03;04 О структуре функции распределения электронов в *R*-стратах

© Ю.Б. Голубовский, А.Ю. Скобло

Санкт-Петербургский государственный университет Научно-исследовательский институт физики, Санкт-Петербург E-mail: alexey_skoblo@yahoo.com

Поступило в Редакцию 25 января 2007 г.

Выполнены зондовые измерения функции распределения электронов ($\Phi P \Im$) в *R*-стратах в разряде постоянного тока в неоне при низком давлении. Результаты измерений удовлетворительно согласуются с расчетами, основанными на модели формирования $\Phi P \Im$ в *R*-стратах как резонанса с длиной пространственного периода, равной 2/3 от длины *S*-страты.

PACS: 52.70.Ds, 52.80.Hc

Положительный столб разряда постоянного тока в инертных газах в широком диапазоне условий находится в режиме распространения ионизационных волн (страт). При низких давлениях (порядка единиц Torr) и небольших токах (меньших десятков mA) в эксперименте наблюдаются три типа ионизационных волн (S-, P- и R-страты) [1,2]. Они различаются длиной волны L (длиной страты), падением потенциала на длине волны $V_L = E_0L$ (E_0 — среднее продольное поле), частотой v. При этом величина V_L для каждого типа слабо зависит от разрядных условий и определяется только сортом газа. Для S-страт V_L примерно в 2 раза меньше. Для R-страт падение потенциала V_L имеет промежуточное значение около 2/3 от V_L для S-страт. Длины волн для этих типов страт при близких E_0 находятся в таком же соотношении.

Механизм формирования S- и P-страт достаточно подробно изучен в работах [3–9]. Эти работы основаны на представлении о том, что в условиях, когда в балансе энергии электронов доминируют неупругие столкновения с атомами, формирование функции распределения электронов по энергиям (ФРЭ) в пространственно-периодических полях носит резонансный характер. При определенных значениях пространственного периода поля L вследствие эффекта бунчировки ФРЭ при-

78

обретает упорядоченную структуру в виде характерных максимумов, перемещающихся по энергии и по координате вдоль резонансных траекторий [4]. В переменных полная энергия є и продольная координата z ($\varepsilon = w + e\varphi(z)$, w и $e\varphi(z)$ — кинетическая и потенциальная энергии электрона) резонансные траектории близки к прямым $\varepsilon \approx \text{const}$, что соответствует набору электронами энергии вплоть до порога возбуждения атома ε_1 с малыми потерями энергии в упругих столкновениях. При достижении порога возбуждения электроны теряют энергию ε_1 и перескакивают на другую прямую $\varepsilon \approx \text{const} - \varepsilon_1$. Затем процесс повторяется. В случае S-страт электроны набирают энергию ε_1 на длине волны $L = L_S \approx \varepsilon_1/(e_0 E_0)$ (e_0 — элементарный заряд). Из аналитической теории [3-5] следует существование резонансов при $L = L_S/n$, где n = 1, 2, 3 и т.д. Для *P*-страт длина волны $L = L_P = L_S/2$, электроны набирают энергию ε_1 на расстоянии двух длин волн. При этом для S-страт на ФРЭ присутствует один максимум, а для P-страт два. Сравнение результатов измерений ФРЭ в S- и P-стратах [6,8] с расчетами на основе нелокальной кинетики электронов [7,8] показывает хорошее соответствие.

Механизм формирования ФРЭ в *R*-стратах предложен в работе [10], в которой показана возможность существования резонансов при $L = (k/n)L_S$, где k и n — целые числа. В частности, возможен ярко выраженный резонанс при $L = (2/3)L_S$, которому соответствует падение потенциала V_L , близкое к значению V_L для *R*-страт, наблюдаемых в эксперименте. Структура ФРЭ в стратах различных типов иллюстрируется рис. 1, на котором показаны перемещения максимумов на ФРЭ вдоль резонансных траекторий на плоскости (ε , z) для *S*-, *P*- и *R*-резонансов. Жирными участками оси z на рисунке отмечены области сильного поля (перепада $e\varphi(z)$). Для *S*-страт имеет место одна резонансная траектория: AA'A''A''', для *P*-страт — две: AA'A''A''', BB'B''B'''. Для *R*-страт имеются три резонансные траектории: AA'A''A''', вв' B''B''''.

