12,13 Исследование условий самоорганизованного перехода в бистабильный режим квазиравновесной конденсации и разборки поверхности

© А.И. Олемской, О.В. Ющенко, Т.И. Жиленко

Сумский государственный университет, Сумы, Украина Институт прикладной физики НАН Украины, Сумы, Украина

E-mail: Yushchenko@phe.sumdu.edu.ua

(Поступила в Редакцию 18 мая 2010 г.)

В рамках синергетического подхода проанализированы условия, обеспечивающие близость стационарного процесса конденсации/распыления к фазовому равновесию. Показано, что флуктуации температуры ростовой поверхности и потока десорбции адатомов играют роль мультипликативного шума, усиление которого приводит к трансформации унимодального распределения пересыщения осаждаемого компонента в бимодальное. Продемонстрировано, что подобную трансформацию обеспечивает зависимость времени релаксации пересыщения от величины последнего. Предложенная картина подтверждается экспериментальными данными, согласно которым указанная бистабильность проявляется в том, что стационарное состояние квазиравновесной системы плазма-конденсат отвечает не только напылению, но и самоорганизованному режиму разборки предварительно напыленного конденсата.

1. Введение

Одним из перспективных направлений современных нанотехнологий является конденсация вещества, использование которой в стационарном режиме, близком к фазовому равновеснию, позволяет получать весьма нетривиальные структуры (см. [1,2] и имеющиеся там ссылки). Примеры указанных структур дают ступенчатая поверхность монокристалла никеля и ажурная структура меди, показанные на рис. 1. Более того, использование методики квазиравновесной конденсации, развитой в [3-6], позволяет получать такие нанообъекты, как фуллерены, нанотрубки, микро- и нанокристаллы алмаза и т.д. Столь широкие возможности обеспечиваются близостью системы плазма-конденсат к фазовому равновесию, благодаря чему адатомы выстраиваются на активных центрах кристаллизации, образуя структуры с различной архитектурой.

Поскольку процесс конденсации носит квазиравновесный стационарный характер, принципиально важным является вопрос о причинах удержания системы плазмаконденсат вблизи фазового равновесия. Учитывая универсальный характер указанной картины конденсации, мы предположили ранее [1,2], что она обусловлена самоорганизацией многофазной системы плазма-конденсат. С физической точки зрения указанная самоорганизация обусловлена тем, что повышение энергии адатомов под действием плазмы способствует увеличению температуры ростовой поверхности в процессе конденсации, которое компенсируется потоком десорбции адатомов, ответственных за пересыщение. В предыдущих работах [1,2] нам удалось отобразить только основные черты картины такой самоорганизации в пренебрежении наличием флуктуаций и прерывистым характером процесса конденсации. Предлагаемая работа посвящена дальнейшему развитию теории [1] в направлении, предложенном в работе [7]. При этом мы намеренно отвлекаемся от задачи о коалесценции [8–10], развитой применительно к ансамблю выделений новой фазы под действием внешних источников [11]. Рассмотрение этого вопроса требует отдельного исследования.

Прежде чем перейти к построению теоретической схемы, следует отметить основные особенности ионноплазменной системы, использование которой позволяет реализовать самоорганизованный режим квазиравновесной стационарной конденсации [1-6]. Согласно блоксхеме, приведенной на рис. 2, основными элементами этой системы является пара анод-катод со встроенным в нее магнитом, действие которого способствует многократному росту плотности плазмы в среде инертного газа. Принципиально важным является использование полого катода, во внутренней части которого расположена подложка, отделенная от анода входным отверстием и заслонкой. Такая конструкция позволяет получить вблизи ростовой поверхности высококонцентрированную плазму, состоящую из ионов распыляемого вещества и инертного газа. Согласно методике [3-6], сначала в камере достигается высокий вакуум, затем производится напуск инертного газа, давление которого понижает длину свободного пробега частиц плазмы до микрометров. Распыление мишени протекает в режиме тлеющего разряда, стационарное течение которого обеспечивается магнетронным эффектом и кумулирующим действием полого катода. Толщина прикатодного слоя, в котором происходит основное падение потенциала, определяется дебаевской длиной экранирования λ, которая наряду с коэффициентом диффузии D задается равенствами [12,13]

$$\lambda^2 = \frac{\varepsilon T_p}{4\pi e^2 N_i}, \qquad D = \frac{\sigma T_p}{e^2 N_i}, \tag{1}$$

