05.4

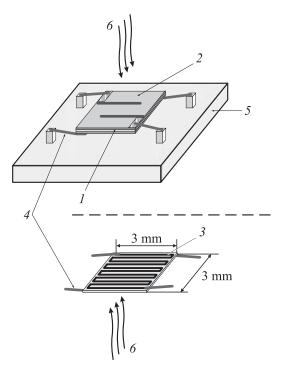
Шумовые и структурные свойства высокотемпературных сверхпроводниковых пленок и расчетное моделирование характеристик болометров на их основе

© Д.А. Хохлов, И.А. Хребтов, С.В. Барышев, А.В. Бобыль, А.А. Иванов, Д.А. Николаев

Государственный оптический институт им. С.И. Вавилова, С.-Петербург Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: lolapalooza@mail.ru

E-maii. ioiapaiooza@maii.ru

Московский инженерно-физический институт


Санкт-Петербургский государственный электротехнический университет

Поступило в Редакцию 8 ноября 2006 г.

Проведены структурные, электрофизические и шумовые исследования эпитаксиальных ВТСП-пленок YBa₂Cu₃O_{7-x}, выращенных с помощью импульсного лазерного и магнетронного напыления на диэлектрических подложках CeO₂/Al₂O₃, LaAlO₃. Используя экспериментально полученные параметры: напряжение шума V_n ; сопротивление R_b и температуру T_b в рабочей точке и др. — рассчитаны основные характеристики болометров на основе этих пленок для абсолютной радиометрии синхротронного излучения в диапазоне 150–3000 eV. В частности, оценка прогнозируемой величины эквивалентной мощности шума $NEP_{\Sigma} = 8 \cdot 10^{-11} - 1.3 \cdot 10^{-10} \, \text{W/Hz}^{0.5}$ демонстрируют возможность использования таких пленок для создания высокоточного абсолютного радиометра, способного регистрировать сигналы мягкого рентгеновского синхротронного излучения в широком диапазоне частот мощностью около $1\,\mu$ W с точностью измерения не хуже 1%.

PACS: 74.72.Bk, 85.25.Am, 85.25.Oj

Разработка эталонного приемника для метрологии синхротронного излучения (СИ) является одной из актуальных современных проблем метрологии [1]. Создание абсолютного СИ-радиометра на основе пленочного высокотемпературного сверхпроводникового (ВТСП) болометра с электрическим замещением, работающего при температуре

Рис. 1. Устройство чувствительного элемента YBCO-болометра с электрическим замещением для СИ-радиометра.

жидкого азота, — один из основных вариантов ее решения. При этом радиометр должен обладать высокочувствительным приемником, способным регистрировать излучение мощностью около 1μ W, с точностью измерения не хуже 1% в спектральном диапазоне от 150 до 3000 eV. Схематично чувствительный элемент радиометра — ВТСП-болометр с электрическим замещением представляет собой подложку из сапфира (или алюмината лантана Al_2O_3) толщиной $50\,\mu$ m I, на лицевую сторону которой напылен NiCr — пленочный нагреватель 2, а на обратную — ВТСП-термометр ($YBa_2Cu_3O_{7-x}$ пленка в виде меандра 3) (рис. 1). Для достижения высокой чувствительности необходимо использовать такую конструкцию, когда чувстительный элемент подвешен на тонких

металлических проволоках из Au или W 4 к массивному Cu — основанию 5, контактирующему с дном азотного криостата. Измерения основываются на сравнении эффекта нагрева болометра поглощенным излучением 6 в сапфировой подложке с эффектом изменения электрической мощности NiCr нагревателя, связанного системой обратной связи с термометром [2].

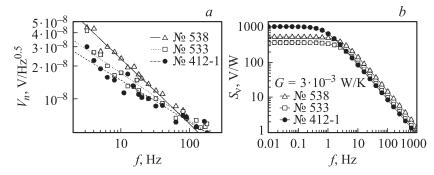
В настоящей работе приведены результаты ряда экспериментов для эпитаксиальных пленок YBCO, проведенных для оптимизации технологии роста и последующего изготовления наиболее подходящего термометра составного болометра для абсолютной радиометрии. Так же были проведены модельные расчеты основных характеристик болометра с использованием экспериментально полученных параметров этих YBCO-пленок.

