n-переходов на их основе [3].

Классическим представителем ХСП является триселенид мышьяка As₂Se₃, имеющий не только прикладное значение, но и рассматривающийся как модельный объект исследования физических свойств неупорядоченных систем [4,5]. Естественная разупорядоченность данного полупроводника, обусловленная наличием оборванных связей и центров с повышенным координационным числом, а также образование областей со структурой, отличной от исходной матрицы, при введении примесей, и в частности висмута, предполагает значительный диэлектрический отклик от воздействия переменного электрического поля [6].

9

Низкая подвижность носителей заряда (H3) в ХСП позволяет использовать низкочастотный (HЧ) и инфранизкочастотный (ИНЧ) диапазоны, где должны проявляться поляризационные эффекты релаксационного характера [7]. В свою очередь, измерение диэлектрических характеристик в области ИНЧ и НЧ является одним из информативных и хорошо апробированных методов изучения структуры и свойств высокоомных полупроводников на микро- и макроскопическом уровнях [8,9].

В связи с вышеизложенным целью данной работы явились изучение дисперсии составляющих комплексной диэлектрической проницаемости (ε' и tg $\delta = \varepsilon''/\varepsilon'$) конденсаторных систем на основе модифицированных слоев триселенида мышьяка и исследование влияния на $\varepsilon'(f)$ и tg $\delta(f)$ вводимой в Al₂Se₃ примеси Ві в переменных электрических полях ИНЧ-и НЧ-области.

Диэлектрические измерения проводились на сэндвич-структурах Al-As₂Se₃ (Bi)_x –Al, основу которых составляли тонкие слои As₂Se₃ (Bi)_x (x = 0, 10 at. %)) толщиной ~ 1 μ m, приготовленные на установке ионно-плазменного высокочастотного распыления типа УРМ-3-021, на частоте электромагнитного поля 13.6 MHz, в атмосфере аргона при давлении $8 \cdot 10^{-3}$ mm Hg [6]. Площадь перекрытия электродов составляла 14.0 mm².

Измерения составляющих комплексной диэлектрической проницаемости слоев $As_2Se_3\langle Bi \rangle_x$ были выполнены в частотном диапазоне $8 \cdot 10^{-3} \div 2.5 \cdot 10^4$ Hz при помощи спектрометра "Concept-41" фирмы Novocontrol Technologies. Установка состоит из частотного анализатора импеданса, измерительной ячейки, системы автоматического сбора данных с компьютерным интерфейсом. Измерительное напряжение, подаваемое на образцы, составляло 0.1 V.

На рис. 1 представлены зависимости $\varepsilon'(f)$ для As₂Se₃ и As₂Se₃ (Bi). Из анализа полученных результатов следует, что вещественная составляющая комплексной диэлектрической проницаемости для образцов обоих составов характеризуется аномальной дисперсией во всем исследованном частотном интервале. Причем весь интервал можно разбить на три участка: $f_1 < 1$ Hz, 1 Hz $< f_2 < 10^3$ Hz и $f_3 > 10^3$ Hz, на каждом из которых наблюдаются спадающие ветви характеристик $\varepsilon'(f)$. При этом надо отметить, что для As₂Se₃ (Bi) границы между частотными диапазонами, где наблюдается уменьшение диэлектрической проницаемости с увеличением f, довольно условные, т.е. практически отсутствуют области насыщения. Для беспримесных же образцов разделение между ветвями спадания более четкое, особенно в f_1 - и f_2 -диапазонах.

Рис. 1. Дисперсия вещественной составляющей комплексной диэлектрической проницаемости для As₂Se₃ (*1*) и As₂Se₃ (*Bi*) (*2*). При значении напряженности электрического поля $E = 10^3$ V/cm.

Тем не менее сопоставление кривых $\varepsilon'(f)$ и tg $\delta(f)$ (рис. 2) позволяет сделать вывод о классическом поведении этих характеристик, когда положения максимального значения tg $\delta(f)$ и середины спадающей ветви кривой $\varepsilon'(f)$ совпадают [10]. Данное обстоятельство, а также тот факт, что в изучаемом частотном интервале дисперсия диэлектрических параметров имеет релаксационный характер [7,10], свидетельствуют о наличии в изучаемых структурах нескольких групп релаксаторов. Дополнительным подтверждением этому служит вид диаграмм Коула–Коула (рис. 3), из анализа которых следует вывод о том, что экспериментальные образцы обнаруживают диэлектрический

Рис. 2. Частотная зависимость тангенса угла диэлектрических потерь для беспримесных (I) и легированных Bi (2) образцов. $E = 10^3$ V/cm.

отклик, отличный от дебаевского, а релаксационные процессы характеризуются определенным распределением времен релаксации.

Вследствие наличия этих групп, при воздействии переменного поля на исследуемые материалы равновесные носители заряда, а также H3, инжектируемые с электродов, образуют пространственный заряд, создающий электрическую неоднородность и обусловливающий диэлектрические потери. Причем влияние определенной группы релаксаторов становится заметным лишь на тех частотах, на которых диэлектрический отклик пространственного заряда, связанного именно с этой

 10^{1}

-ω

Рис. 3. Диаграммы Коула-Коула для As_2Se_3 и As_2Se_3 (вставка).

группой, совпадает по фазе с изменением электрического поля, что и является причиной роста ε' с уменьшением f, а также появления максимумов на кривых tg $\delta(f)$.

