о5,06,10 Моды поляризации в мультиферроике Ba₂Mg₂Fe₁₂O₂₂

© Г.А. Командин¹, А.С. Прохоров^{1,2}, В.И. Торгашев³, Е.С. Жукова^{1,2}, Б.П. Горшунов^{1,2}, А.А. Буш⁴

 ¹ Институт общей физики им. А.М. Прохорова РАН, Москва, Россия
 ² Московский физико-технический институт (Государственный университет), Долгопрудный, Московская обл., Россия
 ³ Южный федеральный университет, Ростов-на-Дону, Россия
 ⁴ Московский государственный институт радиотехники, электроники и автоматики, Москва, Россия
 E-mail: gorshunov@ran.gpi.ru

(Поступила в Редакцию 15 июля 2010 г. В окончательной редакции 30 сентября 2010 г.)

С целью определения динамических параметров фононной и магнитной подсистем в терагерцевом и инфракрасном диапазонах частот $(3-4500 \text{ cm}^{-1})$ в широком интервале температур (10-300 K) измерены спектры комплексной диэлектрической проницаемости монокристалла Ba₂Mg₂Fe₁₂O₂₂, принадлежащего к семейству гексаферритов *Y*-типа. Выполнен фактор-групповой анализ колебательных мод и проведено сопоставление полученных результатов с экспериментально наблюдаемыми резонансами. Вычислены осцилляторные параметры всех девятнадцати фононных мод симметрии E_u , разрешенных симметрией кристаллической решетки Ba₂Mg₂Fe₁₂O₂₂. При температурах ниже 195 и 50 K в спектральном отклике обнаружено возникновение новых линий поглощения, природа которых связывается с магнитными возбуждениями.

Работа выполнена при поддержке Российского фонда фундаментальных исследований в рамках проекта № 09-02-00280-а.

1. Введение

Новый класс мультиферроиков, характеризуемый наличием одновременно геликоидального магнитного порядка и сегнетоэлектричества, в последнее время привлек к себе повышенное внимание, в основном благодаря открытию гигантского магнитоэлектрического эффекта в TbMnO₃ [1]. В этих материалах небольшие магнитные поля (порядка единиц тесла) способствуют формированию нескольких фаз, часть из которых проявлет сегтеноэлектрические свойства. Однако до сих пор природа и механизмы конкурирующих магинтоэлектрических взаимодействий во многих деталях остаются невыясненными. Типичными представителями таких соединений являются гексаферриты (гексагональные ферриты), которые образуют обширное семейство магнитных оксидов со слоистой структурой и весьма большим периодом решетки (до 1500 Å) вдоль гексагональной оси. Термин "гексаферриты" используется в противовес кубическим (или шпинельным) ферритам для особой группы соединений, генетически связанных с минералом магнетоплумбит (magnetoplumbite), приблизительный состав которого Pb[Fe,Mn]₁₂O₁₉. Основными представителями семейства являются [2,3]: *М*-тип — *A*Fe₁₂O₁₉, *Y*-тип — *A*₂B₂Fe₁₂O₂₂, *W*-тип — *АМе*₂Fe₁₆O₂₇, *Z*-тип — *А*₃*Me*₂Fe₂₄O₄₁, *X*-тип — $A_2Me_2Fe_{28}O_{46}$, U-тип — $A_4Me_2Fe_{36}O_{60}$ (A = Sr, Pb, Ba; Me = Zn, Fe, Co, Mg, Mn).

Особого внимания заслуживает подсемейство *Y*-типа, поскольку именно в нем недавно обнаружены уникаль-

ные свойства мультиферроиков [4-9]; в частности, в кристалле Ba2Mg2Fe12O22 магнитоэлектрическое переключение может быть реализовано практически в нулевом магнитном поле [4-6]. Кроме того, установлено, что на магнитной фазовой диаграмме Ba₂Mg₂Fe₁₂O₂₂ стабильными являются четыре магнитно-упорядоченные фазы, три из которых к тому же являются сегнетоэлектрическими. Сходное поведение демонстрирует и соединение $Ba_{0.5}Sr_{1.5}Zn_2Fe_{12}O_{22}$, где магнитная B-T-фазовая диаграмма насчитывает пять фазовых состояний (в магнитном поле $\mathbf{B} \perp \mathbf{c}$) с изменяющимся характером магнитной спирали [7-9]. Таким образом, гексаферриты с длиннопериодическими магнитными структурами при температурах выше точки кипения жидкого азота демонстрируют значительный магнитоэлектрический отклик в сравнительно низком магнитном поле В, и это открывает большие возможности для их применения в магнитоэлектрических системах.

