05 Применимость редуцированной модели для описания реальных контактов между шероховатыми поверхностями с различным индексом Хирша

© В.Л. Попов, А.Э. Филиппов

Берлинский технический университет, Берлин, Германия Донецкий физико-технический институт, Украина

Поступило в Редакцию 10 января 2008 г.

Исследована применимость редуцированной модели для описания реальных контактов между шероховатыми поверхностями с различным индексом фрактальной размерности Хирша. Показано, что модель достаточно хорошо воспроизводит аналитические оценки и результаты реалистического, но значительно более громоздкого численного моделирования.

PACS: 91.30.-f, 91.30.Bi

Реальная поверхность контакта между двумя упругими телами определяет такие важные для приложений свойства контактов, как сила сухого трения и контактное сопротивление, обусловленное тонким плохо проводящим слоем (например, слоем оксидов). Вычисление поверхности контакта с измеренной топографией требует решения терхмерной контактной задачи вплоть до масштаба самых малых шероховатостей. Ввиду ее прикладной атуальности эта задача в последние годы стала предметом интенсивных исследований [1-4]. В работах [5,6] был предложен метод быстрого решения трехмерной контактной задачи путем конструирования и анализа эквивалентной одномерной системы. Его применимость была, однако, продемонстрирована в [5] только для одиночных контактов и шероховатых поверхностей с постоянной спектральной плотностью. Необходимым шагом является тестирование метода для поверхностей с различными фрактальными свойствами, которое предпринято в настоящем сообщении, и сравнение результатов с имеющимися в литературе для трехмерных моделей.

Напомним основные соотношения теории контактов и метода редукции. Аналитические расчеты зависимости между сдавливающей силой *Р*

88

и реальной площадью контакта A показывают [1–4], что при A менее 10% номинальной площади A_0 имеет место соотношение

$$A = \frac{\kappa P}{E^* \nabla h}.\tag{1}$$

Здесь E^* есть эффективный упругий модуль $E^* = E/(1 - v^2)$, E — модуль упругости, v — коэффициент Пуассона, ∇h есть среднеквадратичное значение градиента поверхностного профиля, а κ — константа. В приближении независимых микроконтактов Бушем и другими для κ получено значение $\kappa = (2\pi)^{1/2} \approx 2.51$ [7], а в противоположном приближении независимых масштабных уровней Перссон приходит к значению $\kappa = (8/\pi)^{1/2} \approx 1.60$ [2]. Численные расчеты Роббинса и др. [1,3] показывают, что константа κ является слабой функцией фрактальной размерности системы. Ниже мы воспроизведем результаты вычисления константы κ в рамках метода редукции размерности. Гайке и Поповым [5] было показано, что вычисление контакта между упругими континуумом, ограниченным 2D поверхностью $f(\mathbf{x})$ со спектральной плотностью

$$C_{2\mathrm{D}}(\mathbf{q}) = \frac{1}{(2\pi)^2} \int \langle f(\mathbf{x}) f(0) \rangle e^{-i\mathbf{q}\cdot\mathbf{x}} d^2x \tag{2}$$

и твердой поверхностью можно заменить вычислением контакта 1D цепочки материальных точек, упруго связанных с "шероховатой" линией, имеющей спектральную плотность

$$C_{1D}(q) = \pi q C_{2D}(q).$$
 (3)

Жесткость связи материальных точек с линией на единицу длины нужно выбрать равной $C_n = E^*$, а площадь единичного контакта длины dвычисляется по правилу $\Delta A = \pi d^2/4$. Численная процедура вычисления реальной площади контакта в настоящей работе организована следующим образом. Мы генерируем жесткую "шероховатую" линию в соответствии с алгоритмом, использованным в работах [8–10]:

$$f(x) = f_0 \int_{q_1}^{q_2} dq C_{1\mathrm{D}}(q) \cos(qx + \xi).$$
(4)

Здесь q_1 и q_2 являются характерными волновыми векторами, на которых ограничивается масштабно-инвариантное поведение, а фаза $\xi(x)$ представляет собой δ -коррелированный шум, удовлетворяющий условию

Рис. 1. Типичная численно прогенерированная фрактальная реализация жесткой контактной линии f(x) (серая кривая) при некотором расположении упругой контактной линии у.