Анализируя дисперсию вещественной составляющей комплексной диэлектрической проницаемости для беспримесных слоев в f_{2} - и f_{3} -диапазонах можно отметить следующие особенности данной характеристики. На этих частотных участках между спадающими ветвями $\varepsilon'(f)$ наблюдается плавный переход. Значения диэлектрической проницаемости для обоих диапазонов сравнимы по порядку величины (5 ÷ 11). Из чего можно сделать предположение о близкой природе

групп релаксаторов, ответственных за диэлектрический отклик в НЧобласти. Скорее всего, роль релаксаторов в данном случае выполняют заряженные дефекты D^+ , D^- с отрицательной корреляционной энергией [3].

При введении Ві в неупорядоченной рыхлоупакованной матрице As_2Se_3 появляются области с повышенной координацией атомов (кластеры) [3], т.е. со структурой, отличной от исходного соединения. Взаимодействие составляющих вновь образованной 2-компонентной системы (матрица + кластеры) приводит к усложнению энергетического спектра локализованных состояний [5]. Это, по-видимому, и является причиной того, что переходы между спадающими ветвями $\varepsilon'(f)$ для $As_2Se_3\langle Bi \rangle$ во всех 3 частотных диапазонах становятся более "размытыми" по сравнению с беспримесными образцами.

Данное обстоятельство коррелирует с результатами предыдущих исследований [11], где изучалось поведение функции распределения времен релаксации (ФРВР) и характеристик, связанных с ней для аналогичных составов. В этой работе было выяснено, что ФРВР для структур на основе модифицированных слоев $As_2Se_3\langle Bi \rangle_x$ (x = 10 аt.%) имеет более широкий спектр по сравнению с беспримесными пленками.

Обращает на себя внимание и еще одна особенность поведения кривых $\varepsilon'(f)$. На частотном участке f_1 наблюдается значительный рост величины вещественной составляющей комплексной диэлектрической проницаемости для образцов обоих составов. Аналогичные результаты для As₂Se₃ (Bi)_x (x = 0, 20 at.%) были получены в [6], где на основании изотермических кривых поляризационного тока был проведен теоретический расчет частотных зависимостей ε' и tg δ в ИНЧ-области: $f = 10^{-3} \div 10^{-1}$ Hz. Так же как и в нашем случае, значение диэлектрической проницаемости существенно увеличивалось с уменьшением частоты и для легированных, и для беспримесных слоев. При этом переход от As₂Se₃ к As₂Se₃(Bi) приводил к возрастанию ε' почти на порядок (сравни с кривыми 1, 2 на рис. 1).

По всей видимости, в этом случае мы имеем дело с приэлектродными эффектами. Известно, что в сэндвич-структурах, на основе некоторых высокоомных полупроводников [12,13], и в частности ХСП системы As–Se [14,15], при приложении к ним постоянного электрического поля, перенос инжектированного в образец заряда происходит с помощью прыжкового механизма по глубоким уровням захвата в запрещенной зоне. Вследствие этого на границе с анодом существует

энергетический барьер, возникающий из-за разности энергии сродства электрона к локальному центру и работы выхода металла анода, что приводит к накоплению значительного заряда около последнего.

В нашем случае при уменьшении частоты прикладываемого электрического поля, особенно в ИНЧ-области, мы имеем дело с тем же явлением, что и приводит к увеличению пространственного заряда, росту поляризационных эффектов и, как следствие, значительному изменению величины вещественной составляющей комплексной диэлектрической проницаемости. Возрастание же ε' почти на порядок при переходе от As₂Se₃ к As₂Se₃ (Bi) связано с изменением внутренней структуры исходного соединения при введении примеси (т.е. с появлением кластеров, о которых говорилось выше) как в объемных областях экспериментальных образцов, так и в приконтактных слоях [15].

Список литературы

- Kolobov A.V., Fons P., Frenkel A.I., Ankudinov A.L., Tominaga J., Uruga T. // Nature Materials. 2004. V. 3. P. 703.
- [2] Andriesh A.M. // ФТП. 1998. T. 32. B. 8. C. 970.
- [3] Электронные явления в халькогенидных стеклообразных полупроводниках / Под ред. К.Д. Цендина. СПб.: Наука, 1996.
- [4] Конников С.Г., Павлов С.К., Цэндин К.Д., Шифрин Е.И., Шпунт В.Х. // Письма в ЖТФ. 1989. Т. 15. В. 13. С. 48.
- [5] Калмыкова Н.И., Мазец Т.Ф., Сморгонская Э.А., Цендин К.Д. // ФТП. 1989.
 Т. 23. В. 2. С. 297.
- [6] Кастро Р.А., Анисимова Н.И., Бордовский В.А., Грабко Г.И. // ФТТ. 2009. Т. 51. В. 6. С. 1062.
- [7] Simashkevich A.A., Shutov S.D. // Phys. Stat. Sol. (a). 1984. V. 84. N 1. P. 343.
- [8] Kunh M. // Sol. St. Electron. 1970. V. 13. N 6. P. 873.
- [9] Симашкевич А.А., Шутов С.Д. // ФТП. 1994. Т. 28. В. 1. С. 133.
- [10] Мазурин О.В. Электрические свойства стекла. Л.: Ленгосхимиздат, 1962. 163 с.
- [11] Castro R.A., Bordovsky G.A., Anisimova N.I. // J. Non-Cryst. Sol. 2006. V. 352. P. 1560.
- [12] Тимман Б.Л. // ФТП. 1973. Т. 7. В. 2. С. 225.
- [13] Мустафаева С.Н., Гасанов А.И. // ФТТ. 2004. Т. 46. В. 11. С. 1937.
- [14] Кастро Р.А., Бордовский В.А., Грабко Г.И. // ФХС. 2009. Т. 35. В. 1. С. 54.
- [15] Анисимова Н.И., Бордовский В.А., Грабко Г.И., Кастро Р.А. // ФТП. 2010. Т. 44. В. 8. С. 1038.