где ε , σ — диэлектрическая проницаемость и проводимость плазмы, T_p — ее температура, измеренная в энергетических единицах, e, N_i — заряд и суммарная концентрация ионов осаждаемого вещества и инертного газа в системе накопления. Объемная концентрация атомов напыляемого вещества у верхней границы прикатодного слоя сводится к накопленному значению $N_{\rm ac}$, а нижняя граница этого слоя представляет ростовую поверхность, вблизи которой концентрация атомов составляет N (в квазиравновесных условиях ее значение незначительно отличается от равновесной концентрации N_e). Адсорбируемый поток сводится к диффузионной составляющей, определяемой соотношением Онзагера [13]

$$J_{\rm ad} \equiv D |\nabla N| \simeq \frac{D}{\lambda} (N_{\rm ac} - N).$$
 (2)

В начале конденсации, когда реализуется условие равновесия $N=N_e$, этот поток принимает максимальное

Рис. 1. *а*) Монокристалл никеля, полученный при квазиравновесной конденсации в условиях полевой селективности [1]. *b*) Ажурная структура меди, полученная распылением осажденного материала при повышенной мощности разряда [4].

Рис. 2. Блок-схема ионно-плазменной распылительной системы, обеспечивающей режим квазиравновесной стационарной конденсации. 1 — анод, 2 — зона эрозии распыляемого материала, 3 — система магнитов, 4 — полый катод, 5 — слой адсорбированных атомов, 6 — конденсат, 7 — подложка.

значение, величина которого несущественно превышает стационарный поток (2). Условие близости к равновесию $|N - N_e| \ll N_e$ обеспечивает высококонцентрированная плазма, наличие которой настолько повышает температуру подложки, что приближает к фазовому равновесию не только вещества, обладающие высокой летучестью, но и металлы и полупроводники, у которых она весьма низка.

Согласно [1], исследование процесса самоорганизации достигается использованием синергетической схемы, основанной на трехпараметрической системе Лоренца [14,15]. В рамках такой схемы изложению стохастической картины самоорганизации посвящен раздел 2, а в разделе 3 представлено исследование прерывистого режима самоорганизации по механизму фазового перехода первого рода.

Самоорганизация стохастической системы плазма–конденсат

Поскольку самоорганизация обусловлена процессами, протекающими на ростовой поверхности, далее следует перейти от объемной концентрации N к поверхностной $n \equiv Na$, где a — масштабный фактор, подлежащий определению. С физической точки зрения, спад пересыщения $n-n_e$ обеспечивается потоком десорбции J, а его прирост — диффузионной составляющей J_{ad} , определенной потоком адсорбции (2) (поскольку век-

тор Ј направлен от ростовой поверхности, его величина J < 0, а значение адсорбционного потока $J_{ad} > 0$). В отсутствие конденсата, когда все адатомы испаряются с подложки, для первой составляющей выполняется условие $J = -J_{\rm ac}$, где накопленный поток $J_{\rm ac}$ определен равенством (2), в котором $N = N_e$. Для диффузионной компоненты уравнение непрерывности $\dot{n}/a + \nabla \mathbf{J}_{\mathrm{ad}} = \mathbf{0}$, в котором точка означает дифференцирование по времени, а действие источника определяется оценкой $|
abla \mathbf{J}_{\mathrm{ad}}| \simeq J_{\mathrm{ad}}/\lambda \simeq (D/\lambda^2)(n-n_e)/a$, дает $\dot{n} \simeq -(D/\lambda^2)(n-n_e)$. Соответственно скорость десорбции числа атомов $\int \dot{N} dv$ в объеме v, опирающемся на ростовую поверхность площадью s, составляет $\int \dot{N} dv = -\int (\nabla \mathbf{J}) dv = -\int \mathbf{J} d\mathbf{s}$, где первое равенство учитывает условие непрерывности, а второе — теорему Гаусса. Тогда с учетом флуктуационной добавки $\sigma_n \xi$ изменение концентрации n = n(t) вблизи ростовой поверхности описывается уравнением

$$\dot{n} = \frac{n_e - n}{\tau} - J + \sigma_n \xi. \tag{3}$$

Здесь σ_n представляет амплитуду белого шума $\xi = \xi(t)$, определенного стандартными условиями [16]

$$\langle \xi(t) \rangle = 0, \qquad \langle \xi(t)\xi(t') \rangle = \delta(t-t');$$
 (4)

