Структурный беспорядок в параэлектрической фазе борацита Fe₃B₇O₁₃Br

© В.А. Шуваева¹, К.А. Лысенко², М.Ю. Антипин²

 ¹ Научно-исследовательский институт физики Южного федерального университета, Ростов-на-Дону, Россия
 ² Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия

E-mail: V Shuvaeva@mail.ru

05

(Поступила в Редакцию 28 сентября 2010 г.)

На основе данных, полученных методом монокристальной рентгеновской дифракции, и с учетом результатов XAFS-исследования выработана структурная модель кубической параэлектрической фазы кристалла Fe₃B₇O₁₃Br, относящегося к семейству борацита. Показано, что наилучшее согласие данных обоих методов достигается в рамках модели, предполагающей разупорядочение как атомов Fe, так и атомов Br и высокую степень скоррелированности их смещений. Установлено, что в процессе фазового перехода из ромбоэдрической сегнетоэлектрической в кубическую параэлектрическую фазу не происходит существенной перестройки структуры на локальном уровне. При этом изменение макроскопической симметрии происходит в основном вследствие изменения набора возможных пространственных ориентаций устойчивых структурных фрагментов, что характерно для фазовых переходов типа порядок-беспорядок.

Работа выполнена при поддержке целевой программы "Развитие научного потенциала высшей школы 2009–2010 гг." (проект 2.2.1/3690).

1. Введение

За последние десятилетия в результате интенсивного развития и совершенствования методов исследования атомной структуры и динамики решетки были получены новые данные о тонких особенностях строения сегнетоэлектрических соединений, позволившие существенно уточнить представления о характере процессов, приводящих к возникновению сегнетоэлектрического состояния. В частности, в результате исследований таких известных и широко используемых сегнетоэлектриков со структурой перовскита, как ВаТіО₃, KNbO₃, PbTiO₃, методом XAFS-спектроскопии [1-3] получены убедительные доказательства того, что структура кубической фазы этих соединений существенно разупорядочена. Эти данные наряду с данными, полученными другими экспериментальными методами, такими как ЭПР, ЯМР, рамановское рассеяние [4-6], свидетельствуют о смешанном характере фазовых переходов в перовскитовых соединениях, объединяющих в себе механизмы типа порядок-беспорядок и типа смещения. Такая модель подтверждается и теоретическими расчетами [7-9].

Соединения семейства борацита (общая формула $MB_7O_{13}X$, где M — один из двухвалентных элементов Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn или Cd, а X — галоген Cl, Br или I), многие из которых относятся к классу сегнетомагнитных соединений, наряду с соединениями со структурой перовскита традиционно относят к сегнетоэлектрикам типа смещения. Эта концепция основана в том числе и на многочисленных рентгеноструктурных исследованиях кубических фаз борацитов [10–14], в которых в качестве структурной модели параэлектри-

ческой фазы соединений семейства борацита рассматривается идеальная кубическая структура $F\overline{43}c$ с атомами металла и галогена, расположенными в высокосимметричных позициях и образующими трехмерную сеть цепочек металл-галоген с расстояниями около 3 Å. Эти цепочки располагаются вдоль осей четвертого порядка и пересекаются в позициях атомов галогена. Атомы кислорода и бора образуют трехмерный каркас из ВО4и OBO₃-групп, где BO₄ представляет собой тетраэдр с атомом В1 на оси четвертого порядка, в то время как в группе ОВО3 атом В2 смещен в сторону одного из атомов кислорода вдоль оси третьего порядка. Такая модель предполагает, что в результате фазового перехода в низкосимметричную фазу происходит смещение атомов галогена относительно атомов металла и борокислородного каркаса, в результате чего скачкообразно изменяются межатомные расстояния. Наиболее значительные изменения, доходящие до нескольких десятых А, должны при этом претерпевать связи металл-галоген (типичные для сегнетоэлектрических фаз длины этих связей лежат в пределах 2.5-2.7 Å).

Следует, однако, отметить, что существуют свидетельства разупорядочения структуры кубической фазы борацитов [15–19]. В частности, отмечалось, что учет разупорядочения атомов металла и галогена позволяет добиться лучшего соответствия структурной модели кубической фазы $Mg_3B_7O_{13}Cl$ дифракционным данным [15], а также может объяснить особенности диффузного рассеяния на кубических борацитах [16]. Проведено XAFS-исследование Fe₃B₇O₁₃Br, показавшее, что фазовый переход из сегнетоэлектрической фазы в ку-

