11,09,10 Влияние замещения центрального атома *Me* в аммонийных оксифторидах на фазовые переходы: исследование методом ИК-спектроскопии

© А.Н. Втюрин, Ю.В. Герасимова, Н.П. Шестаков, А.А. Иваненко

Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия

E-mail: vtyurin@iph.krasn.ru, jul@iph.krasn.ru

(Поступила в Редакцию 30 августа 2010 г.)

Выполнены сравнительные исследования спектров инфракрасного поглощения ионно-молекулярных кристаллов аммонийсодержащих оксифторидов $(NH_4)_3WO_3F_3$, $(NH_4)_3MOO_3F_3$. Обнаружены аномалии параметров колебательных спектров в областях внутренних колебаний октаэдрических групп MeO_3F_3 и ионов аммония вблизи температур переходов. Сравнительный анализ ИК-спектров позволяет утверждать, что исследованный фазовый переход в $(NH_4)_3WO_3F_3$ связан главным образом с упорядочением октаэдрических групп, а в соединении $(NH_4)_3MOO_3F_3$ — с упорядочением аммонийных групп и искажением ионов аммония кристаллическим окружением.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 08-02-00066-а).

1. Введение

Физические свойства и механизмы фазовых переходов в криолитах $A_3MeO_3F_3$ и эльпасолитах $A_2A'MeO_3F_3$ зависят как от размера центрального атома Me в октаэдре MeO_3F_3 , так и от симметрии самого октаэдра, которая в соответствии с fac- и тег-конфигурациями расположения лигандов может быть тригональной C_{3v} или ромбической C_{2v} . Несмотря на этот факт, симметрия кристаллической решетки оксифторидов при комнатной температуре остается кубической $(Fm\bar{3}m, Z = 4)$ благодаря статистическому разупорядочению атомов F(O) (рис. 1) [1].

Замещение атомарных катионов ионом NH₄ в центре октаэдра (4b) и межоктаэдрической полости (8c) приводит к возможности дополнительного структурного беспорядка, связанного с ориентационными степенями свободы этого иона. Более того, тетраэдрический ион NH₄⁺ в позиции 4b с необходимостью должен быть ориентационно неупорядочен.

Калориметрические исследования аммонийного оксифторида $(NH_4)_3WO_3F_3$ показали, что в этом кристалле наблюдается фазовый переход при 200 К сопровождаемый значительным скачком энтропии. Последнее позволяет предположить, что данный переход связан с процессами упорядочения молекулярных ионов решетки [2]. Первые исследования колебательного спектра этого кристалла, выполненные методом комбинационного рассеяния света, подтвердили предположение о неупорядоченности решетки в кубической фазе и процессах ее упорядочения ниже точки перехода [3,4].

В соединении (NH₄)₃MoO₃F₃ методом адиабатического калориметра были уточнены температуры фазовых переходов, которые составили $T_1 = 297.14$ К и $T_2 = 205.4$ К, и установлено, что при T_1 происходит переход первого рода [5].

В настоящей работе исследовано влияние замещения W — Мо на механизмы структурных искажений и их проявление в спектрах инфракрасного (ИК) поглощения.

Рис. 1. Структура элементарной ячейки кубической фазы кристаллов $(NH_4)_3MeO_3F_3$. Катионы аммония ориентационно разупорядочены и поэтому показаны сферами: светлая сфера $(NH_4(I))$ — ион аммония находится в центре октаэдра (4b), темная сфера $(NH_4(II))$ — в межоктаэдрической полости (8c). Положения атомов кислорода и фтора в октаэдрах MeO_3F_3 также неизвестны.

2. Эксперимент

Исходным соединением для синтеза (NH₄)₃MoO₃F₃ служил молибдат аммония. Мелкодисперсный порошок был получен в результате реакции

 $(NH_4)_2MoO_4 + 3HF_{exc} + NH_4OH \rightarrow (NH_4)_3MoO_3F_3 + 2H_2O.$

Методика синтеза описана в [5].

Аммонийный оксифторид $(NH_4)_3WO_3F_3$ был приготовлен из горячего раствора $(NH_4)_3WO_3F_4$ с избытком NH₄F и последующим постепенным добавлением раствора NH₄OH до pH = 8 (до появления первых порций белого осадка). В результате такой быстрой кристаллизации образуются мелкие прозрачные и бесцветные кристаллы в форме октаэдров с длиной ребра около 5 μ m. После отделения кристаллического осадка из маточного раствора при медленном испарении на воздухе кристаллизовались более крупные октаэдры с размером ребра около 40 μ m [2].

ИК-спектры были получены на таблетках КВг, содержащих 1% исследуемого кристаллического порошка, на спектрометре Vertex 70 (Bruker) в диапазоне $370-7500 \text{ cm}^{-1}$ с разрешением 1 сm⁻¹. При температурных исследованиях использовался криостат Specac.