характерное время изменения пересыщения задается равенствами

$$\tau \equiv \frac{\lambda^2}{D} = \frac{\varepsilon}{4\pi\sigma},\tag{5}$$

второе из которых учитывает соотношения (1). В стационарном режиме самоорганизации, когда $\dot{n} = 0$ и отсутствуют флуктуации ($J = -J_{ac}, \sigma_n = 0$), устанавливается пересыщение

$$n_{\rm ac} - n_e = \tau J_{\rm ac}.\tag{6}$$

Согласно уравнению (3), с отклонением от стационарного состояния пересыщение (6) достигается в результате дебаевской релаксации со временем (5).

С физической точки зрения, процесс самоорганизации обусловлен тем, что с ростом пересыщения $n - n_e$ конденсированные атомы передают ростовой поверхности избыток своей энергии, увеличивая ее температуру Т, отсчитанную от температуры окружающей среды. Это усиливает испарение атомов осаждаемого вещества за счет роста абсолютного значения потока десорбции J < 0, компенсирующего начальное пересыщение. Таким образом, представление последовательной картины квазиравновесного процесса конденсации требует самосогласованного описания временных зависимостей концентрации адатомов n(t), температуры ростовой поверхности T(t) и потока десорбции J(t). В рамках синергетического подхода уравнения эволюции содержат диссипативные вклады указанных величин и слагаемые, представляющие положительную и отрицательную обратные связи, баланс которых обеспечивает процесс самоорганизации [14]; кроме того, будем учитывать наличие стохастических источников, действие которых всегда имеет место в экспериментальных условиях. Так, в уравнении (3) вклад диссипации представляет первое слагаемое в правой части, а второе дает линейную связь между скоростью изменения концентрации и потоком десорбции. Подобным образом описывается изменение температуры ростовой поверхности

$$\tau_T \dot{T} = -T - a_T n J + \sigma_T \xi. \tag{7}$$

Здесь τ_T — соответствующее время релаксации, $a_T > 0$ — константа связи, σ_T — амплитуда флуктуаций температуры поверхности. В отличие от уравнения (3) здесь полагается, что диссипация приводит к релаксации температуры ростовой поверхности к значению T = 0, отсчитанному от температуры окружающей среды; второе слагаемое представляет нелинейную связь концентрации и потока, которая уменьшает скорость изменения температуры, а последнее — стохастическую добавку. Для обеспечения самоорганизации требуется компенсировать отрицательную связь в выражении (7) положительной составляющей в уравнении эволюции потока

$$\tau_J \dot{J} = -(J_{\rm ac} + J) + a_j nT + \sigma_J \xi. \tag{8}$$

Здесь τ_J представляет время релаксации к обратному значению $-J_{ac}$ потока накопления, $a_J > 0$ — константа связи, обеспечивающей рост потока за счет взаимного влияния концентрации адатомов и температуры ростовой поверхности, σ_J — амплитуда флуктуаций потока. Уравнения (3), (7), (8) представляют синергетическую систему Лоренца, в рамках которой пересыщение $n - n_e$ сводится к параметру порядка, температура ростовой поверхности T — к сопряженному полю, а поток десорбции J — к управляющему параметру [14].

Исследование системы (3), (7), (8) наиболее просто достигается в безразмерном виде с использованием характерных масштабов, сводящихся к времени релаксации (5), длине $a = (a_T a_J)^{1/4}$ и энергии $\varepsilon = (\tau a_J)^{-1}$. Тогда время *t*, концентрация *n*, температура ростовой поверхности *T*, поток *J* и амплитуды их флуктуаций σ_n , σ_T , σ_J измеряются соответственно в следующих единицах:

$$au, a^{-2}, \varepsilon, \tau^{-1}a^2, \quad \tau^{-1/2}a^{-2}, \quad \tau^{1/2}\varepsilon, \quad \tau^{-1/2}a^2.$$
 (9)

