^{18,07} Упругие модули третьего порядка однослойного графена

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

E-mail: Sergei Davydov@mail.ru

(Поступила в Редакцию 6 июля 2010 г.)

В рамках модели Китинга с учетом ангармонической константы центрального взаимодействия ближайших соседей μ получены аналитические выражения для трех независимых упругих постоянных третьего порядка $c_{ijk}(\mu, \xi)$ однослойного графена, где $\xi = (2\alpha - \beta)/(4\alpha + \beta)$ — параметр внутренних смещений Клейнмана, α и β — гармонические константы центрального взаимодействия ближайших и нецентрального взаимодействия вторых соседей. Определены зависимости упругих постоянных второго порядка от давления p. Показано, что равные друг другу при p = 0 модули c_{11} и c_{22} реагируют на давление по-разному. Именно в этом лежит причина того обстоятельства, что в гармоническом приближении графен изотропен, тогда как при учете ангармонизма появляется анизотропия.

Работа выполнена в рамках программы Президиума РАН "Квантовая физика конденсированных сред", ведомственной целевой программы "Развитие научного потенциала высшей школы (2009–2010)" Минобрнауки РФ № 2.1.1/2503 и поддержана грантом РФФИ (проект № 07-020063а).

1. В последнее время исследования упругих свойств графена хоть и уступают по объему и интенсивности изучению его электронных характеристик [1] или механических свойств углеродных нанотрубок [2], но все же заметно прогрессируют (см., например, [3–9] и ссылки, приведенные там). Среди этих исследований появляются работы, посвященные нелинейности механических характеристик [3,10–13], связанные как с упругостью третьего порядка [3,11–13], так и с влиянием температуры.

В работах Китинга [14,15] для описания двух упругих модулей второго (c_{ij}) и третьего (c_{ijk}) порядков (УП2 и УП3) кристаллов с решеткой алмаза было использовано разложение упругой энергии по параметрам

$$\lambda_{klmn} = \frac{\mathbf{R}_{kl}\mathbf{R}_{mn} - \mathbf{r}_{kl}\mathbf{r}_{mn}}{2a},\tag{1}$$

где $\mathbf{R}_{kl} = (\mathbf{R}_k - \mathbf{R}_l)$ — разница положений *k*-го и *l*-го узлов решетки в деформированном состоянии, $\mathbf{r}_{kl} = (\mathbf{r}_k - \mathbf{r}_l)$ — то же, что и в предыдущем случае, но для недеформированного состояния, 4a — постоянная решетки структуры алмаза. Такое же разложение было использовано в работе [16] для однослойного графена при расчете УП2, описывающих реакцию на деформацию в плоскости графенового листа. В настоящей работе тем же методом вычислены УП3.

2. Представим ангармоническую часть упругой энергии графена в виде только одного члена

$$W_C^{\text{anh}} = \frac{\gamma}{d^4} \sum_{i=1}^3 \left(\mathbf{R}_{0i}^2 - \mathbf{r}_{0i}^2 \right)^3, \tag{2}$$

где γ — ангармоническая силовая константа центрального взаимодействия ближайших соседей, $d = |\mathbf{r}_{0i}|$ — расстояние между ближайшими соседями в графене, "нулевой" атом углерода изображен на рисунке. Поясним, почему в настоящем случае мы ограничиваемся

лишь одной ангармонической константой, тогда как, например, для структуры алмаза Китинг использовал три ангармонических константы: центральную $\gamma < 0$, нецентральную $\delta > 0$ и смешанную $\varepsilon < 0$ [15]. Дело в том, что упругий ангармонизм решетки алмаза описывается шестью независимыми модулями c_{ijk}, тогда как для графена имеется только три модуля c_{iik}. Можно было бы, конечно, включить, как и в гармоническом случае [16], нецентральное взаимодействие W_{NC}^{anh} слагаемые которого имеют вид $(\delta/d^4)(\mathbf{R}_{0i}\mathbf{R}_{0i}+d^2/2)^3$. Как, однако, показано в [15] для кристаллов кремния и германия, силовые констнаты δ и ε близки друг к другу по модулю. Таким образом, использовать в разложении нецентральное взаимодействие, игнорируя смешанное взаимодействие $W_{\text{mix}}^{\text{anh}}$, содержащее слагаемые вида $(\varepsilon/d^4)(\mathbf{R}_{0i}^2 - d^2)(\mathbf{R}_{0i}R_{0j} + d^2/2)^2$, будет, по-видимому, непоследовательно. К тому же, насколько известно автору, величины сі ік для графена никто еще не измерял. Поэтому на данном этапе ограничимся лишь центральным вкладом в ангармонизм вида (2).