Структурные особенности гексаферритов Y-типа впервые обсуждались в работе [10] при анализе соединений $Ba_2Me_2Fe_{12}O_{22}$ (Me = Zn, Fe, Co, Mg, Mn). Элементарная ячейка симметрии $R\bar{3}m$ с параметром $c \approx 43.6$ Å включает 18 кислородных слоев и может быть подразделена на три части. Каждая часть содержит четыре последовательных слоя из атомов кислорода, которые перемежаются аналогичными слоями, но с четвертью атомов кислорода, замещенных барием (рис. 1, *a*). Последовательность двух стыкующихся единиц (обозначаемых Брауном [2] символами S и T) можно еще более "расщепить". Так, S-блок можно рассматривать

Рис. 1. a — элементарная (гексагональная) и примитивная (ромбоэдрическая) ячейки кристалла $Ba_2Mg_2Fe_{12}O_{22}$ гексаферрита. Показаны координационные многогранники некоторых катионов в различных позициях решетки. Выделены T- и S-блоки. Ориентация спинов в ферримагнитной фазе указана стрелками. b-d — иллюстрации геликоидального упорядочения спинов (стрелки) в разных магнитных фазах: b — правильный винт (50 < T < 195 K), c, d — продольная коническая (T < 50 K) и наклонная коническая (T < 195 K, $\mathbf{B} \neq 0$) спиновые структуры соответственно.

Атом	Кристаллографическая позиция	Местная симметрия	Колебательное представление подрешетки	Ближайшее окружение атома		
01	18h	$m[C_s(6)]$	$2A_{1g} + A_{1u} + A_{2g} + 2A_{2u} + 3E_g + 3E_u$	Копланарный треугольник Fe ₃		
Fe2	18h	$m[C_s(6)]$	$2A_{1g} + A_{1u} + A_{2g} + 2A_{2u} + 3E_g + 3E_u$	Октаэдр О ₆		
O3	18 <i>h</i>	$m[C_s(6)]$	$2A_{1g} + A_{1u} + A_{2g} + 2A_{2u} + 3E_g + 3E_u$	Некомпланарный треугольник Fe ₃		
O4	18h	$m[C_s(6)]$	$2A_{1g} + A_{1u} + A_{2g} + 2A_{2u} + 3E_g + 3E_u$	Тетраэдр MgFe ₃		
O5	6 <i>c</i>	$3m[C_{3v}(2)]$	$A_{1g} + A_{2u} + E_g + E_u$	Тетраэдр Fe ₄		
<i>M</i> 6	6 <i>c</i>	$3m[C_{3v}(2)]$	$A_{1g} + A_{2u} + E_g + E_u$	Тетраэдр O ₄		
Ba7	6 <i>c</i>	$3m[C_{3v}(2)]$	$A_{1g} + A_{2u} + E_g + E_u$	Девятивершинный полиэдр О9		
08	6 <i>c</i>	$3m[C_{3v}(2)]$	$A_{1g} + A_{2u} + E_g + E_u$	Тетраэдр MgFe ₃		
M9	6 <i>c</i>	$3m[C_{3v}(2)]$	$A_{1g} + A_{2u} + E_g + E_u$	Тетраэдр O ₄		
Fe10	6 <i>c</i>	$3m[C_{3v}(2)]$	$A_{1g} + A_{2u} + E_g + E_u$	Октаэдр О6		
Fe11	3b	$\bar{3}m[D_{3d}(1)]$	$A_{2u} + E_u$	Октаэдр О ₆		
Fe12	3 <i>a</i>	$\bar{3}m[D_{3d}(1)]$	$A_{2u} + E_u$	Октаэдр О ₆		

Таблица 1. Фактор-групповой анализ для гексферрита Ba₂Mg₂Fe₁₂O₂₂

Примечание. В первой колонке число за символом атома соответствует порядковому номеру подрешетки. Местная симметрия приведена в символике Герман–Могена и Шёнфлиса (в квадратных скобках). Числа в круглых скобках указывают на кратность позиции для примитивной ромбоэдрической ячейки. Позиции (6*c*), обозначенные как *M*6 и *M*9, неупорядоченно заняты атомами Mg и Fe, их примерное заполнение M6 = 0.75Fe + 0.25Mg; M9 = 0.75Mg + 0.25Fe. Полные составы механического (Γ_m), акустического (Γ_{ac}) и колебательного (Γ_{vib}) представлений для примитивной ячейки: $\Gamma_m = 14A_{1g} + 4A_{1u} + 4A_{2g} + 16A_{2u} + 18E_g + 20E_u$, $\Gamma_{ac} = A_{2u} + E_u$, $\Gamma_{vib} = 15A_{2u}(IR : z) + 19E_u[IR : x, y] + 14A_{1g}[Raman : (<math>\alpha_{xx} + \alpha_{yy}, \alpha_{zz}$)] + 18E_g[Raman : ($\alpha_{xx} - \alpha_{yy}, \alpha_{xy}$); (α_{xz}, α_{yz})] + 4A_{1u} (неактивно) + 4A_{2g} (неактивно). В квадратных скобках за символом неприводимого представления указана активность моды IR — инфракрасное поглощение, Raman — комбинационное рассеяние света.