В результате безразмерная система уравнений, описывающих флуктуационный переход в системе плазмаконденсат, принимает вид

$$\begin{cases} \dot{n} = -(n - n_e) - J + \sigma_n \xi, \\ \delta \dot{T} = -T - nJ + \sigma_T \xi, \\ \sigma \dot{J} = -(J_{\rm ac} + J) + nT + \sigma_J \xi, \end{cases}$$
(10)

где введены соотношения времен релаксации

$$\delta \equiv \tau_T / \tau, \qquad \sigma \equiv \tau_J / \tau.$$
 (11)

В равновесном состоянии, когда отсутствуют флуктуации и зависимость от времени, первое из уравнений (10) дает постоянное пересыщение $J_{\rm ac}$ (ср. с (6)). Соответственно второе равенство (10) приводит в стационарном случае к зависимости T = n|J|, согласно которой температура ростовой поверхности повышается в результате взаимного увеличения концентрации адатомов и потока адсорбции. И наконец, третье уравнение определяет стационарный поток $J = -J_{\rm ac} + nT$, который увеличивается от значения $-J_{\rm ac}$ благодаря совместному росту концентрации адатомов и температуры.

В ходе конденсации обычно выполняются условия τ_T , $\tau_J \ll \tau$, означающие, что температура T(t) и поток J(t) следуют за изменением концентрации адатомов n(t). Благодаря этому при исследовании системы (10) можно воспользоваться адиабатическим приближением

$$\delta, \sigma \ll 1, \tag{12}$$

согласно которому в двух последних уравнениях (10) левые части близки к нулю. Тогда детерминистические составляющие этих уравнений приводят к зависимостям

$$T = J_{\rm ac} \frac{n}{1+n^2}, \qquad J = -\frac{J_{\rm ac}}{1+n^2},$$
 (13)

которые показывают, что рост концентрации адатомов приводит сначала к линейному увеличению температуры ростовой поверхности, которое при n = 1 выходит на насыщение, отвечающее максимальному значению $T_{\text{max}} = J_{\text{ac}}/2$; при этом поток десорбции возрастает от значения $J_{\text{min}} = -J_{\text{ac}}$ до $J_{\text{max}} = -J_{\text{ac}}/2$. Если учесть не только детерминистические, но и стохастические составляющие, то система (10) сводится к уравнению Ланжевена

$$\frac{\partial n}{\partial t} = -\frac{\partial F}{\partial n} + \sigma(n)\xi(t), \qquad (14)$$

где эффективный потенциал имеет вид

$$F = (n - 2n_e)n/2 - J_{\text{ac}}\operatorname{arctg}(n), \qquad (15)$$

а амплитуда шума определяется равенством

$$\sigma^{2}(n) = \sigma_{n}^{2} + \frac{\sigma_{J}^{2} + \sigma_{T}^{2}n^{2}}{(1+n^{2})^{2}},$$
(16)

следующим из условия адитивности дисперсий гауссовских стохастических источников [16]. Минимальное значение потенциала (15) достигается в стационарной точке *n*₀, положение которой определяется уравнением

$$(n_0 - n_e)(1 + n_0^2) = J_{\rm ac}.$$
 (17)

Его решение показывает, что с ростом накопленного потока $J_{\rm ac}$ стационарное пересыщение n_0 сначала нарастает от равновесного значения линейным образом, а затем этот рост замедляется. Поскольку величина пересыщения намного меньше равновесного значения ($|n_0 - n_e| \ll n_e$), в последнем сомножителе уравнения (17) концентрацию можно принять равновесной, откуда следует

$$n_0 - n_e \le \frac{J_{\rm ac}}{1 + n_e^2} \le J_{\rm ac}.$$
 (18)

В свою очередь стационарное значение эффективного потенциала (15) монотонно спадает с ростом накопленного потока $J_{\rm ac}$ и равновесной концентрации n_e . Такое поведение представляется оценками

$$F_0 \le -\frac{n_0^2}{2} \le -\frac{1}{2} (n_e + J_{\rm ac})^2.$$
 (19)

Согласно равенствам (13) и последней оценке (18), в стационарном состоянии поток адсорбции $|J_0|$ и температура ростовой поверхности T_0 принимают значения