Положим $\mathbf{R}_{0i} = \mathbf{r}_{0i} + \delta \mathbf{r}_{0i}$, где деформация $\delta \mathbf{r}_{0i} = d(u_{0i}, v_{0i})$, u_{0i} и v_{0i} — смещения по осям x и y соответственно (ось y направлена вдоль связи 03 от атома 3 к атому 1), выражения для которых приведены в

Структура графена.

работе [16] (см. формулы (2) и (3)). Проводя выкладки, аналогичные проделанным в [15,16], получим

$$\begin{aligned} \frac{W_C^{\text{anh}}}{2\gamma d^2} &= \left[(1.5 - \xi)^3 + 4\xi^3 \right] e_{xx}^3 + \left[(0.5 + \xi)^3 + 4(1 - \xi)^3 \right] e_{yy}^3 \\ &+ 3 \left[(1.5 - \xi)(0.5 + \xi)^2 + 4\xi(1 - \xi)^2 \right] e_{xx} e_{yy}^2 \\ &+ 3 \left[(1.5 - \xi)^2(0.5 + \xi) + 4\xi^2(1 - \xi) \right] e_{xx}^2 e_{yy} \\ &+ 9(1 - 0.5)^2 \left[(1.5 - \xi) e_{xx} + (0.5 + \xi) e_{yy} \right] e_{xy}^2. \end{aligned}$$
(3)

Здесь параметр внутренних смещений Клейнмана дается выражением

$$\xi = \frac{2\alpha - \beta}{4\alpha + \beta},\tag{4}$$

где α и β — силовые константы центрального и нецентрального взаимодействия в гармоническом приближении [16], e_{ij} — компоненты тензора деформации. Введем плотность ангармонической составляющей упругой энергии $w_C^{anh} = W_C^{anh}/S$, где $S = (3\sqrt{3}d^2/4)$ — площадь, приходящаяся на один атом. Сравнивая (3) с выражением (4) работы [12], где ангармоническая составляющая плотности энергии выражена через три независимых упругих постоянных c_{111} , c_{222} и c_{112} , получим

$$c_{111} = (16\gamma/\sqrt{3})[(1.5 - \xi)^3 + 4\xi^3],$$

$$c_{222} = (16\gamma/\sqrt{3})[(0.5 + \xi)^3 + 4(1 - \xi)^3],$$

$$c_{112} = (16\gamma/3\sqrt{3})[(1.5 - \xi)^2(0.5 + \xi) + 4\xi^2(1 - \xi)].$$

(5)

Таким образом, как уже отмечалось в [12], графен изотропен только в гармоническом приближении, ангармонизм же вносит различие в реакцию графена на деформации вдоль осей x и y. Так как $(|c_{111}| - |c_{222}|) \propto [\xi^3 - (1 - \xi)^3]$, при $\xi > 0.5$ имеем $|c_{111}| > |c_{222}|$, тогда как в случае $\xi < 0.5$ получаем $|c_{111}| < |c_{222}|$.

Значения гармонических силовых констант α и β были определены в работе [16] путем сопоставления вычисленных нами УП2 графена

$$c_{11} = \frac{1}{\sqrt{3}} \left(4\alpha + \beta + 18 \frac{\alpha\beta}{4\alpha + \beta} \right),$$

$$c_{12} = \frac{1}{\sqrt{3}} \left(4\alpha + \beta - 18 \frac{\alpha\beta}{4\alpha + \beta} \right), \tag{6}$$

с соответствующими экспериментальными значениями упругих постоянных $c_{11} = 1060$ GPa и $c_{12} = 180$ GPa графита [17], что дало $\alpha = 216$ GPa и $\beta = 211$ Gpa. При этом модуль Юнга E = 1160 GPa (отметим, что в [11] используется значение E = 1131 GPa), параметр внутренних смещений Клейнмана $\xi = 0.206$ и $c_{111} = 20.36\gamma$, $c_{222} = 21.77\gamma$, $c_{112} = 4.05\gamma$, где γ — измеряется в единицах GPa. Таким образом, мы получили соотношения $|c_{111}| < |c_{222}|$, тогда как в работе [12] было получено

противоположное неравенство. Полученное нами отношение УПЗ $c_{111}: c_{222}: c_{112}$ равно 1: 1.07: 0.20, тогда как в [12] это отношение есть 1: 0.88: 0.29.