Атом	x	у	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{23}	U_{13}	$U_{ m iso}$
Br1	0.25	0.25	0.25	0.0304(2)	0.0304(2)	0.0304(2)	0.0	0.0	0.0	0.0304(2)
Fe1	0.0	0.25	0.25	0.0612(4)	0.0109(2)	0.0109(2)	0.0	0.0	0.0	0.0277(2)
01	0.0217(1)	0.0962(1)	0.1811(1)	0.0100(6)	0.0085(5)	0.0073(5)	0.0019(5)	0.0032(5)	0.0020(5)	0.0086(2)
O2	0.0	0.0	0.0	0.0166(8)	0.0166(8)	0.0166(8)	0.0	0.0	0.0	0.0166(8)
B1	0.0	0.0	0.25	0.0066(8)	0.0066(8)	0.0069(13)	0.0	0.0	0.0	0.0067(6)
B2	0.0802(2)	0.0802(2)	0.0802(2)	0.0158(7)	0.0158(7)	0.0158(7)	0.0088(9)	0.0088(9)	0.0088(9)	0.0158(7)

Таблица 1. Позиционные и тепловые параметры атомов в кубической фазе Fe₃B₇O₁₃Br, уточненные в рамках идеальной кубической модели

бическую параэлектрическую фазу $F\overline{43}c$ не приводит к существенным изменениям в межатомных расстояниях, что свидетельствует о разупорядочении структуры в кубической фазе [17,18]. Признаки разупорядочения и нестабильности галогеновой подрешетки были выявлены в процессе исследования, проведенного недавно методом рамановской спектроскопии, и подтверждены теоретическими расчетами [19]. Однако при анализе межатомных расстояний и при проведении расчетов возможность разупорядочения часто не принимается во внимание [20], что может дать ошибку в межатомных расстояниях, доходящую до нескольких десятых Å. В связи с этим важно выработать уточненную структурную модель параэлектрической фазы соединений типа борацита.

Как было определено на основе результатов анализа мессбауроэровских спектров и оптических исследований [21], в FeBr-бораците (Fe₃B₇O₁₃Br) фазовые переходы происходят в следующей последовательности: $F\overline{4}3c \quad (495 \text{ K}) \rightarrow Pca2_1 \quad (405 \text{ K}) \rightarrow R3c \quad (18 \text{ K}) \rightarrow m.$ К настоящему времени уточнение структуры на основе дифракционных данных проведено лишь для ромбоэдричекой фазы R3c [22]. Методом XAFS-спектроскопии была исследована температурная зависимость межатомных расстояний в ромбоэдрической, ромбической и кубической фазах [7]. Исследование магнитных свойств соединения [23] показало наличие антиферромагнитного упорядочения. В настоящей работе мы приводим результаты рентгенодифракционного исследования кубической фазы FeBr-борацита, проведенного с учетом данных для межатомных расстояний, полученных ранее методом ХАFS-спектроскопии [17]. Предлагаемая структурная модель параэлектрической фазы этого соединения согласуется с данными обоих методов. Сопоставление этой структуры со структурой ромбоэдрической фазы позволяет сделать выводы о характере фазовых переходов в исследуемом соединении.

2. Условия эксперимента и уточнение структуры

Рентгенодифракционные данные были получены от монокристаллического образца с формой, близкой к кубической, на автоматическом дифрактометре SINTEX при температуре 250°С, поддерживаемой на образце при помощи проточного нагревателя. Колебания температуры в ходе эксперимента не превышали 5°С. Было измерено 1157 отражений при $2\Theta \le 60^{\circ}$, из них 212 независимых. Параметры ячейки были получены на основе уточнения по 24 эквивалентным отражениям. Ячейка была определена как кубическая с параметрами: a = 12.215(3) Å, V = 1822.5(2) Å³. Наблюдаемые погасания соответствовали пространственной группе $F\overline{43}c$.

Внесение в интегральные интенсивности отражений поправок на фактор Лоренца и поглощение, а также дальнейший анализ данных, включая уточнение структуры, были выполнены с помощью комплекса программ SHELXTL. Учет поглощения проводили на основе экспериментальных кривых поглощения. В качестве начальных параметров атомов Fe и Br были взяты позиционные параметры, найденные для атомов металла и галогена в других кубических борацитах [10–14]. После уточнения этих параметров и шкального фактора положения легких атомов находили на основе разностных синтезов.

Рис. 1. Структура кубической фазы Fe₃B₇O₁₃Br в приближении полностью упорядоченного расположения атомов в проекции на плоскость (110).

атомов	Fe и Br									
Атом	x	у	z	U_{11}	<i>U</i> ₂₂	U_{33}	U_{12}	U_{23}	U_{13}	$U_{ m iso}$
									(.)	

