05;07

Теплопроводность *у*-облученных монокристаллов LiF

© Т.Т. Басиев, В.А. Конюшкин, С.В. Кузнецов, В.В. Осико, П.А. Попов, П.П. Федоров

Научный центр лазерных материалов и технологий Института общей физики им. А.М. Прохорова РАН, Москва Брянский государственный университет E-mail: ppf@lst.gpi.ru

Поступило в Редакцию 25 декабря 2007 г.

Методом стационарного продольного теплового потока в интервале температур 50-300 К исследована теплопроводность γ -облученных монокристаллов LiF. Увеличение дозы облучения до $2 \cdot 10^9$ rad приводит к монотонному падению теплопроводности на 10% при 300 К и в 10 раз при 50 К. С ростом дозы облучения микротвердость кристаллов возрастает с 140 до 222.5 kg/mm².

PACS: 66.70.-f, 61.80.-x

Одним из наиболее перспективных материалов для лазерной генерации импульсов пико- и фемтосекундной длительностей, а также плавно перестраиваемой генерации в ближнем ИК-диапазоне являются кристаллы фтористого лития с агрегатными центрами окраски. Широкая полоса усиления в диапазоне от 1 до 1.3 μ m, высокое сечение люминесцентного перехода (~ 10⁻¹⁷ cm²), широкая полоса поглощения для накачки лазерами, излучающими вблизи 1 μ m, высокая теплопроводность делают эти кристаллы практически идеальными для применения в перестраиваемых лазерах и лазерах с синхронизацией мод, в том числе при использовании диодной накачки. Монокристаллы фтористого лития с F_2^- центрами окраски имеют длительный срок службы в качестве активных элементов лазеров при комнатной температуре [1–3].

Особое значение при создании мощных лазерных систем имеет высокая теплопроводность *k* оптического материала. Монокристаллы фтористого лития — классический объект для изучения влияния различных факторов на теплопроводность, таких как изотопный эффект, влияние дислокаций, толщины образца, шероховатости поверхно-

48

сти [4–7]. Влияние образования центров окраски на теплопроводность LiF изучалась в [4].

Целью данной работы было исследование теплопроводности монокристаллов LiF с центрами окраски, возникшими при воздействии различных доз облучения.

В качестве исходного материала использовали монокристаллы фтористого лития, выращенные на воздухе методом Киропулоса. Для исследования влияния примеси иона гидроксила на теплопроводность один образец монокристалла был расплавлен и выращен заново в активной фторирующей атмосфере CF₄.

Создание центров окраски в монокристаллах LiF проводилось путем γ -облучения на источнике Co⁶⁰ (энергия кванта $E_1 = 1.17$ MeV, $E_2 = 1.33$ MeV) при 300 K. Дозы облучения составили $2 \cdot 10^6$, $2 \cdot 10^7$, $2 \cdot 10^8$, $5 \cdot 10^8$, $2 \cdot 10^9$ rad.

Для экспериментального определения теплопроводности использовался абсолютный стационарный метод продольного теплового потока, аппаратура и методика измерений описаны в [8]. Расстояние между датчиками температуры составляло 20 mm. Погрешность определения абсолютной величины теплопроводности не превосходила 5%, воспроизводимость результатов была не хуже 3%. Откачка паров азота из камеры теплостока позволила обеспечить температурный диапазон измерений 50–300 К.

Спектры поглощения снимались на спектрофотометре СФ-20. Микротвердость образцов определялась на сколах по спайности [100] путем индентирования алмазной пирамидкой Виккерса при комнатной температуре на микротвердомере ПМТ-3 под нагрузкой P = 0.5 N.

Результаты измерений теплопроводности представлены на рис. 1–3. При 300 К теплопроводность LiF $k = 16.5 \pm 0.8 \text{ W}/(\text{m} \cdot \text{K})$ и резко возрастает с понижением температуры. Переплавка во фторирующей атмосфере, в результате которой наличие OH⁻ группы не фиксируется спектроскопически, приводит к возрастанию теплопроводности при 50 К от $k = 543 \pm 27$ до $605 \pm 30 \text{ W}/(\text{m} \cdot \text{K})$, но не сказывается в пределах ошибки на теплопроводности при комнатной температуре. Этот эффект можно объяснить небольшой разницей масс замещающих друг друга ионов F⁻ и OH⁻.

