03 Экспериментальная проверка соотношения Хагены для больших кластеров, сформировавшихся в коническом сопле

© А.Г. Данильченко, С.И. Коваленко, В.Н. Самоваров

Физико-технический институт низких температур им. Б.И. Веркина НАУ Украины, Харьков E-mail: danylchenko@ilt.kharkov.ua

Поступило в Редакцию 28 апреля 2008 г.

Для свободных кластеров инертных газов с числом атомов более 10³ проведено электронографическое исследование зависимости размера от давления и температуры газа на входе в коническое сопло. Анализ полученных данных позволил впервые для крупных кластеров верифицировать выражение, связывающее число атомов в кластере с параметром Хагены, и уточнить само значение параметра. Показано, что установленные соотношения также неплохо выполняются и при наличии небольшого количества примесей в сверхзвуковых струях инертных газов.

PACS: 78.60.Hk, 61.05.J

Исследование структуры и свойств кластеров невозможно в отсутствие достаточно надежной информации об их величине и распределении по размером. В случае свободных кластеров, сформировавшихся в адиабатически расширяющихся сверхзвуковых струях атомарных или молекулярных газов, их размер определяется методами массспектрометрии, электронографии, рамановской спектроскопии, а также методом рассеяния атомов Не на кластерах [1]. Для инертных газов весьма распространен также расчетный метод, использующий известное уравнение Хагены [2,3], связывающее приведенный параметр Хагены Г* со средним числом атомов в кластере: n = A ($\Gamma^*/1000$)^{γ}, где константа A и показатель степени γ различны для малых и больших Γ^* . Так, для $350 \le \Gamma^* \le 1800$ значения A = 38.4, $\gamma = 1.64$. В случае $\Gamma^* > 1800$ обычно принимают A = 33 и $\gamma = 2.35$. Таким образом, для малых Γ^* :

$$n = 38.4(\Gamma^*/1000)^{1.64} = 4.62 \cdot 10^{-4*} \Gamma^{*1.64},$$
(1)

для больших Г*:

$$n = 2.94 \cdot 10^{-6} (\Gamma^*)^{2.35}.$$
 (2)

Для $\Gamma^* > 1800$ в литературе известно также модифицированное соотношение Хагены, полученное в экспериментах с кластерами Ar [1]:

$$n = \exp(a_0 + a_1 (\ln \Gamma^*)^{0.8}), \tag{3}$$

где константы a_0 и a_1 равны (-12.83) и (3.51) соответственно.

Параметр Г* является функцией давления P_0 и температуры газа T_0 на входе в сопло, а также зависит от геометрии сопла. Для сверхзвукового конического сопла геометрический фактор определяется эквивалентным диаметром $d_{eq} - 0.74d/\tan \alpha$, где d — критический диаметр сопла, 2α — угол раствора конуса. Величины d_{eq} и средняя тепловая скорость атомов в сопле $\langle v \rangle$ задают характерное время $\tau_{ex} = (\pi/2)^{0.5}d/(\tan \alpha \langle v \rangle)$ уменьшения $\tan \alpha \langle v \rangle$ плотности газа в сопле, где происходит зарождение нанокапель, которые в процессе охлаждения преобразуются в твердые кластеры. Чем больше τ_{ex} , тем дольше кластер пребывает в плотном газе и тем больше его конечный размер. Аналитическая запись Г* имеет вид

$$\Gamma^* = (P_0 d_{eq}^{q*} T_0^{0.25q-2.5}) K_{ch}, \tag{4}$$

где величина K_{ch} зависит от сорта газа и, если P_0 измерено в mBar, а d_{eq} в μ m, равна 5500 для Xe, 2890 для Kr и 1650 для Ar. Показатель степени q может лежать в интервале 0.5 < q < 1, и для $\Gamma^* < 10^4$ экспериментально обосновано значение q = 0.85 [1,4]. Эквивалентный диаметр d_{eq} выступает неким термодинамическим параметром наравне с P_0 и T_0 .

Соотношения (1), (2) и (3) проверялись экспериментально в области $3 \cdot 10^2 \leqslant \Gamma^* \leqslant 10^4$, что для инертных газов соответствует числу атомов в кластере $10 \leqslant n \leqslant 7 \cdot 10^3$. Заметим, что в соответствии с (1) и (2) и с учетом (4) (при q = 0.85) размер *n* зависит от P_0 и T_0 следующим образом: $n \sim P_0^{1.64} T_0^{-3.7515}$ (случай (1)) и $n \sim P_0^{2.35} T_0^{-5.3756}$ (случай (2)). Для соотношения (3) зависимость *n* от P_0 и T_0 не имеет столь простого аналитического вида. Для $\Gamma^* \ge 10^4$ соотношения Хагены, а также соотношение (3) не верифицированы и поэтому требуют проведения специальных экспериментов.

