0.6 Получение и исследование непрерывного твердого раствора $(Si_2)_{1-x-y}(Ge_2)_x(GaAs)_y$

© А.С. Саидов, Ш.Н. Усмонов, К.Т. Холиков, Д. Сапаров

Физико-технический институт АН РУз, Ташкент, Узбекистан E-mail: Sh_usmonov@rambler.ru

Поступило в Редакцию 12 января 2007 г.

Методом жидкофазной эпитаксии из ограниченного объема свинцового раствора-расплава выращивались эпитаксиальные слои непрерывного твердого раствора $(Si_2)_{1-x-y}(Ge_2)_x(GaAs)_y$ ($0 \le x \le 0.9$ и $0 \le y \le 0.92$) *р*-типа проводимости на *n*-Si подложках. Определен профиль распределения атомов по глубине в твердом растворе $(Si_2)_{1-x-y}(Ge_2)_x(GaAs)_y$. Исследованы спектральные зависимости фоточувствительности $nSi-p(Si_2)_{1-x-y}(Ge_2)_x(GaAs)_y$ структур.

PACS: 81.05.-t, 78.20.-e, 81.05.Hd

Исследование возможности выращивания твердых растворов на основе соединений C^{IV} и $A^{III}B^V$ на более дешевых подложках, таких как монокристаллический кремний, методом жидкофазной эпитаксии являтся перспективным; при этом весьма важны оптические исследования полученных структур.

В данном сообщении приводятся экспериментальные результаты исследования непрерывных твердых растворов $(Si_2)_{1-x-y}(Ge_2)_x(GaAs)_y$. Слои выращивались методом жидкофазной эпитаксии из ограниченного двумя горизонтально расположенными подложками объема растворарасплава по технологии, описанной в работе [1]. Подложками служили кремниевые шайбы толщиной $\approx 400 \,\mu$ m, вырезанные из монокристаллического стержня кремния *n*-типа проводимости, выращенного методом Чохральского, с диаметром 20 mm и удельным сопротивлением $\rho \approx 0.5 \,\Omega \cdot \text{сm}$. Состав раствора-расплава был получен на основе предварительных исследований системы Si-Ge-GaAs-Pb и литературных данных [2-4]. Рост эпитаксиального слоя осуществлялся из свинцового раствора-расплава в атмосфере очищенного палладием водорода. При этом эпитаксиальные слои имели *p*-тип проводимости. Во время роста эпитаксиального слоя варьировались параметры технологического

59

процесса: температура начала кристаллизации *T*, скорость принудительного охлаждения *v*, зазор между подложками *d* и компонентный состав раствора-расплава. При оптимальном режиме, когда $T \approx 850^{\circ}$ С, $v \approx 1$ grad/min и $d \approx 1 \div 1.5$ mm, эпитаксиальные слои были совершенными и имели зеркально-гладкую поверхность. В зависимости от параметров технологического процесса толщина выращенных слоев варьировалась в пределах $25 \div 50 \, \mu$ m.

В работе [5] автором было представлено условие образования непрерывного твердого раствора в многокомпонентной системе типа A₂, AB, CD (A, B — элементы IV группы, CD — III–V или II–VI) в следующем виде:

$$\Delta Z_i = (Z_A + Z_B) - (Z_C + Z_D) = 0, \tag{1}$$

$$\Delta r_i = (r_A + r_B) - (r_C + r_D) < 0.1(r_A + r_B), \tag{2}$$

где Z_i — валентность, r_i — ковалентный радиус атомов компонента *i*. Условие (1) предусматривает изовалентность компонентов, что выполняется для системы Si-Ge, (Si₂)–GaAs и (Ge₂)–GaAs. Условие (2) предусматривает рекомбинационную пассивность примесей; когда оно выполняется, взаимное замещение атомов молекул компонентов в многокомпонентной системе не приводит к сильной деформации кристаллической решетки. В таком случае сечения захвата неравновесных носителей заряда атомами примесей не сильно отличаются от сечений захвата неравновесных носителей заряда атомами базового полупроводника. Суммы ковалентных радиусов атомов молекул $r_{Si_2} = 2.34$ Å, $r_{Ge_2} = 2.44$ Å, $r_{SiGe} = 2.39$ Å, $r_{GaAs} = 2.44$ Å близки, поэтому для системы Si-Ge, (Si₂)–GaAs и (Ge₂)–GaAs условие (2) выполняется удовлетворительно. Компоненты такой системы могут образовать непрерывный твердый раствор замещения в виде $(Si_2)_{1-x-y}(Ge_2)_x(GaAs)_y$.

На рентгеновском микроанализаторе "Jeol" JSM 5910 LV-Јарап были проведены исследования химического состава поверхности и скола выращенных эпитаксиальных слоев $(Si_2)_{1-x-y}(Ge_2)_x(GaAs)_y$. Результаты рентгеновского микроанализа и растровых картин показывают, что на подложке Si из жидкой фазы раствора-расплава Si–Ge–GaAs–Pb начинается рост твердого раствора Si_{1-x}Ge_x с постепенным увеличением процентного содержания Ge. Когда атомарное содержание Ge в твердом растворе Si_{1-x}Ge_x достигает значения около 10% (Si_{0.9}Ge_{0.1}), в кристаллическую решетку внедряются молекулы GaAs. Далее с ростом

Рис. 1. Профиль распределения атомов Si, Ge, Ga, As в эпитаксиальном слое твердого раствора $(Si_2)_{1-x-y}(Ge_2)_x(GaAs)_y$.

эпитаксиального слоя атомарное содержание как Ge, так и GaAs увеличивается.