 $\langle \xi(q)\xi(q') \rangle = 2\pi \delta(q-q')$. Спектральная функция $C_{1D}(q)$ масштабноинвариантна $C_{1D}(q) = C_0 q^{-\beta}$ с показателем $\beta = H + 1/2$, определяемым индексом Хирша *H* фрактальной двумерной поверхности f(x). Следуя работам [2–4], мы варьируем его в интервале $0 \leq H \leq 1$, так что $1/2 \leq \beta \leq 3/2$.

Типичный результат реализации этого алгоритма (при $\beta = 1$ для $N = 10\,000$ сегментов) представлен на рис. 1. Поверх серой кривой f(x)жирной черной линией изображена гистограмма $\rho = \rho(y_i)$ распределения высот $y_i = f(x_i)$; где i = 1, ..., N, подтверждающая, что данного числа сегментов достаточно для получения относительно гладкой функции $\rho(y_i)$. Перестроив зависимость ρ от переменной $\exp(-y^2)$, можно убедиться, что с хорошей точностью распределение $\rho = \rho(y_i)$ Гауссово, что соответствует как теоретическим представлениям [2], так и экспериментальным данным для большинства натуральных поверхностей. Изрезанность кривой f(x), напоминающая случайный шум при большой длине массива N = 10000, иллюзорна. Выделяя короткие фрагменты f(x), можно убедиться в ее гладкости и существовании производных. Это означает, что при "опускании" на нее изначально плоская $y|_{t=0} = \text{const}$ упругодеформируемая поверхность будет контактировать с f(x) на некоторой совокупности связных фрагментов δx_k , которые (в соответствии с гипотезой работы [6]) в одномерном случае и должны быть ассоциированы с локальными площадками контакта: $\Delta A = \frac{\pi}{4} d^2 \rightarrow \delta A_k = \frac{\pi}{4} \delta x_k^2$. Индекс $k = 0, \dots, N_{connected}$ здесь равен нулю в отсутствие контакта и пробегает область допустимых значений вплоть

Рис. 2. Распределение контактных областей для конкретной реализации f(x) и мгновенного положения *y*, представленных на рис. 1. Высота и расположение столбиков отображают длину и положение середин связных фрагментов контакта $n_c(x)$ соответственно.

до полного числа связных областей $N_{connected}$, не превышающего, естественно, полной длины системы $N_{connected} \leq N$.

По мере "опускания" упругой "поверхности" у на f(x) количество приходящих в контакт связных областей $N_{connected}$ поначалу возрастает, а их длина $n_c(k) \equiv \delta x_k$ в среднем $n_c = \langle n_c(k) \rangle$ увеличивается. Затем они начинают объединяться, так что при продолжающемся росте n_c количество контактов $N_{connected}$ падает и в пределе, когда у достигает минимума f(x), стремится к единице $N_{connected} \rightarrow 1$. При этом $n_c \rightarrow N$. Произвольный момент этого процесса, соответствующий конкретной конфигурации рис. 1, проиллюстрирован на рис. 2. Высота и расположение столбиков отображают длину и положение середин связных фрагментов контакта $n_c(k)$ соответственно. Не составляет труда также восстановить гистограмму плотности $\rho(n_c)$ для каждого текущего распределения длин $\{n_c(k)\}$. Поскольку для приведения в контакт поверхность должна быть продеформирована $y(x_j) \rightarrow y_0 + \delta y(x_j)$, необходимо давление P, равное сумме упругих сил:

$$P = E^* \sum_{k=0}^{N_{connected}} \left[\sum_{j=0}^{n_c(k)} \delta y_k(x_j) \right].$$
(5)