В настоящей работе с целью проверки изложенных представлений о природе *R*-страт выполнены зондовые измерения ФРЭ в *R*-стратах в неоне при давлении $p_0 = (0.72 \pm 0.05)$ Torr (отнесенном к 0°C) и разрядном токе $i_0 = (20.00 \pm 0.05)$ mA, радиус трубки $r_0 = 1$ cm. Для стабилизации частоты и фазы страт осуществлялась малая синусоидальная

Рис. 1. Схемы резонансных траекторий (на плоскости полная энергия ε — координата z), вдоль которых перемещаются максимумы на ФРЭ, для *S*- (*a*), *P*- (*b*) и *R*- (*c*) резонансов [10]. Падения потенциала V_L соответствуют неону (в частности, для *S*-резонанса $V_L \approx 17$ V).

модуляция тока с глубиной модуляции 2% на частоте v = 10.5 kHz, соответствующей *R*-стратам, которые наблюдались при данных разрядных условиях без модуляции. Длина страты равнялась $L = (4.05 \pm 0.10)$ сm, падение потенциала на длине страты $V_L = (13.1 \pm 0.3)$ V. Давление p_0 было выбрано меньшим 1 Тогг, так как при таком давлении структура ФРЭ выражена ярче, максимумы на ФРЭ более узкие, что особенно важно для *R*-страт [10].

Снижение давления до долей Тора приводит к появлению дополнительных трудностей в эксперименте. Частота страт достигает величины $\sim 10 \text{ kHz}$ (при $r_0 = 1 \text{ cm}$), что на порядок выше типичных частот в экспериментах с *S*- и *P*-стратами. При фиксированном разрешении по времени это приводит к уменьшению количества точек на период при измерениях в *R*-стратах и к увеличению погрешности измерения ФРЭ.

Следует заметить, что для *R*-страт лучше выбирать радиус трубки r_0 около 1 ст. При большем радиусе (например, $r_0 = 2$ ст, при котором проводились измерения ФРЭ в *S*- и *P*-стратах в [8]) оказывается трудно получить устойчивые *R*-страты. Поскольку vr_0 — параметр подобия, выбор меньшего r_0 приводит к увеличению частоты страт v.

Кроме того, ожидаемая структура $\Phi P \ni B R$ -стратах (рис. 1, *c*) сама по себе более сложна, чем в *S*- и *P*-стратах (рис. 1, *a*, *b*). Уже поэтому задача экспериментального исследования $\Phi P \ni B R$ -стратах представлялась более сложной, чем в *S*- и *P*-стратах.

Экспериментальная установка была аналогична использованной в работе [8]. В ходе эксперимента измерялись значения зондового тока в зависимости от времени при различных зондовых смещениях U в диапазоне от U_{start} до U_{stop} с шагом 0.1 V. Таким образом, получались зондовые характеристики (ВАХ зонда) в различных фазах страты. Использовался 16-разрядный АЦП с частотой оцифровки 196 608 Hz. На периоде $(1/\nu)$ помещалось около 19 точек.

При низком давлении зонд работает в ленгмюровском режиме, когда справедливо выражение для электронного тока на зонд при $U < U_s$ [11]:

$$i^{e}(U) = \frac{e_{0}S}{2\sqrt{2m_{e}}} \int_{eU}^{\infty} (\varepsilon - eU)F_{0}(\varepsilon - eU_{s})d\varepsilon, \qquad (1)$$

где U — потенциал зонда относительно анода, U_s — потенциал плазмы относительно анода, e и m_e — заряд и масса электрона, $e_0 = |e|$, S — площадь поверхности зонда, $F_0(w)$ — ФРЭ. При решении уравнения (1) верхний предел интегрирования заменялся величиной eU_{stop} .