Ì

$$|J_0| = n_0 - n_e \le J_{\rm ac},$$

$$T_0 = n_0(n_0 - n_e) \le n_e J_{\rm ac}.$$
 (20)

Отсюда следует важное заключение: самоорганизованный процесс конденсации протекает таким образом, что поток десорбции J_0 практически компенсирует накопленный поток $J_{\rm ac}$, слабо изменяя начальную температуру ростовой поверхности $T_{\rm ac} = n_e J_{\rm ac}$. Поскольку разность

$$J_c \equiv J_{\rm ac} + J_0 = J_{\rm ac} - |J_0| \tag{21}$$

обеспечивает приток напыляемого вещества в конденсат, ее малость $(J_c \ll J_{\rm ac})$ отражает квазиравновесный характер процесса самоорганизации.

Обладая стохастическим источником, уравнение Ланжевена (14) имеет бесконечный набор решений, распределенных по значениям случайной переменной n с плотностью вероятности P = P(n, t). Это распределение задается уравнением Фоккера–Планка [16,17]

$$\frac{\partial P(n,t)}{\partial t} = \frac{\partial}{\partial n} \left\{ -f(n)P(n,t) + \frac{\partial}{\partial n} [\sigma^2(n)P(n,t)] \right\}, \quad (22)$$

где эффективная сила

$$f(n) = -\frac{\partial F}{\partial n} + \frac{\lambda}{2} \frac{\partial \sigma^2}{\partial n}$$
(23)

определяется синергетическим потенциалом (15), а добавка представляет стохастический дрейф, обусловленный выбором исчисления (так, в случае Ито $\lambda = 0$, а для исчисления Стратоновича $\lambda = 1/2$). Стационарное решение уравнения (22) имеет вид

$$P(n) = \frac{Z^{-1}}{\sigma^2(n)} \exp\left\{\int \frac{f(n)}{\sigma^2(n)} dn\right\},$$
 (24)

где константа Z определяется условием нормировки.

Уравнение, определяющее положение экстремумов функции распределения (24), имеет вид

$$(n - n_e)(1 + n^2)^3 - J_{\rm ac}(1 + n^2)^2 + (2 - \lambda)n[\sigma_T^2(1 - n^2) - 2\sigma_J^2] = 0.$$
(25)

Отсюда следует, что вид распределения P(n) не зависит от амплитуды флуктуаций концентрации σ_n , определяясь накопленным потоком $J_{\rm ac}$ и амплитудами флуктуаций σ_T , σ_J температуры подложки и потока. В общем случае уравнение (25) имеет семь корней, однако только один или три из них могут принимать вещественные значения. Уравнение

$$(1+n^2)^3 + 6n(n-n_e)(1+n^2)^2 - 4J_{\rm ac}n(1+n^2) + (2-\lambda)[\sigma_T^2(1-3n^2) - 2\sigma_J^2] = 0, \qquad (26)$$

определяющее переход унимодального распределения P(n) в бимодальное, получается из условия

Рис. 3. Фазовые диаграммы, определяющие область бимодального распределения P(n) (прилегает к оси абсцисс правее кривых) при $n_e = 0.1$, $\sigma_n = 0.1$. $a - \lambda = 0$, амплитуда шума температуры поверхности $\sigma_T = 0$ (1), 2.0 (2) и 3.0 (3); $b - \lambda = 0$, значения накопленного потока $J_{ac} = -5.0$ (1), 0 (2) и 5.0 (3); $c - J_{ac} = 0$ и $\lambda = 0$ (1), 1/2 (2) и 1 (3).

Puc. 4. Распределение пересыщений при $\lambda = 1/2$. $a - n_e = 0.1$, $J_{ac} = 2.5$, $\sigma_n = 0.1$, $\sigma_T = 0.25$, $\sigma_J = 0.5$; $b - n_e = 0.1$, $J_{ac} = 2.5$, $\sigma_n = 0.1$, $\sigma_T = 0.25$, $\sigma_J = 3.5$; $c - n_e = 0.1$, $J_{ac} = -2.5$, $\sigma_n = 0.1$, $\sigma_T = 0.25$, $\sigma_J = 2.5$.