как состоящий из двух слоев от (111)-среза шпинельной структуры. В нем две тетраэдрические и четыре октаэдрические поры (междоузлия) между кислородными слоями заняты атомами металлов. С другой стороны, магнетоплумбитный *T*-блок состоит из четырех кислородных слоев. В двух внутренних слоях одна четверть атомов кислорода замещена Ва. "Маленькие" катионы распределены по пяти междоузлиям: двум тетраэдрическим и трем октаэдрическим. Катионы в октаэдрических позициях лежат на оси третьего порядка, их координационные октаэдры сочленены ребрами с двумя сопряженными пустыми октаэдрами. Химический состав и внутренняя организация *S*- и *T*-блоков не зависят от стехиометрии индивидуального соединения, поэтому их можно рассматривать как жесткие единицы [11,12].

Особенности магнитного устройства гексаферритов обсуждаются уже более 50 лет. Гортером [13] была предложена коллинеарная модель спинового упорядочения, частично согласующаяся с наблюдавшимися магнитными свойствами. Позже Энс [14] высказал предположение о существовании геликоидального спинового упорядочения в $(Sr,Ba)_2Zn_2Fe_{12}O_{22}$, существование которого в дальнейшем было подтверждено в экспериментах по дифракции нейтронов [9,15,16]. Момозава с соавторами [9] исследовали монокристалл Ba2Mg2Fe12O22 и пришли к выводу, что в нем магнитная структура является геликоидальной ниже 195К с вектором распространения $\mathbf{k}_0 \parallel [001]$ (рис. 1, *b*), но оказывается коллинеарной ферримагнитной в области 195-553 К. При наложении магнитного поля В (величиной менее 1 Т) перпендикулярно k₀ можно индуцировать последовательности фазовых переходов. В Ва2Mg2Fe12O22 в фазах, индуцированных полями порядка 1 Т, вектор сегнетоэлектрической поляризации Р перпендикулярен как В, так и \mathbf{k}_0 , причем его можно вращать вокруг гексагональной оси [001] путем поворота вектора магнитной индукции В вокруг той же оси [4-6]. Отличие Ba₂Mg₂Fe₁₂O₂₂ от Ba_{0.5}Sr_{1.5}Zn₂Fe₁₂O₂₂ состоит лишь в том, что ниже 50 К в первом гексаферрите присутствует продольное коническое спиновое состояние (рис. 1, c), причем численные значения полей, индуцирующих сегнетофазы, в которых спиновое состояние предположительно квазипоперечное (рис. 1, d) [5,17], существенно меньше по сравнению со вторым гексаферритом. Согласно модели спиновых токов [18], неколлинеарное упорядочение спинов может порождать локальную поляризацию $\mathbf{p}_{i,i} = A \mathbf{e}_{i,i} \times (\mathbf{S}_i \times \mathbf{S}_i)$ (здесь A — скаляр, определяемый обменным и спин-орбитальным взаимодействиями, спины S_i и S_j находятся на сопряженных местах вдоль единичного вектора $\mathbf{e}_{i,i} = \mathbf{k}_0/|\mathbf{k}_0|$, но на макроскопической шкале она нейтрализуется. Чтобы "создать" сегнетоэлектрическую поляризацию в рамках этой модели, ось конуса (винтовая ось) должна быть отклонена от \mathbf{k}_0 как в поперечной конической спиновой картине, описанной выше [17,19,20]. Важно, что на уровне микроструктуры должны произойти такие изменения, чтобы скаляр А не был равен нулю.

В настоящей работе была поставлена задача исследовать механизмы образования магнитной и сегнетоэлектрической фаз в $Ba_2Mg_2Fe_{12}O_{22}$ с применением метода терагерцевой-инфракрасной спектроскопии. Действительно, при наличии взаимодействий (пусть даже незначительных) между спиновой и фононной подсистемами кристаллической решетки в оптических спектрах гексаферритов можно ожидать эволюционных температурных изменений, по крайней мере в окрестности

магнитных переходов даже в нулевых магнитных полях. Как видно из рис. 1, а, структура обсуждаемых соедингений довольно сложна, что может осложнить проведение дисперсионного анализа инфракрасных (ИК) спектров. Согласно выполненному нами фактор-групповому анализу, результаты которого приведены в табл. 1, в ИК-спектрах Ba₂Mg₂Fe₁₂O₂₂ должны проявляться тридцать четыре длинноволновые полярные фононные моды $15A_{2u}[IR: z] + 19E_u[IR: x, y]$. При этом невырожденные моды типа A_{2u} возбуждаются полем **E** || **c**, а двукратно вырожденные моды типа E_u — полем $\mathbf{E} \perp \mathbf{c}$. В настоящей работе нами проведены температурные измерения терагерцевых-инфракрасных диэлектрических спектров монокристаллического образца Ba2Mg2Fe12O22 в поляризации **E** \perp **c** и выполнен их дисперсионный анализ.

2. Детали эксперимента и моделирование спектрального отклика

Образцы Ba2Mg2Fe12O22 готовились в виде пластинок толщиной около 0.5 mm с осью c, перпендикулярной развитой грани (001). Как результат в оптических экспериментах регистрировались только двукратно вырожденные моды типа Е_и. Моды А_{2и} не исследовались в силу геометрических ограничений, обусловленных формой использованного образца.