Величина P может быть найдена численно и поставлена в соответствие суммарной площади контакта $A = \sum_{k=0}^{N_{connected}} \delta A_k$. На рис. 3 показана определенная таким образом зависимость суммарной площади контактов A

Рис. 3. Зависимость от давления *P* суммарной площади контактов *A*. При достижении критического давления P_{crit} все точки поверхности приходят в контакт, так что $\frac{A}{\pi/4}|_{P>P_{crit}} = 1$. На вставке выделена область малых давлений, при которых (вплоть до некоторого $P^* \approx 0.02$) зависимость A(P) практически линейна.

от давления *P*. При достижении критического давления P_{crit} все точки поверхности приходят в контакт, так что $\frac{A}{\pi/4}|_{P \ge P_{crit}} = 1$. На вставке выделена область малых давлений $P < P^*$, при которых зависимость A(P) практически линейна. Для проверки описанных выше соотношений достаточно при различных *H* вычислить средний наклон dA/dP = A/Pв области линейности и, поделив его на среднеквадратичное значение градиента поверхностного профиля ∇f , определить искомую постоянную κ . Результаты этих расчетов суммированы на рис. 4 черными и белыми кружками соответственно. Поскольку даже при $N = 10\,000$ сегментов поверхности величина κ все еще сильно флуктуирует, этот расчет был усреднен дополнительно по 10 реализациям.

Как видно из рис. 4, полученная в рамках редуцированной модели величина κ практически не зависит от индекса Хирша H и приближенно равна $\kappa = 2.785$, что несколько превосходит аналитические оценки и численные результаты, получаемые в рамках реалистических 3D мо-

Рис. 4. Зависимость наклона dA/dP (черные точки) в области линейности и постоянной κ (белые кружки) от фрактального индекса Хирша H.

делей, лежащие в интервале от 1.6 до 2.5. Вместе с тем даже такое согласие следует рассматривать как большой успех редуцированной теории, главное достоинство которой состоит в том, что громоздкие, хотя и реалистические 3D расчеты контактных задач могут быть заменены простым и компактным квазиодномерным моделированием. Тем не менее остается открытым вопрос о конкретной природе расхождения между результатами этой модели и теми, что получаются более изощренными методами. Некоторый свет на их природу могут

пролить исследования соотношения между давлением и суммарной длиной контактов и статистических свойств полученного здесь распределения связных контактов. Эти вопросы мы намерены исследовать в следующей, более полной работе.

Один из авторов $(A\Phi)$ благодарит Deutsche Forschungsgemeinschaft за финансовую поддержку во время пребывания в Берлинском ТУ.

Список литературы

- [1] Hyun S., Pei L. et al. // Phys. Rev. 2004. V. E 70. P. 026117.
- [2] Persson B.N.J. // Surface Science Reports. 2006. V. 61. P. 201-227.
- [3] Hyun S., Robbins M.O. // Tribology International. 2007. V. 40. P. 1413-1422.
- [4] Campana C., Müser M. // Phys. Rev. 2006. V. B 74. P. 075420.
- [5] Geike T., Popov V.L. // Phys. Rev. E. 2007. V. 76. P. 036710.
- [6] Geike T., Popov V.L. // Tribology International. 2007. V. 40. P. 924–929.
- [7] Bush A.W., Gibson R.D., Thomas T.R. // Wear. 1995. P. 35.
- [8] Filippov A.E., Popov V. // Jorn. Phys. Condensed Matter. 2007. V. 19. P. 096012.
- [9] Filippov A.E., Popov V. // Phys. Rev. E. 2007. V. 75. P. 27103.
- [10] Popov V., Starcevich J., Filippov A.E. // Phys. Rev. 2007. V. E 75. P. 066104.