01;05 Поперечный удар шара по сфере с учетом волны в мишени

© А.А. Локтев, Д.А. Локтев

Воронеж E-mail: prtlokt@yandex.ru

В окончательной редакции 24 апреля 2008 г.

Решается задача поперечного удара твердого тела по шарнирно опертой по контуру упругой сферической оболочке. Перемещение точек оболочки и ее деформация вне зоны контакта происходят из-за распространения нестационарной волновой поверхности. Решение внутри области контакта находится в виде стандартных уравнений, описывающих взаимодействие ударника и мишени. Решение вне контактной области строится при помощи лучевых рядов, переменными коэффициентами которых являются скачки производных по времени от искомых функций на волновой поверхности сильного разрыва. Эти коэффициенты определяются с точностью до произвольных постоянных с помощью безмоментных уравнений движения точек оболочки. Постоянные коэффициенты находятся при сшивании двух решений на границе контактной области. Полученные аналитические выражения и графические зависимости для контактной силы и динамического прогиба позволяют сделать заключение о влиянии параметров конструкции на динамические характеристики взаимодействия.

PACS: 46.40.-f, 46.55.+d

Задачи поперечного удара твердого тела и кругового сектора сферической оболочки рассматривались многими отечественными и зарубежными учеными в различных постановках [1–3]. Hammel [1] и Сеницкий [2] рассматривали удар вязкоупругого тела по сферической оболочке. Hammel получил и решил линейное интегральное уравнение для неизвестной контактной силы, не учитывая деформации местного смятия и распространения волн в оболочке. Сеницкий усовершенствовал эту модель, добавив в определяющие соотношения местные деформации контактной зоны, которые считались упругими. Нормальные перемещения мишени представлялись в виде разложения по функциям Бесселя первого порядка. Бирюков и Кадомцев рассматривали

21

осесимметричный удар параболического тела по шарнирно опертой по контуру сферической оболочке [3]. Деформации в зоне контакта считались упругопластическими, а общие перемещения оболочки упругими. Перемещения точек оболочки в нормальном и тангенциальном направлении представлялись в виде рядов по полиномам Лежандра и определялись из безмоментных уравнений движения; в качестве метода решения использовались преобразования Лапласа и асимптотические разложения искомых величин по малому параметру. Были даны качественные оценки графических зависимостей контактной силы от времени взаимодействия.

В данной работе сделана попытка описать ударное воздействие твердого тела через буфер на сферическую оболочку, шарнирно опертую по контуру, с учетом распространения продольных волн, которые влияют на деформацию мишени вне области контакта. Предполагается, что оболочка достаточно протяженная и отраженная волна не успевает вернуться к границам контактной области до окончания процесса взаимодействия.

Ударник, моделируемый грузом массой *m* и упругим цилиндрическим элементом с жесткостью E_1 , подлетает перпендикулярно со скоростью V_0 к сферической оболочке толщиной *h* и радиусом R_1 и ударяет по ней свободным концом буфера в центральной точке (рис. 1). В момент удара в оболочке образуется контактная область радиусом r_0 , размеры которой определяются размерами буфера (рис. 1). Предполагается, что буфер не теряет устойчивость в процессе взаимодействия. Координатные линии направлены по меридиану φ и параллели θ .

Динамический контакт ударника и оболочки описывается следующими уравнениями:

$$m \frac{d^2(\alpha+w)}{dt^2} = -P(t), \qquad (1)$$

$$\rho h \pi r_0^2 \frac{d^2 w}{dt^2} = 2\pi r_0 (N_{\varphi} + N_{\theta}) \big|_{\varphi = \varphi_0} \sin \varphi + P(T),$$
(2)

где ρ — плотность материала оболочки, α и w — перемещения верхнего и нижнего конца буфера соответственно, $P(t) = E_1 \alpha$ — контактная сила, E_1 — жесткость буфера, t — время с момента удара, $(N_{\varphi} + N_{\theta})|_{\varphi=\varphi_0}$ — растягивающие силы на границе контактной области, φ_0 — меридиональная координата точек границы контактной области, $\varphi_0 = r_0/R_1$.

Рис. 1. Схема ударного взаимодействия твердого тела и сферической оболочки через буфер: *1* — твердое тело, *2* — буфер, *3* — оболочка, *4* — контактная область, *5* — фронт квазипродольной волны.