Таблица 2. Позиционные и тепловые параметры атомов в кубической фазе Fe₃B₇O₁₃Br, уточненные с учетом разупорядочения

Атом	x	у	Z	U_{11}	U_{22}	U_{33}	U_{12}	U_{23}	U_{13}	$U_{ m iso}$
Br1	0.24153(4)	0.24153(4)	0.24153(4)	0.0192(2)	0.0192(2)	0.0192(2)	-0.0029(5)	-0.0029(5)	-0.0029(5)	0.0192(2)
Fe1	0.01414(5)	0.25	0.25	0.0261(4)	0.0112(3)	0.0127(3)	-0.00440	0.0	0.0	0.0167(2)
01	0.0216(1)	0.0963(1)	0.1810(1)	0.0116(5)	0.0093(4)	0.0084(4)	0.0030(5)	0.0035(4)	0.0020(4)	0.0098(2)
O2	0.0	0.0	0.0	0.0165(7)	0.0165(7)	0.0165(7)	0.0	0.0	0.0	0.0165(7)
B1	0.0	0.0	0.25	0.0067(7)	0.0067(7)	0.007(1)	0.0	0.0	0.0	0.0069(8)
B2	0.0797(2)	0.0797(2)	0.0797(2)	0.0174(6)	0.0174(6)	0.0174(6)	0.0087(8)	0.0087(8)	0.0087(8)	0.0174(6)

В результате уточнения значения *R*-факторов, рассчитанных по 192 независимым отражениям с интенсивностью, большей $4\sigma R_{4s}$, и по всем отражениям R_{all} , составили 2.8 и 3.6% соответственно. Структура кубической фазы $Fe_3B_7O_{13}Br$ показана на рис. 1, а позиционные и тепловые параметры атомов, полученные в результате уточнения, приведены в табл. 1. Расчет расстояний Fe-Br на основе идеальной кубической модели приводит к значению 3.05 Å. Это, однако, находится в противоречии с данными EXAFS-спектроскопии, согласно которым кратчайшее расстояние Fe-Br составляет 2.76 Å, что близко к соответствующему расстоянию в низкотемпературной ромбоэдрической фазе [6]. Такие расстояния в кубической фазе могут возникнуть только при условии смещения атомов Fe и Br из высокосимметричных позиций, а следовательно, их разупорядочения. Следует отметить, что при уточнении структуры в предположении полностью упорядоченного расположения атомов была обнаружена довольно существенная анизотропия тепловых параметров атомов Fe, а также получены завышенные значения тепловых параметров Br, что является дополнительным свидетельством структурного разупорядочения.

В кубической фазе укороченное расстояние Fe-Br может возникнуть в двух случаях искажения идеальной кубической структуры: 1) в случае смещения атомов Fe вдоль [100] по направлению к одному из двух атомов Br, входящих в ближайшее окружение Fe (модель Fe-беспорядок); 2) в случае смещения атомов Br вдоль направлений [111], в результате чего Br образует три коротких и три длинных расстояния с шестью ближайшими атомами Fe (модель Вг-беспорядок).

На первом этапе уточнения мы рассмотрели первую из этих моделей, добавив к уточняемым параметрам *х*-координату атомов Fe, таким образом допустив их смещение в направлении, перпендикулярном четырем связям Fe-O. Это привело к сокращению R4s- и R_{all}-факторов до 2.5 и 3.3% соответственно. Весовой *R*-фактор понизился с 6.9 до 6%. Результирующее смещение Fe из высокосимметричного положения составило 0.17 Å, а ближайшее расстояние Fe-Br сократилось до 2.87 Å, приблизившись к значению, полученному по ЕХАFS-данным. Одновременно произошло уменьшение тепловых параметров атомов Fe. В рамках данной модели, однако, не удалось добиться полного согласия с EXAFS-данными, поэтому дополнительно к разупорядоченности Fe была введена разупорядоченность Br (Fe, Br-беспорядок). *R*-фактор оказался очень слабочувствительным к разупорядочению Br, и уточнение не привело к сколько-нибудь заметному его снижению. Однако величина самого короткого расстояния Fe-Br, рассчитанная по уточненным параметрам Br, уменьшилась до 2.78 Å, что находится в хорошем соответствии с результатами исследования локальной структуры. Позиционные и тепловые параметры атомов, уточненные с учетом разупорядочения атомов Fe и Br, приведены в табл. 2.

Таким образом, модель (Fe, Br)-беспорядок находится в наилучшем согласии с EXAFS-данными при минимальном значении *R*-фактора, что позволяет сделать выбор в пользу этой структурной модели.