Задача решения интегрального уравнения (1), как и эквивалентная ей задача дифференцирования по формуле Дрювестейна (Druyvesteyn) [11], является некорректной [12,13]. Малые ошибки в ВАХ зонда ведут к большим ошибкам в ФРЭ. В настоящей работе применен регуляризирующий алгоритм Тихонова [12,13]. Уравнение (1) можно записать в виде $i^e = \hat{K}g$ (где $g(\varepsilon) = F_0(\varepsilon - eU_s), \hat{K}$ — интегральный оператор Фредгольма) и искать решение g путем минимизации функционала $\|\hat{K}g - i^e\|_{L_2}^2$ = min. Метод регуляризации состоит в добавлении стабилизатора $\alpha \|g\|_{W_2^1}^2$ к функционалу $\|\hat{K}g - i^e\|_{L_2}^2$ и замене тем самым некорректной задачи на корректную:

$$\begin{aligned} \left\|\hat{K}g - i^{e}\right\|_{L_{2}}^{2} + \alpha \left\|g\right\|_{W_{2}^{1}}^{2} &= \int_{eU_{start}}^{eU_{stop}} \left(\int_{eU_{start}}^{eU_{stop}} K(eU,\varepsilon)g(\varepsilon)d\varepsilon - i^{e}(eU)\right)^{2} d(eU) \\ &+ \alpha \int_{eU_{start}}^{eU_{stop}} \left(\left(g(\varepsilon)\right)^{2} + \left(\frac{dg(\varepsilon)}{d\varepsilon}\right)^{2}\right)d\varepsilon = \min. \end{aligned}$$
(2)

Задача минимизации функционала (2) корректна при любом $\alpha > 0$. При достаточно малой погрешности ВАХ и достаточно малом параметре α

Рис. 2. Измеренная Φ РЭ $F_0(w, t)$ в *R*-стратах в неоне как функция от кинетической энергии и фазы страты на протяжении одного периода. q — номер точки по времени.

решение регуляризованной задачи (2) близко к точному решению исходной некорректной задачи [12,13].

При измерениях задавалась сетка по eU и ε от eU_{start} до eU_{stop} с шагом 0.1 eV. Задача (2) сводится к поиску минимума квадратичной формы. Получающаяся система линейных уравнений решалась при различных значениях α . Параметр α подбирался так, чтобы невязка $\|\hat{K}g - i^e\|_{L_2}$ имела порядок погрешности ВАХ зонда. В тех фазах страты, когда потенциал $U_s(t)$ менялся быстро, погрешности ВАХ и ФРЭ были в несколько раз больше, чем в тех фазах, когда $U_s(t)$ менялся медленно.

Результаты измерений ФРЭ в *R*-стратах в различных фазах (в различные моменты времени) для рассматриваемых разрядных условий

Рис. 3. Рассчитанная для *R*-резонанса $(L = L_R = (2/3)L_S)$ ФРЭ $f_0(w, z)$ как функция от кинетической энергии и фазы страты на протяжении одного пространственного периода. *q* — номер точки по координате.

приведены на рис. 2. Показан один период, что соответствует 19 точкам по времени. Из рисунка видно, что на ФРЭ имеются максимумы, перемещающиеся по энергии и по фазе страты, т.е. наблюдается структура, типичная для страт в условиях неупругого баланса энергии электронов, когда в силу бунчировки ФРЭ стягивается к перемещающимся максимумам.

Поле, близкое к имеющему место в стратах в реальности, моделировалось зависимостью $E(z) \sim \{\exp[\exp(\sin \frac{2\pi z}{L})] - 1.3\}$. На рис. 3 приведена ФРЭ, рассчитанная в поле такого профиля для давления неона $p_0 = 0.72$ Тогг и среднего поля $E_0 = \langle E(z) \rangle = 3$ V/ст (близкого к реальному), для *R*-резонанса при L = 3.78 ст $\approx (2/3)L_S$ и $V_L = 11.34$ V по методике [10]. Показанная на рис. 3 ФРЭ имеет структуру, типичную

для *R*-резонанса (рис. 1, *c*). А именно, электроны, соответствующие максимуму на ФРЭ, отмеченному на рис. З пунктирной кривой, проходят один период насквозь без неупругого столкновения. Имеются еще два максимума при бо́льших *w*; в точках *A* и *B* они достигают порога возбуждения атома неона $\varepsilon_1 = 16.6$ eV, испытывают скачок (неупругие удары соответствующих электронов), после чего эти два максимума появляются при малых энергиях *w* в точках *A'* и *B'*.