Анализ растровых картин поверхности и скола эпитаксиальных слоев показывает, что распределение компонентов по поверхности слоя однородное и в объеме твердого раствора $(Si_2)_{1-x-y}(Ge_2)_x(GaAs)_y$ изменяется в пределах $x = 0 \div 0.9$ и $y = 0 \div 0.92$. Профиль распределения атомов Si, Ge, Ga, As в эпитаксиальном слое показан на рис. 1.

Были также исследованы спектральные зависимости фоточувствительности структуры $n\operatorname{Si} - p(\operatorname{Si}_2)_{1-x-y}(\operatorname{Ge}_2)_x(\operatorname{GaAs})_y$ от толщины эпитаксиального слоя. Эти зависимости приведены на рис. 2. Поскольку содержание компонентов в эпитаксиальном слое по толщине меняется непрерывно, спектральные зависимости снимались при различных значениях толщины слоев. Уменьшение толщины осуществлялось механической шлифовкой. Спектральные зависимости, приведенные на рис. 2, *a*, снимались при толщине эпитаксиального слоя $\approx 12 \,\mu$ m для одной серии образцов твердого раствора с распределением компонентов на поверхности пленки Si_{0.69}Ge_{0.28}(GaAs)_{0.03}. Для сравнения на рисунке приведена спектральная зависимость $n\operatorname{Si} - p\operatorname{Si}$ структуры (кривая 2, рис. 2, *a*). Видно, что молекулы GaAs обусловливают повышение чувствительности структуры в коротковолновой области спектра с

Рис. 2. Спектральная зависимость фоточувствительности: a — структуры $n\text{Si} - p(\text{Si}_2)_{1-x-y}(\text{Ge}_2)_x(\text{GaAs})_y$ с $x = 0 \div 0.28$, $y = 0 \div 0.03$ (1); nSi - pSi (2), топщины эпитаксиальных слоев $12\,\mu\text{m}$; b — структуры $n\text{Si} - p(\text{Si}_2)_{1-x-y}(\text{Ge}_2)_x(\text{GaAs})_y$ при различных значениях толщины эпитаксиального слоя: $1 - d = 50\,\mu\text{m}$; $2 - d = 10\,\mu\text{m}$; $3 - d = 5\,\mu\text{m}$. 4 -для структуры nSi - pSi с толщиной эпитаксиального слоя $12\,\mu\text{m}$.

Рис. 3. Энергетическая зонная диаграмма SiGe с примесным валентно-зонным уровнем *E*_{*i*,GaAs}.

энергией квантов $hv \ge 1.45 \, \text{eV}$. Наблюдается также расширение спектральной чувствительности в длинноволновую сторону, обусловленное присутствием германия. Для другой серии образцов спектральные зависимости снимались при различных значениях толщины эпитаксиального слоя. Эти зависимости приведены на рис. 2, b. Кривая 1 (рис. 2, b) соответствует толщине слоя 50 µm с распределением компонентов на поверхности пленки Si_{0.005}Ge_{0.075}(GaAs)_{0.92}. Видно, что при больших значениях содержания широкозонной компоненты GaAs (90 mol.%) наблюдается подъем чувствительности в коротковолновой области спектра, а с уменьшением содержания GaAs наблюдается постепенный спад чувствительности в коротковолновой области. При небольших значениях, около $1 \div 3\%$ содержания GaAs, наблюдается пик чувствительности с энергией квантов $hv \approx 1.55 \,\text{eV}$ (кривая 2, рис. 2, b). При содержании GaAs, меньшем 1%, пик исчезает и наблюдается спад в коротковолновой области спектра (кривая 3, рис. 2, b). В этом случае также наблюдается расширение области спектральной чувствительности в длинноволновую сторону, обусловленное германием.

Появление пика чувствительности в коротковолновой области спектра с энергией квантов $hv \approx 1.55 \,\text{eV}$, возможно, обусловлено уровнем GaAs, лежащим на 0.7 eV ниже потолка валентной зоны твердого раствора SiGe (рис. 3).

Таким образом, экспериментальные результаты показывают, что выращенный эпитаксиальный слой $(Si_2)_{1-x-y}(Ge_2)_x(GaAs)_y$ ($0 \le x \le 0.9$

и $0 \le y \le 0.9$) является варизонным с высокой фоточувствительностью в широком спектральном диапазоне (по сравнению с Si) как в длинноволновой, так и в коротковолновой области спектра излучения. При значениях концентрации около $1 \div 3 \text{ mol.}\%$ GaAs в твердом растворе $(\text{Si}_2)_{1-x-y}(\text{Ge}_2)_x(\text{GaAs})_y$ имеется примесный уровень, расположенный в валентной зоне $\text{Si}_{1-x}\text{Ge}_x$.

Работа выполнена в рамках задания гранта Ф-2-152, Физика фундаментальных исследований ЦН и Т Руз.

Список литературы

- Saidov A.S., Razzakov A.Sh., Risaeva V.A., Koschanov E.A. // Materials chemistry and physics. 2001. V. 68. P. 1–6.
- [2] Андреев В.М., Долгинов Л.М., Третьяков Д.Н. Жидкостная эпитаксия в технологии полупроводниковых приборов. М.: Сов. радио, 1975. С. 328.
- [3] Хансен М., Андерко К. Структуры двойных сплавов. Т. П. М.: Металлургиздат, 1962.
- [4] *Саидов А.С., Саидов М.С., Кошчанов Э.А.* Жидкостная эпитаксия компенсированных слоев арсенида галлия и твердых растворов на его основе. Ташкент: Фан, 1986. С. 127.
- [5] Саидов М.С. // Гелиотехника. 1997. № 5-6. С. 57-67.