3. Экспериментальные результаты и обсуждение

3.1. Общая структура спектра. На рис. 2 показаны экспериментальные ИК-спектры $(NH_4)_3WO_3F_3$ и $(NH_4)_3MOO_3F_3$ при комнатной температуре. Заметных различий спектров этих двух соединений не наблюдается, за исключением того, что спектр молибденового оксифторида в области внутренних колебаний фторкислородного октаэдра незначительно смещен в низкочастотную область. Очевидно, это связано с различием

Рис. 2. Обзорные ИК-спектры $(NH_4)_3WO_3F_3$ и $(NH_4)_3MoO_3F_3$ при комнатной температуре.

	_	5
Симметрия колебания	Частота, cm ⁻¹	Относительная ИК-интенсивность
fac-конфигурация, C _{3v}		
A_1	915	2.5
E	821	10.4
A_1	415	5.5
E	342	0.4
A_1	336	0.2
Ε	334	1.2
A_1	274	0.2
Ε	252	1.3
E	175	0.2
A_2	-	0.0
mer-конфигурация, C _{2v}		
A_1	887	3.1
A_1	810	4.5
B_1	745	16.6
A_1	455	0.2
B_2	433	5.3
B_1	358	0.0
A_1	328	0.4
A_2	292	0.2
B_1	308	0.0
A_1	263	2.7
B_2	256	0.8
B_2	229	2.2

Результаты квантово-химического (ECP/SBKJC/B3LYP) расче-

та колебательного спектра ионов $WO_3F_2^{3-}$

электронной структуры этих групп в исследуемых кристаллах и согласуется с результатами предыдущих исследований оксигалогенидов вольфрама и молибдена [6].

0.35

211 151 0.0

0.1

0.0

 B_1

 A_1

 B_{2}

Область $600-1000 \text{ cm}^{-1}$ содержит линии, соответствующие валентным колебаниям Me-O ионов $MeO_3F_3^{3-}$. Для интерпретации валентных колебаний W-O ионов WO₃F₃³⁻ был выполнен квантово-химический расчет двух возможных конфигураций с симметрией C_{3v} и C_{2v} . Все расчеты выполнены с использованием программного комплекса GAMESS [7]. Результаты приведены в таблице.

Сложный контур 600–890 сm⁻¹ в ИК-спектре соответствует полярным колебаниям Me-O, вырожденным для свободного иона fac-конфигурации; можно предположить, что сложный характер этой полосы связан со снятием вырождения под действием кристаллического окружения. Соотношение интенсивностей этих полос согласуется с расчетным для fac-конфигурации. Линии 902 сm⁻¹ в соединении (NH₄)₃MoO₃F₃ и 920 сm⁻¹ в (NH₄)₃WO₃F₃ хорошо заметны в ИК-спектрах и соответствуют расчетной частоте (918 сm⁻¹) полносимметричного валентного колебания Me-O для fac-конфигурации. Таким образом, экспериментальные результаты согласуются с расчетными для C_{3v} -варианта,

Рис. 3. Трансформация линий ИК-спектра W-O в анионах $WO_3F_3^{3-}(a)$ и Mo-O в анионах $MoO_3F_3^{3-}(b)$ при фазовых переходах в $(NH_4)_3WO_3F_3$ и $(NH_4)_3MoO_3F_3$ соответственно.

и можно заключить, что ионы $MeO_3F_3^{3-}$ в исследуемых кристаллах находятся преимущественно в fac-конфигурации.

Области 2200–3800 и 1200–1600 сm⁻¹ содержат линии, соответствующие внутренним валентным и деформационным модам ионов аммония. В спектрах линии внутренних колебаний уширены; наблюдаются линии, запрещенные симметрией свободной группы: $v_1(3040 \text{ cm}^{-1})$ и $v_2(1680 \text{ cm}^{-1})$ [6]. Уширение может быть связано с тем, что ионы аммония находятся как в позиции 8*c*, так и в позиции 4*b*; тетраэдрический ион NH₄⁺ в позиции 4*b* с необходимостью должен быть ориентационно разупорядочен. Появление запрещенных линий может быть связано как с влиянием полярных фторкислородных октаэдров, так и с проявлением сильного ангармонизма ионов аммония [6].

Следует отметить, что область ниже 500 cm^{-1} соответствует валентным колебаниям связей Me-F и деформационным модам ионов $MeO_3F_3^{3-}$.

3.2. Температурная трансформация спектра. В ИК-спектрах $(NH_4)_3WO_3F_3$ линия, соответствующая невырожденному колебанию связи W–O (920 cm⁻¹), ниже точки фазового перехода (T = 200 K) расщепляется в дублет (трансформация ИК-спектра показана на рис. 3, *a*). Происходит также изменение формы сложной полосы 600-890 cm⁻¹: хотя полного разделения компонент не наблюдается, становится видна сложная структура этой полосы. Подобные изменения спектра связаны с процессами ориентационного упорядочения молекулярных ионов при фазовом переходе;

как уже упоминалось выше, в кубической фазе и ионы аммония, и ионы $WO_3F_3^{3-}$ должны быть ориентационно разупорядочены. Расщепление невырожденного колебания W–O может быть связано только с увеличением объема примитивной ячейки кристалла, как минимум — с ее удвоением.