Измерения были выполнены при температурах от комнатной до 10К с использованием двух спектрометров. В инфракрасной области, на частотах 1-150 THz, использовался инфракрасный Фурье-спектрометр Bruker IFS-113v, а на более низких частотах — терагерцевый (THz) спектрометр на основе ламп обратной волны, детально описанный в работе [21]. Измеренные на двух спектрометрах спектры объединялись в широкополосные панорамы, которые и анализировались с целью получения информации о линиях поглощения. Дисперсионный анализ спектров выполнялся в несколько этапов. На первом этапе были подобраны осцилляторные параметры девятнадцати фононных мод (моды типа E_{μ}), "разрешенных" ромбоэдрической симметрией кристаллической решетки Ba2Mg2Fe12O22 для процесса первого порядка. При этом использовались модель аддитивных осцилляторов и модель связанных осцилляторов. Соответствующие выражения для комплексной диэлектрической проницаемости имеют следующий вид. Для аддитивных осцилляторов

$$\varepsilon(\nu) = \varepsilon_{\infty} + \sum_{j=1}^{n} \frac{\Delta \varepsilon_{j} \nu_{j}^{2}}{\nu_{j}^{2} - \nu^{2} + i\nu \gamma_{j}}, \qquad (1)$$

где ε_{∞} — высокочастотная диэлектрическая проницаемость, $\Delta \varepsilon_i$ — диэлектрический вклад в статическую диэлектрическую проницаемость, v_i — собственная частота, γ_i — затухание *j*-го осциллятора. Для связанных

Рис. 2. Спектры коэффициентов пропускания (изметерагецевом ЛОВ-спектрометре, область рения на стот 10-40 cm⁻¹) и отражения (измерения на инфракрасном Фурье-спектрометре Bruker IFS-113v, область частот $30-1000 \,\mathrm{cm}^{-1}$) образца монокристалла $\mathrm{Ba}_2\mathrm{Mg}_2\mathrm{Fe}_{12}\mathrm{O}_{22}$, полученные при $T = 300 \,\mathrm{K}$ в поляризации $\mathbf{E} \perp \mathbf{c}$ (точки) и их модельная обработка (линии). Двойными стрелками показаны рабочие области двух спектрометров. T = 300 K. Темные точки в левой части — измеренный спектр коэффициента пропускания образца Ba₂Mg₂Fe₁₂O₂₂. Светлые точки в правой части значения коэффициента отражения "массивного образца", рассчитанные из величин диэлектрической проницаемости, определенных по интерференционным максимумам коэффициента пропускания пластинки Ba₂Mg₂Fe₁₂O₂₂.

осцилляторов [22]

$$\varepsilon(\nu) = \frac{s_1(\nu_2^2 - \nu^2 + i\nu\gamma_2) + s_2(\nu_1^2 - \nu^2 + i\nu\gamma_1) - 2\sqrt{s_1s_2}(\alpha + i\nu\delta)}{(\nu_1^2 - \nu^2 + i\nu\gamma_1)(\nu_2^2 - \nu^2 + i\nu\lambda_2) - (\alpha + i\nu\delta)^2},$$
(2)

где $j = 1, 2; s_j = \Delta \varepsilon_j v_j^2$ — сила *j*-го осциллятора с собственной частотой v_j, α — действительная, а δ мнимая константа связи.

Примеры спектров, полученных для монокристаллического образца Ва2Mg2Fe12O22, представлены на рис. 2. Здесь точками показаны экспериментальные результаты, полученные при измерениях на THz- и Фурьеспектрометрах, а линиями — результаты обработки спектров по методу наименьших квадратов с применением формул (1) и (2). Спектры коэффициента пропускания плоскопараллельного образца Ba2Mg2Fe12O22 в наиболее низкочастотном THz-диапазоне содержат характерные осцилляции (рис. 2), возникающие благодаря интерференции излучения при его переотражениях от граней образца (эффект Фабри-Перо). Обработка осциллирующих спектров коэффициента пропускания позволяет напрямую рассчитать диэлектрические параметры материала — спектры действительной и мнимой частей диэлектрической проницаемости, коэффициента преломления и т. д. [21]. Процесс получения информации о параметрах наблюдаемых линий поглощения состоял в достижении наилучшего одновременного описания спектров коэффициентов пропускания и отражения во

690

Таблица 2.	Параметры	осциллятс	рных мод кр	ист	алла Ва ₂ Мg	₂ Fe ₁₂ O ₂₂ , пол	ученные	при	темп	ературе	$T = 300 {\rm K}$	c	помощы	0
цисперсионно	го анализа	спектров	пропускания	И	отражения:	собственная	частота	мод	ι <i>ν_j</i>	$[cm^{-1}],$	затухание	Y.	$_{j}$ [cm ⁻¹]],
циэлектричес	кий вклад Δa	^e j												