Следует отметить, что, несмотря на очень существенные различия в межатомных расстояниях, достигающие 0.3 Å для расстояний Fe-Br, все три уточненные структурные модели кубической фазы FeBr борацита имеют близкие значения *R*-факторов. Этот факт наглядно демонстрирует низкую чувствительность дифракционных методов к наличию разупорядоченности атомов в высокосимметричных кристаллах и показывает необходимость осторожного подхода к анализу межатомных расстояний в таких кристаллах на основе одних только дифракционных данных. С другой стороны, в настоящей работе показано, что совместный анализ данных рентгеновской дифракции и EXAFS-спектроскопии позволяет получать надежную информацию не только о смещениях атомов из усредненных позиций, но и о корреляции этих смещений в масштабах локальной структуры.

Обсуждение результатов 3.

На рис. 2, a-c показано ближнее окружение атомов Fe и приведены межатомные расстояния и углы между связями, полученные по результатам уточнения структуры кубической фазы FeBr борацита на основе трех моделей, описанных выше. На рис. 2, d для сравнения приведен соответствующий фрагмент структуры ромбоэдрической фазы, исследованной ранее [22].

Рис. 2. Ближнее окружение атомов Fe в кубической (a-c) и ромбоэдрической (d) фазах Fe₃B₇O₁₃Br. a — идеальная кубическая модель, b — модель Fe-беспорядок, c — модель (Fe, Br)-беспорядок. Межатомные расстояния приведены в Å.

Из рисунка видно, что учет разупорядочения атомов Fe и Br приводит к очень большим изменениям геометрии и длин связей по сравнению с идеальной кубической структурой. Наиболее сильно различаются расстояния Fe–Br. По сравнению с кубической моделью, дающей два равных расстояния по 3.05 Å, в модели (Fe, Br)-беспорядок кратчайшее расстояние Fe–Br сокращается до 2.78 Å, что только на 0.07 Å превышает соответствующее расстояние в ромбоэдрической фазе.

Если предположить, что направления смещений атомов Fe и Br полностью независимы, то расчет расстояний Fe–Br дает широкий набор значений в интервале от 2.78 до 3.33 Å. Однако EXAFS-спектры были успешно описаны лишь двумя крайними значениями, которые реализуются в случае, если соседние атомы Fe и Br не распределены равномерно по всем возможным положениям, а занимают лишь определенные из них. Это свидетельствует о том, что имеется высокая корреляция смещений атомов Fe и Br, при которой преобладает их встречное смещение, приводящее к локальной атомной конфигурации, характерной для ромбоэдрической фазы.

В борацитах атомы металла координированы четырьмя атомами кислорода, при этом все связи Fe–O лежат вблизи плоскости, перпендикулярной связи Fe–Br и проходящей через атом Fe. В ромбоэдрической фазе FeBr-борацита две противоположные связи фактически лежат в этой плоскости, в то время как две другие отклонены от нее на 13 и 18° соответственно, образуя тупые углы со связью Fe–Br [5]. В кубической фазе, если принять за основу ее идеальную модель, конфигурация связей должна существенно различаться: здесь все четыре связи выходят из плоскости, составляя с ней углы, примерно равные 7°, при этом для двух из них угол Fe–Br–O тупой, а для двух других острый. Учет разупорядоченности атомов Fe довольно существенно сказывается на геометрии связей Fe–O и в несколько меньшей степени на их длине, приближая их к значениям, характерным для ромбоэдрической фазы. Так, вместо четырех равных расстояний Fe–O, полученнных по результатам уточнения идеальной кубической модели, при учете разупорядочения Fe возникают две пары таких связей с длинами 2.06 и 2.11 Å, что близко к соответствующим значениям в ромбоэдрической фазе. Углы Br–Fe–O также оказываются близкими к наблюдамемым при комнатной температуре, составляя 87 и 102° соответственно. Геометрия и длины связей Fe–O кубической фазы, таким образом, находятся в близком сответствии с ромбоэдрической фазой.

Согласно дифракционным данным, геометрия и длины связей, образуемых атомами В и О, также демонстрируют существенные различия в кубической и низкотемпературных сегнетоэлектрических фазах. Поэтому закономерно возникает вопрос, насколько эти различия могут быть связаны с возможной разупорядоченностью положений этих атомов в кубической фазе. Следует отметить, что тепловые параметры атомов В и О не завышены и не проявляют существенной анизотропии; таким образом, характерные признаки такого разупорядочения отсутствуют. Более детально этот вопрос исследовался при уточнении структуры параэлектрической фазы Mg₃B₇O₁₃Cl [15], и в этом случае также не удалось обнаружить структурного беспорядка в борокислородном каркасе. Это свидетельствует о том, что, как и в перовскитовых соединениях, в борацитах фазовые переходы имеют двойственную природу и объединяют в себе процессы типа смещения и типа порядокбеспорядок.