Для шарнирно опертой по контуру оболочки принимаются граничные условия

$$u_{\varphi}|_{\varphi=\varphi_1} = 0, \quad w|_{\varphi=\varphi_1} = 0,$$
 (3)

где u_{φ} — перемещение вдоль меридионального угла, φ_1 — угол раскрытия оболочки.

Ударное взаимодействие происходит при соблюдении начальных условий

$$\left. \frac{d\alpha}{dt} \right|_{t=0} = V_0, \quad \left. \frac{dw}{dt} \right|_{t=0} = 0.$$
(4)

Динамическое поведение мишени описывается безмоментными уравнениями движения сферической оболочки [4]:

$$\frac{\partial (N_{\varphi}\sin\varphi)}{\partial\varphi} - N_{\theta}\sin\varphi = \rho h R_1 \frac{d^2 u_{\varphi}}{dt^2} \sin\varphi, \quad N_{\varphi} + N_{\theta} = -\rho h R_1 \frac{d^2 w}{dt^2},$$
(5)

$$N_{\varphi} = \frac{Eh}{(1 - \sigma^2)R_1} \left(\frac{\partial u_{\varphi}}{\partial \varphi} + w + \sigma (u_{\varphi} \operatorname{ctg} \varphi + w) \right),$$
$$N_{\theta} = \frac{Eh}{(1 - \sigma^2)R_1} \left(u_{\varphi} \operatorname{ctg} \varphi + w + \sigma \left(\frac{\partial u_{\varphi}}{\partial \varphi} + w \right) \right), \tag{6}$$

где *Е* и σ — модуль упругости и коэффициент Пуассона материала оболочки соответственно.

После удара от контактной области в оболочке начинает распространяться продольная волна растяжения-сжатия, фронт которой представляет сферическую поверхность сильного разрыва, расширяющуюся со скоростью *G*. Вне контактной области за фронтом волновой поверхности искомые функции, входящие в уравнения (1), (2), представляются в виде лучевого ряда по координате и времени [5]:

$$Z(\varphi, t) = \sum_{k=0}^{\infty} \frac{1}{k!} \left[\frac{\partial^k Z}{\partial t^k} \right]_{t=R_1 \varphi/G} \left(t - \frac{R_1(\varphi - \varphi_0)}{G} \right)^k H\left(t - \frac{R_1(\varphi - \varphi_0)}{G} \right),$$
(7)

где $\left[\frac{\partial^k Z}{\partial t^k}\right]$ — скачки производных *k*-го порядка по времени *t* от искомой функции *Z* на волновой поверхности Σ при $t = R_1(\varphi - \varphi_0)/G$, H(t) — единичная функция Хевисайда.

Для определения $\left[\frac{\partial^k Z}{\partial t^k}\right] = [Z_{,(k)}]$ в лучевом ряду (7) необходимо продифференцировать определяющие уравнения (5), (6) *k* раз по времени, взять их разность на различных сторонах волновой поверхности Σ и применить условие совместности [6]

$$G\left[\frac{\partial Z_{,(k)}}{\partial \varphi}\right] = -[Z_{,(k+1)}] + \frac{\delta[Z_{,(k)}]}{\delta t},\tag{8}$$

где $\delta/\delta t$ — δ -производная по времени на волновой поверхности [7].

В результате из уравнений движения (5) для упругой изотропной сферической оболочки получаем систему рекуррентных дифференциальных уравнений, решая которую можно получить скачки искомых величин с точностью до произвольных констант:

$$\left(1 - \frac{\rho(1 - \sigma^2)G^2}{E}\right)U_{(k+1)} = 2\frac{\delta U_{(k)}}{\delta t} - G\operatorname{ctg}\varphi U_{(k)} + (1 + \sigma)G\sin\varphi X_{(k)} + F_{1(k-1)}, \quad (9)$$

$$X_{(k+1)} = \frac{(1+\sigma)}{G\sin\varphi} U_{(k)} + F_{2(k-1)}.$$
 (10)

Здесь $X_{(k)} = [w_{,(k+1)}], U_{(k)} = [u_{arphi,(k+1)}], arphi = arphi_0 + R_1 G t,$

$$F_{1(k-1)} = \frac{\delta U_{(k-1)}}{\delta t} (G \operatorname{ctg} \varphi - 1) - G^2 (1 - \sigma) U_{(k-1)}$$
$$- (1 + \sigma) G \sin \varphi \, \frac{\delta X_{(k-1)}}{\delta t},$$
$$F_{2(k-1)} = -(1 + \sigma) \left(\frac{1}{G \sin \varphi} \, \frac{\delta U_{(k-1)}}{\delta t} + 2X_{(k-1)} \right).$$