	1	1		-			
Осцилляторы и их тип	v_j , cm ⁻¹	γ_j , cm ⁻¹	$\Delta \varepsilon_j$	α	δ	$\Delta \varepsilon_j v_j^2$	Отнесение; участвующие ионы и тип моды
Связанные лоренцианы 1	33.5	59.1	0.73	0		820	Магнон-фононный континуум
1	72.0	88.6	0.53		3.5	2750	» »
Лоренциан 2	87.5	11.7	0.70			5360	Оптический магнон
Лоренциан 3	92.0	3.1	0.83			7030	Ba-O
Лоренциан 4	127.3	11.9	0.44			7130	Fe–O–Fe, (FeO ₆)
Лоренциан 5	134.5	12.0	0.10			1810	Оптический магнон
Лоренциан 6	153.9	11.9	0.10			2370	$Fe-O-Fe$, (FeO_6)
Лоренциан 7	167.1	12.0	0.09			2510	$Fe-O-Fe$, (FeO_6)
Лоренциан 8	175.4	10.4	0.41			12610	$Fe-O-Fe$, (FeO_6)
Связанные лоренцианы 9	196.9	30.0	0.12	0		4650	$Fe-O-Fe$, (FeO_6)
	210.0	13.6	0.89		-2.1	39250	$Fe-O-Fe$, (FeO_6)
Лоренциан 10	236.3	23.8	0.70			39090	Оптический магнон
Связанные лоренцианы 11	242.7	17.5	0.69	0		40640	Fe-O, (FeO ₆), изгиб связи
	288.5	20.4	1.07		-43.4	89060	$Fe-O$, (FeO_6), изгиб связи
Связанные лоренцианы 12	299.5	43.4	2.35	0		210800	Fe-O, (FeO ₆), изгиб связи
	326.0	11.3	1.03		7.5	109500	<i>v</i> ₂ (FeO ₄), изгиб связи
Связанные лоренцианы 13	353.5	58.3	0.10	0		12500	Fe-O, (FeO ₆), изгиб связи
	404.0	32.0	0.72		53.52	117500	$Fe-O$, (FeO_6), изгиб связи
Связанные лоренцианы 14	418.0	25.7	0.69	0		120600	v4(Fe/Mg)O4, изгиб связи
	428.6	45.1	0.28		-22.2	51440	v4(Fe/Mg)O4, изгиб связи
Связанные лоренцианы 15	442.3	31.4	0.28	0		54780	Fe-O, (FeO ₆), растяжение связи
	518.0	40.5	0.21		-7.5	56350	$Fe-O$, (FeO_6), растяжение связи
Связанные лоренцианы 16	538.5	32.1	0.58	0		168200	v ₃ (Fe/Mg)O ₄ , растяжение связи
	578.0	25.4	0.45		-5.7	150300	v_3 (Mg/Fe)O ₄ , растяжение связи
Лоренциан 17	600.0	37.4	0.06			21600	Смещения только атомов кислорода

Примечание. Для связанных лоренцианов α [cm⁻²] и δ [cm⁻¹] действительная и мнимая константы связи между модами, $\Delta \varepsilon_j v_j^2$ — сила осциллятора. В последней колонке приведено отнесение резонансов к типу движения структурообразующих атомов. Величина высокочастотной диэлектрической проницаемости при всех температурах составляла $\varepsilon_{\infty} = 4.8$. Погрешности в определении частоты моды v_j составляют ± 0.02 cm⁻¹, затухания γ_j и диэлектрического вклада $\Delta \varepsilon_j \pm 5\%$, сил осцилляторов $f = \Delta \varepsilon_j v_j^2 \pm 10\%$. Просуммированный полный диэлектрический

вклад в статическую диэлектрическую проницаемость от высокочастотных мод: $\Delta \varepsilon(0) = \varepsilon_{\infty} + \sum_{i=1}^{25} \Delta \varepsilon_i = 19.$

всем интервале частот. На рис. 3 представлены примеры конечных продуктов такого описания в виде спектров действительной и мнимой частей комплексных диэлектрической проницаемости и показателя преломления Ba₂Mg₂Fe₁₂O₂₂. Рассчитанные при этом параметры мод приведены в табл. 2.

Экспериментальные результаты и их обсуждение

3.1. Φ о н о н н ы й спектр. Качественная идентификация девятнадцати фононных мод типа E_u , допускаемых симметрией кристаллической решетки Ba₂Mg₂Fe₁₂O₂₂ и геометрией измерений, может быть сделана на основе сравнения структуры данного гексаферрита со спектрами магнетоплюмбита и шпинелей [23–29].