 $\partial n/\partial J_{\rm ac} = \infty$ при дифференцировании равенства (25) по потоку $J_{\rm ac}$. Совместное решение уравнений (25), (26) приводит к фазовым диаграммам, показанным на рис. 3. Из этих диаграмм видно, что бимодальное распределение реализуется в ограниченной области накопленных потоков $J_{\rm ac}$ при амплитудах флуктуаций потока σ_J , ограниченных минимальным значением. Возрастая с увеличением амплитуды флуктуаций температуры подложки σ_T , это значение спадает при увеличении параметра исчисления λ .

Таким образом, можно заключить, что флуктуации потока напыляемых атомов способствуют трансформации унимодального распределения пересыщений в бимодальное, а флуктуации температуры подложки препятствуют ей. Что касается выбора параметра исчисления λ , то его рост также способствует переходу в бимодальный режим. Из рис. 4, на котором показаны возможные виды плотности распределения пересыщений в различных условиях напыления, видно, что кроме указанного влияния флуктуаций существенное значение имеют величина и направление накопленного потока J_{ac} : при $J_{ac} > 0$ наиболее ярко выражен максимум распределения P(n), отвечающий положительным пересыщениям $n - n_e > 0$ (рис. 4, b), а в обратном случае $J_{ac} < 0$ основной максимум отвечает стационарным концентрациям n, не превышающим равновесное значение n_e (рис. 4, c).

С физической точки зрения, распределение P(n), для которого наиболее вероятны отрицательные значения пересыщения $n - n_e$ и накопленного потока $J_{\rm ac}$, означает, что система попадает в стационарное состояние, в котором процесс самоорганизации приводит не к конденсации атомов, а к обратному процессу разборки конденсата. В отличие от обычного распыления этот процесс протекает в стационарных условиях, обеспечивающих близость к межфазному равновесию, благодаря чему открываются уникальные возможности управлять архитектурой конденсата не только при адсорбции намыляемых атомов, но и в процессе их стационарной десорбции. Экспериментально самоорганизованная разборка конденсатов меди наблюдалась в работе [4], где распыление обеспечивалось повышением мощности разряда, которое приводило к образованию ажурных структур, показанных на рис. 1, b.

3. Прерывистый переход

Картина, изложенная в предыдущем разделе, предполагает, что в ходе перестройки системы плазмаконденсат характерное время изменения концентрации τ сохраняет постоянное значение. В действительности реакция системы на увеличение концентрации адатомов *n* может приводить к изменению этого времени. Основываясь на простейшей зависимости

$$\tau = \tau_0 \left(1 + \frac{\kappa}{1 + n^2/n_r^2} \right)^{-1}, \qquad (27)$$

характеризуемой константами $\tau_0 = \lambda^2/D$, κ , n_τ , покажем, что такое поведение трансформирует непрерывный переход в прерывистый. Действительно, подстановка выражения (27) в (3) приводит к уравнению Ланжевена (14) с эффективным потенциалом

$$F = (n - 2n_e)n/2 - J_{ac} \operatorname{arctg}(n) - \kappa n_e n_\tau \operatorname{arctg}\left(\frac{n}{n_\tau}\right) + \frac{\kappa n_\tau^2}{2} \ln[1 + (n/n_\tau)^2], \qquad (28)$$

который в сравнении с (15) приобретает два последних слагаемых. Как видно из рис. 5, этот потенциал обладает двумя минимумами, каждый из которых отвечает различным стационарным состояниям системы. Так, в случае, приведенном на рис. 5, a, наиболее глубокий минимум отвечает положительным пересыщениям, благодаря чему более выгодным является самоорганизованный процесс конденсации. С уменьшением накопленного потока $J_{\rm ac}$ наблюдается ситуация (рис. 5, b),

Рис. 5. Зависимость эффективного потенциала (28) от пересыщения при $n_e = 0.1$, $n_\tau = 0.35$, $\kappa = -15$ и накопленных потоках $J_{\rm ac} = 1.5$ (*a*), 0.5 (*b*) и -0.5 (*c*).