В отличие от вольфрамата в молибденовом соединении при понижении температуры в области внутренних колебаний октаэдра MoO_3F_3 аномального поведения спектральных линий ни при $T_1 = 297.14$ К, ни при $T_2 = 205.4$ К не происходит (рис. 3, *b*). На рис. 4

Рис. 4. Температурные зависимости частот линий $600-1000 \, \mathrm{cm}^{-1}$ (NH₄)₃MoO₃F₃. Вертикальными отрезками показаны полуширины линий.

Рис. 5. Трансформация спектров внутренних деформационных (*a*) и валентных (*b*) колебаний ионов аммония при охлаждении (NH₄)₃WO₃F₃.

Рис. 6. То же, что на рис. 5, для (NH₄)₃MoO₃F₃.

показаны температурные зависимости частот линий в области $600-1000 \,\mathrm{cm^{-1}}$ (вертикальными линиями показаны полуширины соответствующих мод); отсутствие изменений свидетельствует о том, что фазовые переходы не связаны с упорядочением $MoO_3F_3^{3-}$ октаэдров или изменением их геометрии.

Трансформация спектров внутренних деформационных и валентных колебаний ионов аммония при охлаждении $(NH_4)_3WO_3F_3$ представлена на рис. 5, *a*, *b*. Сохраняющиеся большие ширины линий их внутренних колебаний свидетельствуют о том, что катионы аммония остаются ориентационно неупорядоченными и в низко-

Рис. 7. Температурная зависимость частоты F_2 -моды ионов NH₄⁺ в (NH₄)₃MoO₃F₃. Вертикальными отрезками показана четверть ширины линий на полувысоте.

температурной фазе. Исчезновение одной из линий в области валентных колебаний ионов аммония может быть связано с уменьшением ангармонизма при понижении температуры.

В молибдате в отличие от вольфрамата в области аммонийных колебаний снижение температуры приводит к заметному уменьшению ширин спектральных линий, что свидетельствует об упорядочении этих групп (рис. 6, *a*, *b*). Одновременно наблюдается расщепление трижды вырожденных колебаний (деформационная мода F_2 [6]), связанное с искажением ионов аммония кристаллическим окружением (рис. 7).

4. Заключение

Выполненный в настоящей работе сравнительный анализ колебательных спектров вольфрамового и молибденового оксифторидов позволил установить следующие факты.

Сопоставление спектров валентных колебаний анионов $WO_3F_3^{3-}$ и $MoO_3F_3^{3-}$ с результатами квантовохимических расчетов подтверждает, что данные катионы в структурах исследуемых кристаллов присутствуют главным образом в fac-конфигурации.

Все молекулярные ионы в кубической фазе кристаллов ориентационно разупорядочены, что подтверждается большими ширинами соответствующих линий.

Установлено, что замещение W→Mo приводит к изменению механизма фазовых переходов: если в вольфрамовом соединении фазовый переход связан главным образом с упорядочением фторкислородных октаэдров, то в молибденовом происходит упорядочение катиона аммония.

Список литературы

- J. Ravez, G. Peraudeau, H. Arend, S.C. Abrahams, P. Hagenmüller. Ferroelectrics 26, 767 (1980).
- [2] И.Н. Флёров, М.В. Горев, В.Д. Фокина, А.Ф. Бовина, Н.М. Лапташ. ФТТ 46, 888 (2004).
- [3] А.С. Крылов, Ю.В. Герасимова, А.Н. Втюрин, Н.М. Лапташ, Е.И. Войт. ФТТ 48, 1004 (2006).
- [4] А.С. Крылов, Ю.В. Герасимова, А.Н. Втюрин, В.Д. Фокина, Н.М. Лапташ, Е.И. Войт. ФТТ 48, 1279 (2006).
- [5] И.Н. Флёров, В.Д. Фокина, А.Ф. Бовина, Е.В. Богданов, М.С. Молокеев, А.Г. Кочарова, Е.И. Погорельцев, Н.М. Лапташ. ФТТ 50, 497 (2008).
- [6] К. Nakamoto. Infrared and Raman spectra of inorganic and coordination compounds. A Wiley Interscience Publication. John Wiley and Sons, N.Y. (1986). [К. Накамото. ИК-спектры и спектры КР неорганических и координационных соединений. Мир, М. (1991)].
- [7] Е.И. Войт, А.В. Войт, А.А. Машковский, Н.М. Лапташ, В.Я. Кавун. ЖСХ 47, 661 (2006).