Два типа тетраэдров, (Fe/Mg)O₄ и (Mg/Fe)O₄ (*M*6 и *M*9 в табл. 1), занимающих в кристаллической ячейке $Ba_2Mg_2Fe_{12}O_{22}$ позицию (6*c*) с симметрией C_{3v} , должны приводить к возникновению в спектрах трех групп мод типа E_u . Идеальный тетраэдр FeO₄ с симметрией T_d имеет четыре фундаментальные колебательные моды [30]: $v_1(A_1)$, $v_2(E)$, $v_3(F_2)$ и $v_4(F_2)$. Из них только v_3 и v_4 являются ИК-активными. В кристалле $Ba_2Mg_2Fe_{12}O_{22}$ из-за более низкой местной симметрии ИК-активными становятся также и моды v_2 (рис. 4). Мы полагаем, что

полосы на частотах 539 и $580 \,\mathrm{cm}^{-1}$ должны быть отнесены к валентным колебаниям типа v_3 , а деформационные моды v4 тетраэдров (Fe/Mg)O4 и (Mg/Fe)O4 должны группироваться в сложной по структуре полосе поглощения с максимумом в районе $419 \,\mathrm{cm}^{-1}$. Моды v_2 , не обладающие сильнополярным характером, скорее всего, должны иметь частоты в районе $300-350 \,\mathrm{cm}^{-1}$. Колебание v_1 не является активным в ИК-спектрах. Сложный характер контуров полос v3 и v4 может быть обусловлен, с одной стороны, LO-TO-расшеплением мод поляризации, а с другой — тем, что позиции (6c) внутри тетраэдра заняты двумя разными катионами (Fe/Mg и Mg/Fe), что приводит к некоторой разупорядоченности и, следовательно, к разным частотам колебаний.

Неискаженный октаэдр FeO₆ с симметрией O_h порождает шесть фундаментальных колебательных мод: $\nu_1(A_{1g}), \nu_2(E_g), \nu_3(F_{1u}), \nu_4(F_{1u}), \nu_5(F_{2g})$ и $\nu_6(F_{2u})$. Колебания v1, v2 и v5 активны в спектрах комбинационного рас-

0 d 4 Ż 2 0 10 100 1000 Wavenumber, cm⁻¹ **Рис. 3.** Спектры действительной $\varepsilon'(a)$ и мнимой $\varepsilon''(b)$ частей диэлектрической проницаемости, а также действительной n(c)и мнимой k (d) частей показателя преломления кристалла Ba₂Mg₂Fe₁₂O₂₂ в поляризации $\mathbf{E} \perp \mathbf{c}$, рассчитанные из спектров пропускания и отражения, приведенных на рис. 2. Темные точки — данные, полученные при обработке осциллирующих спектров коэффициента пропускания на низких частотах (см.

рис. 2 и текст). T = 300 К.

Рис. 4. Корреляционная диаграмма, связывающая неприводимые представления идеального тетраэдра и его факторгрупповую симметрию в кристалле Ba₂Mg₂Fe₁₂O₂₂.

сеяния света, два колебания v3 и v4 являются ИК-активными, а колебание v₆ неактивно. Центральные позиции в октаэдрах кристалла Ba₂Mg₂Fe₁₂O₂₂ заняты катионами Fe, которые, как следует из табл. 1, распределены по четырем подрешеткам: Fe12 (3a) и Fe11 (3b) с местной симметрией D_{3d} , Fe10 с местной симметрией C_{3v} (6c) и Fe2 с местной симметрией C_s (18h). Кристаллическое поле расщепляет вырожденные колебательные моды октаэдров по схемам корреляций, приведенным на рис. 5.

Поскольку в кристалле Ba2Mg2Fe12O22 группы FeO6 не являются изолированными, а объединены в цепочки, связанные гранями и ребрами, и занимают четыре типа позиций, очевидно, что однозначное отнесение полос в спектрах к молекулярным типам октаэдрических мод *v*₁-*v*₆ проблематично. Как следует из приведенной на рис. 5 схемы корреляций, мода v_1 октаэдра (Fe₂O₆) может наблюдаться в ИК-спектре из-за низкой (С_s) местной симметрии позиции (18h). Поэтому в табл. 2 дано лишь ориентировочное отнесение полос без их идентификации по позициям. Несмотря на это, можно утверждать, что наблюдаемые нами полосы поглощения на частотах 240-300, 350-400 и 442 cm⁻¹ соответствуют колебаниям v3 и v4 октаэдров. Полосы в области 150-210 ст⁻¹ преимущественно характеризуют изгибные колебания связей в цепочках О-Fe-O-Fe-O сопряженных октаэдров и также должны быть связаны с v_3 и v4 молекулярными колебаниями октаэдров. Авторы работы [26] полагают, что полосы вблизи 150 и 175 ст⁻¹ в спектрах гексаферритов *М*-типа (BaFe₁₂O₁₉) обусловлены колебаниями в бипирамидах. Следует учесть, однако, что подобные бипирамиды в структуре Ba₂Mg₂Fe₁₂O₂₂ отсутствуют, а спектральный отклик в этой области частот аналогичен гексаферритам М-типа. Поэтому наше отнесение линий в этой спектральной области к изгибным колебаниями связей цепочек представляется более корректным. Наконец, линию на частоте 92 cm⁻¹ мы относим к колебаниям Ва-О-связей. В ВаFe₁₂О₁₉ эта частота несколько выше (100-102 и 123-125 cm⁻¹ согласно [24,26,27]).