когда положительному и отрицательному пересыщениям отвечают примерно одинаковые значения эффективного потенциала. С уменьшением потока $J_{\rm ac}$ до отрицательных значений состояние, отвечающее отрицательным пересыщениям, становится наиболее выгодным (рис. 5, *c*). Это означает стационарное течение процесса, обратного конденсации, т.е. самоорганизованное распыление

предварительно осажденного покрытия, которое представляет разборку конденсата. В отличие от обычного распыления такая работа протекает таким образом, что в ее ходе сначала десорбируются атомы, наиболее слабо связанные с конденсатом, затем — более связанные и т. д. Таким образом, в результате разборки макроструктура конденсата может приобретать весьма сложную архитектуру типа показанной на рис. 1, *b*.

Положения экстремумов потенциала (28) определяются уравнением

$$(n_0 - n_e)(1 + n_0^2) \Big[(1 + \kappa) + (n_0/n_\tau)^2 \Big] - J_{\rm ac} \left[1 + (n_0/n_\tau)^2 \right] = 0, \quad (29)$$

при анализе которого удобно использовать условие близости к фазовому равновесию $|n_0 - n_e| \ll n_e$. Это позволяет заменить в множителе $(1 + n_0^2)$ стационарную концентрацию n_0 равновесным значением n_e , в результате чего (29) сводится к кубическому уравнению

$$n_0^3 - An_0^2 + Bn_0 - C = 0,$$

$$A = n_e + \frac{J_{ac}}{1 + n_e^2},$$

$$B = n_\tau^2 (1 + \kappa), \qquad C = n_\tau^2 \left[n_e (1 + \kappa) + \frac{J_{ac}}{1 + n_e^2} \right], \quad (30)$$

поведение корней которого определяется дискриминантом

$$d = \left(\frac{3B - A^2}{9}\right)^3 + \left(\frac{A^3}{27} - \frac{AB}{6} + \frac{C}{2}\right)^2.$$
 (31)

При d > 0 уравнение (30) имеет единственное решение, в обратном случае d < 0 реализуются три корня, отвечающие двум минимумам и разделяющему их максимуму (рис. 5). Такая ситуация отвечает прерывистому фазовому переходу.

Из рис. 6, где показана зависимость стационарной концентрации n_0 от накопленного потока J_{ac} , видно, что при

 n_0

Рис. 6. Зависимость стационарной концентрации n_0 от накопленного потока $J_{\rm ac}$ при $n_e = 0.1$, $n_\tau = 0.35$, $\kappa = -15$.

Рис. 7. Фазовая диаграмма возможных состояний системы плазма-конденсат при $n_e = 0.1$, $n_\tau = 0.35$. Штриховкой выделена бистабильная область, точки *a*, *b*, *c* отвечают эффективным потенциалам, показанным на рис. 5, *a*-*c* соответственно.

больших положительных значениях накопленного потока, когда уравнение (30) имеет единственный корень, система находится в состояния конденсации. С уменьшением J_{ac} до критического значения J_{c2} , определяемого условием d = 0, происходит бифуркация, отвечающая переходу в бистабильное состояние, в котором возможны как конденсация, так и разборка напыленной поверхности. И наконец, при отрицательных значениях накопленного потока $J_{ac} < J_{c1}$, где нижнее критическое значение J_{c1} также определяется условием d = 0, система попадает в состояние самоорганизованной разборки поверхности. Как показывает фазовая диаграмма, приведенная на рис. 7, бистабильные состояния реализуются только при больших абсолютных значениях параметра κ , определяющего дисперсию времени релаксации (27).

4. Заключение

Проведенное рассмотрение показывает, что самоорганизация системы плазма-конденсат обеспечивает бистабильный режим конденсации/разборки благодаря флуктуациям потока десорбции адатомов, а флуктуации температуры ростовой поверхности препятствуют установлению такого режима. В результате усиление первого типа флуктуаций, которые играют роль мультипликатного шума, а также инверсия накопленного потока в область отрицательных значений приводят к трансформации унимодального распределения пересыщения осаждаемого компонента в бимодальное. В свою очередь рост параметра λ, обеспечивающий переход от исчисления Ито (λ = 0) к случаю Стратоновича $(\lambda = 1/2)$, отвечающему физической ситуации [16,17], способствует переходу в бимодальный режим. Наряду с этим такой переход обеспечивает дисперсия времени релаксации пересыщения, приводящая к прямой

перестройке непрерывного режима самоорганизации в прерывистый.