В настоящей работе мы систематизировали ранее полученные нами результаты по зависимостям n от P_0 и T_0 [5–7], а также дополнили

Цель данной работы заключалась в установлении для области $\Gamma^* \ge 10^4$ зависимости параметра Хагены от P_0 и T_0 , а также в выяснении вопроса о том, какое из соотношений (2) и/или (3) является более корректным для данной области.

В экспериментах использовалось сверхзвуковое сопло с критическим диаметром $d = 340 \,\mu\text{m}$, углом раствора конуса $2\alpha = 8.6^{\circ}$ и отношением выходного сечения к критическому 36.6. Температура и давление газа на входе в сопло изменялись в пределах $T_0 = 100 - 250$ K, P₀ = 0.15-6 atm. Условия эксперимента позволяли варьировать параметр Г* от 10⁴ до 10⁵. В этой области Г* кластеры имели кристаллическую структуру (ГЦК или ГЦК + ГПУ), что позволило использовать для определения их среднего характеристического линейного размера δ соотношение Селякова-Шеррера, связывающее уширение дифракционных максимумов с размером монокристаллических агрегаций. (При определении δ учитывался вклад дефектов упаковки в уширение пиков [8]). В случае наиболее крупных кластеров ($n = 10^5$ at/cl) учитывалось сосуществование в одной агрегации 2-3 областей когерентного рассеяния [7]. Измеренная величина б пересчитывалась в приближении сферичности кластеров в число атомов *n* по формуле: $\delta = a (3n/2\pi)^{1/3}$, где *а* — параметр кристаллической решетки.

На рис. 1 представлена зависимость n от параметра Хагены по данным наших измерений для Ar, Kr и Xe, а также по литературным для Ar [9–12]. Литературные данные для $\Gamma^* \leq 10^4$ располагаются слева от сплошной линии, тогда как нашим данным для $\Gamma^* \geq 10^4$ соответствуют значки справа от нее. В обоих случаях параметр Γ вычислялся согласно (4) с q = 0.85. Сплошная линия проведена в соответствии с экспоненциальной функцией (3). Как видно из рисунка, в области $\Gamma^* \geq 2 \cdot 10^3$ она имеет вид хорошо выраженной прямой и, следовательно, в обычных координатах ее можно аппроксимировать степенной функцией $n \sim (\Gamma^*)^{\alpha}$. Если выбрать выражение

$$n = 1.64 \cdot 10^{-4} \Gamma^{*1.8},\tag{5}$$

то ошибка такой аппроксимации не превышает 1.5% во всей области указанных значений Γ^* . Пунктирная линия на рис. 1 проведена в соответствии со степенной функцией (2) с показателем 2.35.

Анализ рис. 1 указал на необходимость согласования для области Γ^* , близкой к 10^4 , наших данных с литературными, а в области $\Gamma^* \ge 10^4$ —

Рис. 1. Зависимость размера кластеров *n* от параметра Г* Литературные данные обозначены светлыми символами: □ — [9,10], о — [11], △ — [12]. Данные настоящей работы обозначены темными значками: ■ — Аг, • — Кг, ▲ — Хе. Пунктирная линия проведена согласно соотношению (2), сплошная — (3).

ответа на вопрос, какое из соотншений (2) или (3) лучше описывает зависимость n от параметра Хагены. Для решения поставленной задачи мы провели эксперименты по определению зависимости размера кластеров n от давления P_0 при постоянной температуре T_0 и наоборот.

На рис. 2, *a*, *b* приведены результаты измерений зависимости δ от (P_0) для Ar, Kr и Xe при $T_0 = 200$ K, а также для аргона с малой добавкой криптона при $T_0 = 120$ K. Как видно из рис. 2, *a*, в широкой области давлений все значения δ хорошо укладываются на одну прямую. Наклон прямой соответствует степенной зависимости $\delta \sim P_0^{0.6}(n \sim P_0^{1.8})$, что хорошо коррелирует с (3) и, как следствие, с предложенной аппроксимацией (5). На рис. 2, *b* представлена зависимость δ от давления для аргоновой струи с малыми добавками криптона. Сплошная линия на рисунке соответствует зависимости

Рис. 2. Зависимость размера кластеров: a — линейного размера от давления газа на входе в сопло P_0 для Ar, Kr и Xe при $T_0 = 200$ K; b — линейного размера от давления газа на входе в сопло P_0 для Ar, Ar + 0.1% Kr и Ar + 0.5% Kr при $T_0 = 120$ K; c — числа атомов в кластере от температуры газа на входе в сопло T_0 для Ar при $P_0 = 2$ atm.