3.2. Влияние температуры. Результаты некоторых низкотемпературных измерений в интервале от 10 до 300 K в качестве примеров приведены на рис. 6-8,

Рис. 5. Корреляционные диаграммы, связывающие неприводимые представления идеального октаэдра и его фактор-групповую симметрию в кристалле Ba₂Mg₂Fe₁₂O₂₂.

Рис. 6. Спектры мнимой части диэлектрической проницаемости кристалла $Ba_2Mg_2Fe_{12}O_{22}$ в поляризации $E \perp c$. Показаны четрые главные частотные области, в которых группируются фононные моды. Спектры даны для двух температур, соответствующих разным магнитным состояниям кристалла. Стрелками показаны линии поглощения, возникающие в спектрах при охлаждении.

Рис. 7. Спектры мнимой части диэлектрической проницаемости монокристалла $Ba_2Mg_2Fe_{12}O_{22}$ в поляризации $E \perp c$, демонстрирующие возникновение новых решеточных (phonon) и магнитных (magnon) линий ниже температуры магнитного фазового перехода при $T \approx 195$ К. Стрелками показаны линии поглощения, возникающие в спектрах при охлаждении.

где изображены спектры мнимой части диэлектрической проницаемости $Ba_2Mg_2Fe_{12}O_{22}$ в нескольких узких спектральных диапазонах при различных температурах. Общий вид спектрального отклика меняется незначительно. Суммарный диэлектрический вклад на низкой частоте (около 0.1 THz) составляет $\Delta \varepsilon \approx 19$ и оказывается практически не зависящим от температуры. Это обстоятельство свидетельствует в пользу того, что существенных структурных изменений в решетке кристалла $Ba_2Mg_2Fe_{12}O_{22}$ при температурах ниже комнатной не происходит.

В то же время при охлаждении ниже 195 К нами были зарегистрированы новые линии поглощения, возникающие на частотах 85, 140 и 232 сm⁻¹. Эти линии показаны стрелками на рис. 6 и 7. Особеность кристаллов Ba₂Mg₂Fe₁₂O₂₂ состоит в том, что при температуре T = 195 К происходит [9] изменение конфигурации внутреннего магнитного поля от коллинеарной ферримагнитной при T > 195 К к несоразмерной геликоидальной ниже 195 К с вектором распространения \mathbf{k}_0 , параллельным кристаллографическому направлению [001].

Поэтому мы полагаем, что природа новых линий может быть связана с активацией оптических магнитных поляритонов. Для проверки такой трактовки планируется проведение оптических измерений в магнитном поле.

В наиболее низкочастотной области — ниже 2 THz нами была обнаружена еще одна особенность в спектрах Ba₂Mg₂Fe₁₂O₂₂. Как видно из рис. 8, при температуре $T = 100 \,\mathrm{K}$ на частотах ниже $80 \,\mathrm{cm}^{-1}$ присутствует широкое крыло поглощения, преобразующееся в более выраженную полосу при T = 10 К. Мы полагаем, что эта полоса имеет электромагнонное происхождение, поскольку именно в этой частотной области (на частоте 22 cm⁻¹) в работе [31] методом времяпролетной ТНz-спектроскопии было зарегистрировано электромагнонное возбуждение. В [31] это возбуждение возникало ниже температуры магнитного фазового перехода, происходящего при $T = 50 \,\mathrm{K}$ в поляризации **E** || **c**, в то время как в наших экспериментах линия поглощения проявляется в поляризации, когда электрическое поле излучения перпендикулярно с. Можно предположить, что изменения магнитной структуры Ba2Mg2Fe12O22 приводят к искажениям структуры кристаллической решетки (по крайней мере на локальном уровне) и к снятию запрета на возбуждение магнонной моды в поляризации Е \perp с. Для проверки этого предполагается

Рис. 8. Спектры мнимой части диэлектрической проницаемости кристалла $Ba_2Mg_2Fe_{12}O_{22}$ в поляризации $E \perp c$ на низких частотах при двух температурах. При температурах ниже 50 K в районе 20-30 cm⁻¹ возникает дополнительное поглощение (широкий пик при10 K).

проведение измерений на монокристаллических образцах с осью с, лежащей в плоскости образца.

4. Заключение

В диапазоне частот от 3 до $4500 \,\mathrm{cm}^{-1}$ и при температурах 10–300 К измерены спектры коэффициентов пропускания и отражения образцов гексаферрита *Y*-типа состава Ba₂Mg₂Fe₁₂O₂₂.

Выполнен дисперсионный анализ диэлектрических спектров и получены спектры действительной и мнимой частей диэлектрической проницаемости. Определены осцилляторные параметры всех девятнадцати (допустимых $R\bar{3}m$ симметрией среды) фононных линий поглощения типа E_u . Проведено их сопоставление с колебательными модами структурных фрагментов кристаллической решетки.