Полагая k = -1, из (9) и (10) находим на квазипродольной волне ее скорость и $X_{(0)}$

$$\rho G^{(1)2} = E(1 - \sigma^2)^{-1}, \quad U_{(0)} \neq 0, \quad X_{(0)} = 0.$$
(11)

Интегрируя (9) при k = 0, получим

$$U_{(0)} = \sin \varphi c_0, \tag{12}$$

а из алгебраического уравнения (10) выражение для $X_{(1)}$

$$X_{(1)} = (1+\sigma)G^{-1}c_0\sin^{-1/2}\varphi,$$
 (13)

где c₀ — произвольная постоянная.

Для определения скачка $U_{(1)}$ необходимо подставить известные величины $U_{(0)}$ и $X_{(1)}$ в (9) при k = 1. В результате получим

$$U_{(1)} = \frac{1}{2} c_0 \ln \sin \varphi \sin^{1/2} \varphi + \frac{c_0 G}{2} \operatorname{ctg} \varphi \sin^{1/2} \varphi + c_0 G \varphi \sin^{1/2} \varphi \left(\frac{3}{2} - \sigma\right) - (1 + \sigma)^2 \frac{c_0 \varphi}{G} \sin^{1/2} \varphi + c_1 \sin^{1/2} \varphi.$$
(14)

Из (10) при k = 1 находим

$$X_{(2)} = (1+\sigma) \left[\frac{1}{2} \frac{c_0}{G} \frac{\ln \sin \varphi}{\sin^{1/2} \varphi} + \frac{c_0}{2} \frac{\operatorname{ctg} \varphi}{\sin^{1/2} \varphi} + \frac{c_0 \varphi}{\sin^{1/2} \varphi} \left(\frac{3}{2} - \sigma \right) - (1+\sigma)^2 \frac{c_0 \varphi}{G^2 \sin^{1/2} \varphi} - \frac{1}{2} \frac{\cos \varphi c_0}{G \sin^{3/2} \varphi} + \frac{c_1}{G \sin^{1/2} \varphi} \right],$$
(15)

где c₁ — произвольная постоянная.

Найденные скачки позволяют записать выражения для искомых функций в виде отрезков лучевых рядов с известными с точностью до постоянных интегрирования коэффициентами

$$W \cong \sum_{k=0}^{4} \frac{1}{k!} X_{(k)} y_{\alpha}^{k} H(y_{\alpha}), \quad V \cong \sum_{k=0}^{4} \frac{1}{k!} U_{(k)} y_{\alpha}^{k} H(y_{\alpha}), \quad (16)$$

$$N_{\varphi} = \frac{Eh}{(1-\sigma^{2})R_{1}} \sum_{k=0}^{4} \frac{1}{k!} \left[-U_{(k)}G^{-1} + \frac{\delta U_{(k-1)}}{\delta t} G^{-1} + X_{(k-1)} + \sigma (U_{(k-1)} \operatorname{ctg} \varphi + X_{(k-1)}) \right], \quad (17)$$

$$N_{\theta} = \frac{Eh}{(1 - \sigma^2)R_1} \sum_{k=0}^{4} \frac{1}{k!} \left[U_{(k-1)} \operatorname{ctg} \varphi + X_{(k-1)} \right]$$

$$+ \sigma \left(-U_{(k)}G^{-1} + \frac{\delta U_{(k-1)}}{\delta t} G^{-1} + X_{(k-1)} \right) \bigg], \tag{18}$$

где $y_{\alpha} = t - (r - r_0)G^{-1}$, а величины $X_{(k)}$ и $U_{(k)}$ вычисляются при $y_{\alpha} = 0$.

Для определения постоянных интегрирования необходимо совместить уравнения, описывающие неизвестные величины в контактной области и вне ее. Для этого подставим выражения (16)–(18), записанные на границе контактной области, т.е. при $\varphi = \varphi_0$, в уравнения (1), (2), а функцию α представим в виде

$$\alpha = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3 + \alpha_4 t^4 + \alpha_5 t^5, \tag{19}$$

где α_i (i = 0, 1, 2, 3, 4, 5) — пока неизвестные константы.