На измеренных ФРЭ максимумы оказываются сильно сглаженными вследствие процедуры регуляризации. В силу наличия погрешностей ВАХ зонда приходится делать параметр α не слишком малым, что приводит к сглаживанию ФРЭ. Особенно сильно это проявляется в тех фазах, когда быстро меняется $U_s(t)$ (q = 7, 8, 17, 18, 19,рис. 2). На измеренной ФРЭ один максимум проходит период насквозь (пунктирная кривая на рис. 2). По-видимому, на ФРЭ присутствуют также два максимума, которые претерпевают скачок от $w \approx 17 \text{ eV}$ к $w \approx 0 \text{ eV}$ (неупругие удары). То, что это именно два максимума, видно на рис. 2 при $q \approx 9-12$, $w \approx 2-7 \text{ eV}$. Согласно рис. 3, в этой фазе ($q \approx 9-12$) эти два максимума на рассчитанной ФРЭ имеют близкие друг к другу величины. Возможно, поэтому в этой фазе эти два максимума на сглаженной ФРЭ видны лучше. В других фазах (например, q > 12) меньший из этих дух максимумов рядом с бо́льшим плохо различим из-за сглаживания ФРЭ при регуляризации.

Итак, с учетом погрешности ФРЭ можно сказать, что измеренная в *R*-стратах ФРЭ удовлетворительно согласуется с рассчитанной для резонанса при $L = (2/3)L_S$. Картина перемещения максимумов на измеренной ФРЭ соответствует схеме на рис. 1, *c*.

Список литературы

- [1] Пекарек Л. // УФН. 1968. Т. 94. В. 3. С. 463-500.
- [2] Зайцев А.А., Савченко И.А. // ЖТФ. 1975. Т. 45. В. 7. С. 1541–1544.
- [3] Růžička T., Rohlena K. // Czech. J. Phys. B. 1972. V. 22. N 10. P. 906–919.
- [4] Цендин Л.Д. // Физика плазмы. 1982. Т. 8. В. 2. С. 400-409.
- [5] Цендин Л.Д. // ЖТФ. 1982. Т. 52. В. 4. С. 635-649.
- [6] Голубовский Ю.Б., Некучаев В.О., Пономарев Н.С., Порохова И.А. // ЖТФ. 1997. Т. 67. В. 9. С. 14–21.
- [7] Sigeneger F., Golubovskii Yu.B., Porokhova I.A., Winkler R. // Plasma Chem. Plasma Process. 1998. V. 18. N 2. P. 153–180.

- [8] Golubovskii Yu.B., Kozakov R.V., Behnke J., Wilke C., Nekutchaev V.O. // Phys. Rev. E. 2003. V. 68. P. 026404.
- [9] Golubovskii Yu.B., Kozakov R.V., Maiorov V.A., Behnke J., Behnke J.F. // Phys. Rev. E. 2000. V. 62. N 2. P. 2707–2720.
- [10] Golubovskii Yu.B., Skoblo A.Yu., Wilke C., Kozakov R.V., Behnke J., Nekutchaev V.O. // Phys. Rev. E. 2005. V. 72. P. 026414.
- [11] Демидов В.И., Колоколов Н.Б., Кудрявцев А.А. Зондовые методы исследования низкотемпературной плазмы. М.: Энергоатомиздат, 1996. 240 с.
- [12] *Тихонов А.Н., Арсенин В.Я.* Методы решения некорректных задач. М.: Наука, ГРФМЛ, 1979. Изд. 2-е, перераб. и доп. 288 с.
- [13] Калиткин Н.Н. Численные методы. М.: Наука, ГРФМЛ, 1978. 512 с.