Установлено, что суммарный диэлектрический вклад в статическую проницаемость от полярных фононов практически не зависит от температуры в интервале 10-300 K, что свидетельствуте об отсутствии значительных структурных искажений кристаллической решетки $Ba_2Mg_2Fe_{12}O_{22}$ в указанном температурном диапазоне.

При температурах ниже 195 и 50 K, когда в $Ba_2Mg_2Fe_{12}O_{22}$ происходит изменение конфигурации внутреннего магнитного поля, обнаружено возникновение новых линий поглощения, природа которых связывается с магнитными возбуждениями. Сделано предположение, что деформационные фононные моды Fe–O–Fe воздействуют на величину и характер сверхобменных магнитных взаимодействий (в частности, на стыке ST-структурных блоков), что проявляется в изменении низкотемпературных магнитных состояний кристалла $Ba_2Mg_2Fe_{12}O_{22}$.

Список литературы

- [1] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura. Nature **426**, 55 (2003).
- [2] P.B. Braun. Philips Res. Rep. 12, 491 (1957).
- [3] T. Siegrist, T.A. Vanderah. Eur. J. Inorg. Chem. 8, 1483 (2003).
- [4] T. Kimura, G. Lawes, A.P. Ramirez. Phys. Rev. Lett. 94, 137 201 (2005).
- [5] S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, Y. Tokura. Science 319, 1643 (2008).
- [6] K. Taniguchi, N. Abe, S. Ohtani, H. Umetsu, T. Arima. Appl. Phys. Express 1, 031 301 (2008).
- [7] N. Momozawa, Y. Yamaguchi, H. Takei, M. Mita. J. Phys. Soc. Jpn. 54, 771 (1985).
- [8] N. Momozawa, Y. Yamaguchi, H. Takei, M. Mita. J. Phys. Soc. Jpn. 54, 3895 (1985).
- [9] N. Momozawa, Y. Yamaguchi, M. Mita. J. Phys. Soc. Jpn. 55, 1350 (1986).
- [10] J.A. Kohn, D.W. Eckart. J. Phys. Chem. 67, 957 (1963).
- [11] H.S. Shin, S.J. Kwon. Powder Diffraction 8, 98 (1993).
- [12] A. Collomb, J. Muller, J.C. Guitel, J.M. Desvignes. J. Magn. Magn. Mater. 78, 77 (1989).
- [13] E.W. Gorter. Proc. Inst. Elec. Eng. Suppl. 104B, 255 (1957).

- [14] U. Enz. J. Appl. Phys. 32, S 22 (1961).
- [15] В.А. Сизов, Р.А. Сизов, И.И. Ямзин. Письма в ЖЭТФ 6, 690 (1967).
- [16] N. Momozawa, Y. Yamaguchi. J. Phys. Soc. Jpn. 62, 1292 (1993).
- [17] Y. Yamasaki, S. Miyasaka, Y. Kaneko, J.-P. He, T. Arima, Y. Tokura. Phys. Rev. Lett. 96, 207 204 (2006).
- [18] H. Katsura, N. Nagaosa, A.V. Balatsky. Phys. Rev. Lett. 95, 057 205 (2005).
- [19] K. Siratori, E. Kita. J. Phys. Soc. Jpn. 48, 1443 (1980).
- [20] H. Murakawa, Y. Onose, K. Ohgushi, S. Ishiwata, Y. Tokura. J. Phys. Soc. Jpn. 77, 043 709 (2008).
- [21] G.V. Kozlov, A.A. Volkov. Topics Appl. Phys. 74, 52 (1998).
- [22] A.S. Barker, J.J. Hopfield. Phys. Rev. 135, A 1732 (1964).
- [23] P.M. Nikolic, L. Zivanov, O.S. Aleksic, D. Samaras, G.A. Gledhill, J.D. Collins. Infrared Phys. 30, 265 (1990).
- [24] M. Bellotto, G. Busca, C. Cristiani, G. Groppi. J. Solid State Chem. 117, 8 (1995).
- [25] S. Ram. Phys. Rev. B 51, 6280 (1995).
- [26] M.V. Rane, D. Bahadur, C.M. Srivastava. J. Phys. D: Appl. Phys. 32, 2001 (1999).
- [27] W.Y. Zhao, P. Wei, X.Y. Wu, W. Wang, Q.J. Zhang. J. Appl. Phys. 103, 063 902 (2008).
- [28] R.D. Waldron. Phys. Rev. 99, 1727 (1955).
- [29] R.A. Candeia, M.A.F. Souza, M.I.B. Bernardi, S.C. Maestrelli, I.M.G. Santos, A.G. Souza, E. Longo. Ceram. Int. 33, 521 (2007).
- [30] K. Nakamoto. Infrared and Raman spectra of inorganic and coordination compounds. 3rd ed. Wiley, N. Y. (1978), 484 p.
- [31] N. Kida, D. Okuyama, S. Ishiwata, Y. Taguchi, R. Shimano, K. Iwasa, T. Arima, Y. Tokura. Phys. Rev. B 80, 220406 (2009).