В результате описанной процедуры приходим к системе двух алгебраических уравнений. Приравнивая коэффициенты, стоящие у переменной t с одинаковыми показателями степени, получим набор систем относительно неизвестных c_j (j = 0-3) и α_i (i = 0-4), после определения которых можно записать контактную силу и динамический

Рис. 2. Зависимость контактной силы от времени при динамическом контакте ударника с оболочками различной толщины: сплошная линия — стальная пластина; пунктирная — алюминиевая пластина.

прогиб в виде отрезков степенных рядов с известными коэффициентами при *t*

$$P(t) = E_1 \left[V_1 t - \frac{1}{6} E_1 V_1 \left(\frac{1}{m} + \frac{1}{\pi r_0 (\rho h r_0 - E \sin \varphi_0)} \right) t^3 - \frac{E(1+\sigma)(\sin \varphi_0)^{1/2}}{6G\rho h r_0} \left\{ \left[\frac{\operatorname{ctg} \varphi_0 \rho h r_0 G}{\rho h r_0 - E \sin \varphi_0} + \frac{\ln \sin \varphi_0}{4} + \frac{\operatorname{ctg} \varphi_0 G}{4} - \varphi_0 \left[\frac{G}{4} + \frac{(1+\sigma)^2}{2G} \right] \right] c_1 + c_2 \right\} t^4 \right],$$
(20)
$$w(t) = \frac{1}{6\pi r_0 (\rho h r_0 - E \sin \varphi_0)} t^3 + \frac{E(1+\sigma)(\sin \varphi_0)^{1/2}}{6G\rho h r_0} \left\{ \left[\frac{\operatorname{ctg} \varphi \rho h r_0 G}{\rho h r_0 - E \sin \varphi_0} + \frac{\ln \sin \varphi_0}{2G\rho h r_0} + \frac{\operatorname{ctg} \varphi_0 G}{\rho h r_0 - E \sin \varphi_0} - \varphi_0 \left[\frac{G}{2} + \frac{(1+\sigma)^2}{2G\rho h r_0} \right] \right] c_1 + c_2 \right\} t^4.$$
(21)

(21)

Рис. 3. Зависимость динамического прогиба от времени для различной толщины оболочки: сплошная линия — стальная пластина; пунктирная — алюминиевая пластина.

Для иллюстрации полученных результатов построим зависимости контактной силы (рис. 2) и динамического прогиба (рис. 3) от времени для стальной ($\rho = 7850 \text{ kg/m}^3$, $\sigma = 0.3$) и алюминиевой оболочек ($\rho = 2700 \text{ kg/m}^3$, $\sigma = 0.27$) для различных значений толщины мишени, которые указаны в миллиметрах у кривых. Остальные параметры принимают следующие значения: m = 1 kg, V = 10 m/s, $E_1 = 252.53 \text{ kN/m}$, $r_0 = 100 \text{ mm}$, $\varphi_0 = \pi/2$, $R_1 = 1 \text{ m}$.

Из рис. 2 и 3 видно, что зависимости контактной силы и динамического прогиба от времени имеют разную форму для первой половины контактного процесса, что объясняется преобладанием линейного и кубического слагаемого в начале удара для соответствующих характеристик. При увеличении толщины мишени, плотности и модуля упругости ее материала максимальная контактная сила увеличивается, максимальный динамический прогиб уменьшается, а также уменьшается разница между значениями *w* для стальной и алюминиевой оболочки, т. е. при увеличении толщины свойства материала оказывают меньшее влияние на динамический прогиб.

Список литературы

- [1] Hammel J. // Nuclear Engineering and Design. 1976. V. 37. N 2. P. 205–223.
- [2] Сеницкий Ю.Э. // Механика твердого тела. 1982. № 2. С. 138–143.
- [3] *Бирюков Д.Г.* // Прикладная механика и техническая физика. 2002. Т. 43. № 5. С. 171–175.
- [4] Гольденвейзер А.Л. Теория упругих тонких оболочек. М.: Гостехиздат, 1953. 324 с.
- [5] Rossikhin Yu.A., Shitikova M.V. // Acta Mechanica. 1994. V. 102. N 1–4. P. 103– 121.
- [6] Локтев А.А. // Письма в ЖТФ. 2005. Т. 31. В. 18. С. 4–9.
- [7] *Thomas T.Y.* Plastic Flow and Fracture in Solids. N.Y.; L.: Acad. Press, 1961. 308 p.