Следует отметить, что практически все соединения семейства борацита обладают сходным строением кубической фазы, и признаки структурного беспорядка были обнаружены несколькими различными методами в целом ряде соединений этого семейства. Таким образом, структурная модель, предложенная в настоящей работе для FeBrO₃, а также модель, предложенная ранее для Mg₃B₇O₁₃Cl [15], показывают особенности строения кубической фазы всех соединений типа борацита. При этом величины смещений атомов металла и галогена в кубической фазе можно оценить по величине соответствующих смещений в низкотемпературных фазах.

4. Заключение

По результатам уточнения структурной модели кубической фазы FeBr-борацита можно сделать вывод, что в процессе фазовых переходов в кристаллах этого класса соединений не происходит существенной перестройки структуры на локальном уровне. Изменение макроскопической симметрии происходит не за счет изменения величины локальных искажений, а вследствие изменения спектра возможных пространственных ориентаций устойчивых структурных фрагментов, что характерно для фазовых переходов типа порядок-беспорядок. Следует, однако, оговориться, что структурный беспорядок может иметь динамическую природу, при этом положения атомов металла и галогена определяются многоминимумным потенциалом.

Список литературы

- B. Ravel, E.A. Stern, R.I. Vedrinskii, V. Kraizman. Ferroelectrics 206–207, 407 (1998).
- [2] V.A. Shuvaeva, K. Yanagi, K. Yagi, K. Sakaue, H. Terauchi. Solid State Commun. 106, 335 (1998).
- [3] B. Ravel, N. Sicron, Y. Yacoby, E.A. Stern, F. Dogan, J.J. Rehr. Ferroeledtrics 164, 265 (1995).
- [4] K.A. Muller, W. Berlinger. Phys. Rev. B34, 6130 (1986).
- [5] B. Zalar, V. Laguta, J. Seliger, R. Blinc, A. Lebar, M. Itoh. Phys. REv. B 71. 064 107 (2005).
- [6] А.Н. Чабанюк, В.И. Торгашев, Ю.И. Юзюк. Изв. РАН. Сер. физ. 72, 1176 (2008).
- [7] Y. Girshberg. J. Phys.: Cond. Matter 13, 8817 (2001).
- [8] M. Sepliarsky, M.G. Stachiotti, R.L. Migoni, C.O. Rodriguez. Ferroelectrics 234, 9 (1999).
- [9] H. Krakauer, R. Yu, C.-Z. Wang, K.M. Rabe, U.V. Waghmare. J. Phys.: Cond. Matter 11, 3779 (1999).
- [10] R.J. Nelmes, F.R. Thornley. J. Phys. C 7, 3855 (1974).
- [11] R.J. Nelmes, F.R. Thornley. J. Phys C 9, 665 (1976).
- [12] F. Kubel. Ferroelectrics 160, 61 (1994).
- [13] G. Berset, W. Depmeier, R. Boutellier, H. Schmid. Acta Cryst. C 41, 1694 (1985).
- [14] A. Monnier, G. Berset, H. Schmid. Acta Cryst. C 43, 1243 (1987).
- [15] S. Sueno, J.R. Clark, J.J. Papike, J.A. Konnert. Am. Mineral. 58, 691 (1973).
- [16] P. Felix, M. Lambert, R. Comes, H. Schmid. Ferroelectrics 7, 131 (1974).
- [17] T.I, Nedoseykina, V.A. Shuvaeva, I.V. Pirog, A.T. Shuvaev, K. Yagi, Y. Azuma, H. Terauchi. Ferroelectrics 284, 175 (2003).
- [18] A.T. Shuvaev, I.V. Pirog, I.A. Zarubin. Physica B 208–209, 627 (1995).
- [19] M.N. Iliev, V.G. Hadjiev, M.E. Mendoza, J. Pacual. Phys. Rev. B 76, 21, 214112 (2007).
- [20] K. Knorr, L. Peters, B. Winkler, V. Milman, A.G. Castellanos-Guzman. J. Phys.: Cond. Matter 19, 1 (2007).
- [21] H. Schmid, J.M. Trooster. Solid State Commun. 5, 31 (1967).
- [22] В.А. шуваева, К. Лысенко, М.Ю. Антипин. Кристаллография. В печати.
- [23] D. Andrica, J.-P. Rivera, S. Gentil, Z.-G. Ye, M. Senthil Kumar, H. Schmid. Ferroelectrics 204, 73 (1997).