Из рисунков видно, что увеличение дозы облучения приводит к монотонному падению теплопроводности при низкой температуре. При

4 Письма в ЖТФ, 2008, том 34, вып. 16

Рис. 1. Температурная зависимость теплопроводности монокристаллов LiF: I - LiF монокристалл без OH⁻; $2 - LiF:OH_-$ монокристалл; $3 - LiF:OH_$ облученный монокристалл, $D = 2 \cdot 10^6$ rad; $4 - LiF:OH_-$ облученный монокристалл, $D = 2 \cdot 10^7$ rad; $5 - LiF:OH_-$ облученный монокристалл, $D = 2 \cdot 10^8$ rad; $6 - LiF:OH_-$ облученный монокристалл, $D = 5 \cdot 10^8$ rad; $7 - LiF:OH_$ облученный монокристалл, $D = 2 \cdot 10^9$ rad.

комнатной температуре этот эффект выражен слабо. Доза облучения $2 \cdot 10^9$ гаd приводит к снижению теплопроводности при 50 K до $k = 54 \text{ W}/(\text{m} \cdot \text{K})$, т.е. в 10 раз; при комнатной температуре снижение составляет около 10%.

Полученные нами результаты качественно согласуются с данными [4]. Количественное сопоставление невозможно, поскольку в [4] использовались номинально чистые кристаллы, не содержащие примеси гидроксила, стабилизирующей центры окраски.

Полученные результаты важны с точки зрения использования LiF с центрами окраски в качестве активных лазерных элементов. Известно, что во многих случаях введение ионов-активаторов резко понижает теплопроводность матрицы. Особенно силен этот эффект при гетеровалентном замещении, например, при введении ионов редкоземельных элементов в решетку флюорита [9,10]. В случае фтори-

Письма в ЖТФ, 2008, том 34, вып. 16

Рис. 2. Зависимость теплопроводности монокристаллов LiF от дозы облучения при 300 К.

Рис. 3. Зависимость теплопроводности монокристаллов LiF от дозы облучения при 50 К.

стого лития образование центров окраски понижает теплопроводность незначительно, особенно при комнатной температуре. Она остается весьма высокой. Например, доза $D = 2 \cdot 10^8$ rad дает материал с $k = 14.8 \pm 0.7 \,\text{W}/(\text{m} \cdot \text{K})$ при 300 K.

Радиационное облучение повышает микротвердость монокристаллов от 140 до 222.5 \pm 8.6 kg/mm² при $D = 2 \cdot 10^9$ rad, что свидетельствует об улучшении механических характеристик материала.

4* Письма в ЖТФ, 2008, том 34, вып. 16

Список литературы

- [1] Basiev T.T., Mirov S.B., Osiko V.V. // IEEE J. Quantum Electron. 1988. V. 24. P. 1052.
- [2] Basiev T.T., Mirov S.B. // Laser Science and Technology International Handbook / V.S. Letokhov e.a. (Ed.). Switzeland: Harwood Acad. Publishers, 1994. V. 16. N 1.
- [3] Basiev T.T., Vassiliev S.V., Konyushkin V.A., Gapontsev V.P. // Optics Letters. 2006. V. 31. P. 2154.
- [4] Pohl R.O. // Physical Review. 1960. V. 118. Is. 6. P. 1499–1508.
- [5] Thacher Ph.D. // Physical Review. 1967. V. 156. Is. 3. P. 975–988.
- [6] Benin D. // Physical Review. 1972. V. B5. Is. 3. P. 2344-2350.
- [7] Берман Р. // Теплопроводность твердых тел. М.: Мир, 1979. 286 с.
- [8] Sirota N.N., Popov P.A., Ivanov I.A. // Cryst. res. Technol. 1992. V. 27. N 4. P. 535–543.
- [9] Попов П.А., Черненок Е.В., Федоров П.П., Кузнецов С.В., Конюшкин В.А., Басиев Т.Т. // Конденсированные среды и межфазные границы. 2006. № 4. С. 320–321.
- [10] Могилевский Б.М., Рейтеров В.М., Тумпурова В.Ф., Трофимова Л.М., Чудновский А.Ф. // Инженерно-физический журнал. 1975. Т. 28. № 3. С. 439–441.

Письма в ЖТФ, 2008, том 34, вып. 16