Предложенная картина позволяет понять экспериментальные данные [4], согласно которым при низкой мощности разряда реализуется самоорганизованный режим конденсации, в результате которой образуется достаточно плотное покрытие меди, а многократное увеличение этой мощности приводит к значительному разогреву покрытия, при котором оно приобретает ажурную структуру, показанную на рис. 1, b. Согласно [4], эта структура образуется в результате самоорганизованной разборки предварительно напыленного конденсата. В отличие от обычного распыления этот процесс протекает в стационарных условиях, обеспечивающих близость к межфазному равновесию, благодаря чему открываются уникальные возможности управлять архитектурой конденсата не только при адсорбции напыляемых атомов, но и в процессе их стационарной десорбции.

Как видно из рис. 4, 5, режим разборки реализуется в условиях, когда в распределении концентрации адатомов (или при соответствующем эффективном потенциале) наиболее ярко выражен левый максимум (минимум), которые отвечают отрицательным значениям пересыщения и накопленного потока. Фазовые диаграммы, приведенные на рис. 3, показывают, что такая ситуация наблюдается при слабо выраженных флуктуациях температуры ростовой поверхности и повышенных значениях интенсивности флуктуаций потока. Поскольку температура является термодинамической величиной, можно полагать, что ее флуктуации всегда достаточно слабы. Что касается флуктуаций потока, то их усиление как раз и обеспечивается ростом мощности разряда, с помощью которого достигнут режим стационарной разборки конденсата в эксперименте [4]. Кроме того, указанное усиление разряда должно способствовать дисперсии времени релаксации пересыщения, благодаря которой режим самоорганизации принимает прерывистый характер и становится возможным процесс разборки предварительно напыленного конденсата.

Авторы выражают благодарность В.И. Перекрёстову за многократные обсуждения экспериментальной ситуации и предоставление электронно-микроскопических изображений конденсатов, показанных на рис. 1.

Список литературы

- В.И. Перекрёстов, А.И. Олемской, А.С. Корнющенко, Ю.А. Косминская. ФТТ 51, 5, 1003 (2009).
- [2] V.I. Perekrestov, A.I. Olemskoi, Yu.O. Kosminska, A.A. Mokrenko. Phys. Lett. A 373, 3386 (2009).
- [3] В.И. Перекрёстов, Ю.А. Косминская. Письма в ЖЭТФ 78, 258 (2003).
- [4] В.И. Перекрёстов. Письма в ЖТФ 31, 19, 41 (2005).
- [5] В.И. Перекрёстов, А.С. Корнющенко, Ю.А. Косминская. Письма в ЖТФ 32, 20, 1 (2006).
- [6] В.И. Перекрёстов, А.С. Корнющенко, Ю.А. Косминская. ФТТ 50, 1304 (2008).

- 7] А.И. Олемской, А.Я. Флат. ФТТ **35**, *3*, 542 (1993).
- [8] И.М. Лифшиц, В.В. Слезов. ЖЭТФ 35, 2, 479 (1958).
- [9] С.А. Кукушкин, А.В. Осипов. УФН 168, 1083 (1998).
- [10] S.A. Kukushkin, A.V. Osipov. In: Encyclopedia of nanoscience and nanotechnology / Ed. H.S. Nalwa. Am. Sci. Publ. (2004). V. 8. P. 113.
- [11] А.И. Олемской, А.В. Парипский. Изв. вузов. Физика 11, 122; 12, 73 (1978).
- [12] Л.Д. Ландау, Е.М. Лифшиц. Статистическая физика. Наука, М. (1976). Ч. 1. 584 с.
- [13] Е.М. Лифшиц, Л.П. Питаевский. Физическая кинетика. Наука, М. (1979). 528 с.
- [14] А.И. Олемской, А.А. Кацнельсон. Синергетика конденсированной среды. Едиториал УРСС, М. (2003). 335 с.
- [15] А.И. Олемской. Синергетика сложных систем: Феноменология и статистическая теория. Красанд, М. (2009). 384 с.
- [16] H. Risken. The Fokker–Planck equation. Springer-Verlag Berlin–Heidelberg (1996).
- [17] А.И. Олемской. УФН 168, 3, 287 (1998).