3. Начнем анализ полученных нами результатов с сопоставления коэффициента Пуассона $\sigma = (3c_{11} - 2c_{44})/2(3c_{11} + c_{44}),^1$ для которого наш расчет дает 0.32 [16], что в точности совпадает с результатом работы [18] и очень близко к значению $\sigma = 0.31$, полученному в [12]. Следует, однако, отметить, что расчеты других авторов дают разброс значений σ от 0.12 до 0.413 (см. подробнее в [12]).

Для сравнения значений УП2 и УП3 с данными авторов [3,12] нужно привести силовые константы α, β, γ к размерности N/m, для чего последнее следует умножить на толщину h графенового слоя. В [13] за величину h был принят диаметр атома углерода, равный 1.54 Å (радиус атома углерода $r_a = 0.77 \text{ \AA}$ [19]). Это дает $\bar{\alpha} = 33.3$ и $\bar{\beta} = 32.5$ N/m [13] и E = 157 N/m (здесь и далее силовые константы и упругие модули, измеренные в единицах N/m, помечены чертой поверх символа). В экспериментальной работе [3], однако, за толщину мембраны h, на которой измерялась упругость, принято значение 3.35 Å. Если принять это значение *h*, то получим $\bar{\alpha}' = 72.4$ и $\bar{\beta}' = 70.7$ N/m. При этом для модуля Юнга $\bar{E}' = 9 \bar{c}'_{11} \bar{c}'_{44} / (3 \bar{c}'_{11} + \bar{c}'_{44})$, где $\bar{c}'/_{44} = (\bar{c}'_{11} - \bar{c}'_{12})/2$ [16], получаем значение 389 N/m, что хорошо согласуется в найденной в [3] величиной $\bar{E}' = 342 \pm 40$ N/m. Здесь необходимо подчеркнуть, что в [3] и [12] связь между напряжением $\hat{\sigma}$ и деформацией $\hat{\varepsilon}$ в плоскости графена задавалась феноменологическим соотношением $\hat{\sigma} = \bar{E}'\hat{\varepsilon} + \bar{D}'\hat{\varepsilon}^2$, где \bar{D}' — эффективный упругий модуль, описывающий нелинейность третьего порядка, рассчитанный в предположении, что h = 3.35 Å.

4. Остановимся подробнее на причинах, по которым в ангармоническом приближении графен становится анизотропной структурой, для чего рассмотрим зависимость УП2 от давления p, действующего в плоскости графенового листа. Под действием p УП2 c_{ijkl} переходят в \tilde{c}_{ijkl} в соответствии с соотношением [20,21]

$$\dot{c}_{ijkl} = c_{ijkl} + c_{ijklrs} s_{rsnm} p_{nm},$$

$$p_{nm} = -p \delta_{nm}.$$
 (7)

Здесь мы перешли от двухиндексовых обозначений УП2 и трехиндексовых обозначений УП3 к четырех- и шестииндексовым обозначениям соответственно $(1 \rightarrow 11, 2 \rightarrow 22 \ [21]), s_{ijkl}$ — упругие податливости изотропного (при p = 0) графена, δ_{nm} — символ Кронекера. Учитывая, что для изотропной среды $s_{1111} = 1/E$ и $s_{1112} = -(\sigma/E) \ [21]$, и возвращаясь к редуцированным

¹ Строго говоря, здесь и в работе [16] вместо $c_{44} = (c_{11} - c_{12})/2$ следовало бы в соответствии с гексагональной номенклатурой писать c_{66} . Мы, однако, использовали кубические обозначения, что приемлемо, так как мы имеем дело с изотропной средой.