 $\delta = 62P_0^{0.6}$ ($n \sim P_0^{1.8}$). Из рис. 2, *b* видно, что указанная зависимость хорошо выполняется не только для чистых кластеров аргона, но и для аргона с малыми добавками криптона. Пропорциональность $n \sim P_0^{1.8}$ сохранялась при повышении концентрации криптона до 2.5%, однако коэффициент пропорциональности при этом заметно увеличивался.

Рис. 2 (продолжение).

Такое поведение можно объяснить интенсификацией роста кластеров Ar примесным криптоном. Эффект, по-видимому, обусловен стимуляцией небольшими агрегациями Kr гетерогенной нуклеации Ar [7].

Рассмотрим теперь зависимость среднего размера кластеров от температуры T_0 . На рис. 2, *с* представлены значения *n*, для кластеров аргона ($P_0 = 2$ atm). В логарифмическом масштабе точки хорошо укладываются на прямую, соответствующую степенной зависимости $n \sim T_0^{-\alpha}$ ($\delta \sim T_0^{-\alpha/3}$), где $\alpha = 4.3 \pm 0.3$. Если воспользоваться аппроксимацией (5) и формулой (4) с q = 0.85, то зависимость $n(T_0)$ должна иметь вид $n \sim T_0^{-4.12}$, что неплохо согласуется с экспериментом. Таким образом, установленные нами зависимости $n \sim P_0^{1.8}$ и $n \sim T_0^{-4.3\pm0.3}$ не соответствуют выражению (2), но хорошо согласуются с (5) при сохранении прежнего выражения (4) для Γ^* . Однако, как видно из рис. 1, абсолютные значения наших данных располагаются несколько ниже прямой соответствующей (5), но, если выбрать q = 0.8, то, как это видно из рис. 3, это расхождение устраняется. При этом показатель степени T_0 меняется незначительно, а при P_0 сохраняется.

Таким образом, в данной работе впервые для свободных кластеров инертных газов в области параметра Хагены $\Gamma^* > 10^4 (n > 2 \cdot 10^3 \text{ at/cl})$ верифицировано выражение, связывающее число атомов в кластере с параметром Γ^* и уточнено само значение Γ^* . Также показано, что эти соотношения неплохо выполняются и при наличии небольшого

Рис. 3. Зависимость размера кластеров n от параметра Γ^* после коррекции значения параметра. Сплошная линия соответствует выражению (3).

количества примесей в струях инертных газов. Полученные результаты свидетельствуют, что формирование крупных кластеров происходит по несколько иному механизму, чем это имеет место в случае малых агрегаций.

Список литературы

- [1] Buck U., Krohne R. // J. Chem. Phys. 1996. V. 105. N 13. P. 5408.
- [2] Hagena O.F. // Surf. Sci. 1981. V. 106. P. 101.
- [3] Hagena O.F. // Rev. Sci. Instrum. 1992. V. 63. P. 2374.
- [4] Krainov V.P., Smirnov M.B. // Phys. Reports. 2002. V. 370. P. 237.
- [5] Коваленко С.И., Солнышкин Д.Д., Бондаренко Е.А., Верховцева Э.Т. // ФНТ. 1997. Т. 23. В. 2. С. 190.
- [6] Коваленко С.И., Солнышкин Д.Д., Верховцева Э.Т., Еременко В.В. // ФНТ. 1994. Т. 20. В. 9. С. 961.

- [7] Данильченко А.Г., Коваленко С.И., Самоваров В.Н. // ФНТ. 2006. Т. 32. В. 12. С. 1551.
- [8] Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электронно-оптический анализ. М.: Металлургия, 1970. 368 с.
- [9] Farges J., de Feraudy M.F., Raoult B., Torchet G. // J. Chem. Phys. 1983. T. 78.
 C. 5067.
- [10] Farges J., de Feraudy M.F., Raoult B., Torchet G. // J. Chem. Phys. 1986. V. 84. P. 3491.
- [11] De Martino A., Benslimane M., Chatelet M., Crozes C., Pradere F., Vach H. // Z. Phys. D. 1993. V. 27. C. 185.
- [12] Cuvellier J., Meynadier P., de Pujo P., Sublemontier O., Visticot J.P., Berlande J., Lallement A, Mestdagh J.M. // Z. Phys D. 1991. V. 21. P. 265.