обозначениям упругих постоянных, получим из выражения (7) следующие соотношения:

$$\tilde{c}_{11} = c_{11} - (c_{111} + c_{112}) \frac{1 - \sigma}{E} p,$$

$$\tilde{c}_{22} = c_{11} - c_{222} \frac{1 - \sigma}{E} p,$$

$$\tilde{c}_{12} = c_{12} - c_{112} \frac{1 - \sigma}{E} p,$$
(8)

где учтено, что при p = 0 имеет место равенство $c_{11} = c_{22}$. Таким образом, графеновый слой по-разному реагирует на сдавливание вдоль осей x и y. Именно в этом состоит причина того обстоятельства, что в гармоническом приближении графен изотропен, тогда как при учете ангармонизма появляется анизотропия.

Введем безразмерные параметры $\eta_{ij} = d\tilde{c}_{ij}/dp$. Тогда расчет дает следующие результаты: 1) $\eta_{11} =$ $= -2.47 \cdot 10^{-2}\gamma$, $\eta_{22} = -1.28 \cdot 10^{-2}\gamma$, $\eta_{12} = -0.24 \cdot 10^{-2}\gamma$, если γ , \tilde{c}_{ij} и p измеряются в GPa; 2) при $h = 2r_a =$ = 1.54 Å имеем $\eta_{11} = -18.25 \cdot 10^{-2}\gamma$, $\eta_{22} = -9.43 \cdot 10^{-2}\gamma$, $\eta_{12} = -1.75 \cdot 10^{-2}\gamma$, если γ , \tilde{c}_{ij} и p измеряются в N/m; 3) при h = 3.35 [3,12] получаем $\eta_{11} = -3.97 \cdot 10^{-1}\gamma$, $\eta_{22} = -2.05 \cdot 10^{-1}\gamma$, $\eta_{12} = -0.38 \cdot 10^{-1}\gamma$, если γ , \tilde{c}_{ij} и pизмеряются в N/m. Так как $\mu < 0$, все параметры η_{ij} положительны.

Для проверки результатов, полученных в рамках феноменологической модели Китинга, необходимы соответствующие экспериментальные данные. Отметим, что все полученные здесь выражения можно, естественно, использовать и для описания силицена.

Список литературы

- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys. 81, 109 (2009).
- [2] А.В. Елецкий. УФН 177, 233 (2007).
- [3] C. Lee, X. Wei, W. Kysar, J. Hone. Science 321, 385 (2008).
- [4] V.M. Pereira, A.H. Castro Neto, N.M.R. Peres. Phys. Rev. B 80, 045 401 (2009).
- [5] C.D. Reddy, A. Ramasubramaniam, V.B. Shenoy, Y.-W. Zhang. Appl. Phys. Lett. 94, 101 904 (2009).
- [6] Q. Lu, M. Arroyo, R. Huang. J. Phys. D 42, 102 002 (2009).
- [7] S. Bera, A. Arnold, F. Evers, R. Narayanan, P. Wölfle. ArXiv: 1003.4429.
- [8] M. Topsakal, S. Cahangirov, S. Ciraci. ArXiv: 0908.2887.
- [9] С.Ю. Давыдов. ФТТ 52, 172 (2010).
- [10] K.V. Zakharchenko, R. Roldan, A. Fasolino, M.I. Katsnelson. ArXiv: 1006.1534.
- [11] J.-W. Jiang, J.-S. Wang, B. Li. ArXiv: 1001.4112.
- [12] E.C. Cadelano, P.L. Palla, S. Giordano, L. Colombo. Phys. Rev. Lett. **102**, 235 502 (2009).
- [13] С.Ю. Давыдов. ФТТ 52, 1815 (2010).
- [14] P.N. Keating. Phys. Rev. 145, 637 (1966).
- [15] P.N. Keating. Phys. Rev. 149, 674 (1966).
- [16] С.Ю. Давыдов. ФТТ 52, 756 (2010).
- [17] O.L. Blaksly, D.G. Proctor, E.J. Seldin, G.B. Spence, T. Weng. J. Appl. Phys. 41, 3373 (1970).

- [18] G. Zhou, W. Duan, B. Gu. Chem. Phys. Lett. 333, 344 (2001).
- [19] Физические величины. Справочник / Под ред. Е.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991). 1232 с.
- [20] В.Ф. Ноздрев, Н.В. Федорищенко. Молекулярная акустика. Высш. шк., М. (1974). 288 с.
- [21] Дж. Най. Физические свойства кристаллов. Мир, М. (1976). 386 с.