В работе использовались эпитаксиальные пленки $YBa_2Cu_3O_{7-x}$, выращенные при помощи двух различных технологий роста на разных диэлектрических подложках, Al_2O_3 с буферными слоями CeO_2 (образцы N_2 533 и 538) и $LaAlO_3$ (образец N_2 412-1).

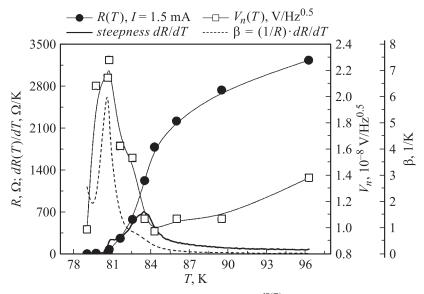
Технология импульсного лазерного напыления эпитаксиальных пленок имеет следующую схему. Исходный материал керамической мишени $YBa_2Cu_3O_{7-x}$ стехиометрического состава распылялся в окислительной среде N_2O давлением 0.4 mm Hg сфокусированным излучением эксимерного лазера KrF и осаждался на нагретую до $730^{\circ}C$ подложку Al_2O_3 (1-102) с буферными слоями CeO_2 (001), обеспечивающую эпитаксиальный рост пленки из осажденного слоя. Длина волны лазерного излучения составляла 248 nm, мощность 80 mJ/pulse, длительность импульсов 15 ns, частота следования импульсов 5-20 Hz.

Пленки на подложках LaAlO₃ выращивались путем магнетронного распыления мишеней стехиометрического состава (1:2:3) в смеси газов Ar/O при давлении 40 Pa и температуре подложки 750°C [3].

Для изучения структурных свойств YBCO-пленок использовались методы растровой электронной микроскопии (PЭM) и рентгеноструктурного анализа [4]. Последний метод дает наиболее полную информацию о структурных параметрах ВТСП-образцов, их влиянии на шумовые характеристики и степени эпитаксиальных пленок. В табл. 1 приведены основные структурные параметры для образцов № 538 и 533, где размер оси c элементарной ячейки YBCO и область когерентного рассеяния (средний размер микрокристаллита в поликристаллической матрице пленки) отвечают за структурное совершенство ВТСП пленок;


Таблица 1. Структурные данные для образцов № 538 и 533

Номер образца	538	533
Параметр элементарной ячейки — c Область когерентного рассеяния Величина флуктуации внутренних напряжений $\langle \varepsilon \rangle$ Разориентация осей c подложки и пленки	11.693 Å 257 nm 5 · 10 ⁻³ 0.03 ⁰	11.700 Å 218 nm 5.7 · 10 ⁻³ 0.015 ⁰


 $\langle \varepsilon \rangle = \sqrt{\left\{ \left(\frac{c-c_0}{c} \right)^2 \right\}}$ — среднеквадратичное отклонение параметра c от его номинального значения c_0 (11.66 Å) в объемном монокристалле YBCO. Незначительная разориентация осей c подложки и пленки свидетельствует о высокой степени эпитаксиальности выращенных пленок.

Применение РЭМ, в свою очередь, позволило изучить морфологию поверхности образцов и с достаточно высокой точностью оценить их толщины.

Так же были проведены сравнительные экспериментальные исследования электрофизических и шумовых характеристик образцов (рис. 2, a, табл. 2). Для всех образцов в области сверхпроводящего перехода наблюдался избыточный фликкер-шум типа $1/f^a$ в диапазоне частот

Рис. 2. a — зависимости напряжения шума V_n от частоты для различных образцов ВТСП-пленок. На графике так же проведена линейная аппроксимация зависимостей $V_n(f)$; b — рассчитанные зависимости вольт-ваттной чувствительности от рабочей частоты модуляции потока излучения для болометров на основе образцов № 538, 533, 412-1 при $G = 3 \cdot 10^{-3}$ W/K.

Рис. 3. Зависимость сопротивления, крутизны $\frac{dR(T)}{dT}$, температурного коэффициента сопротивления ($\beta=\frac{1}{R(T)}\frac{dR(T)}{dT}$), напряжения шума от температуры для образца № 533, выполненного для $f=10\,\mathrm{Hz}$.

1-200 Hz. Коэффициент a лежал в пределах от 0.8 до 1.2. Наименьшим шумом обладали пленки, выращенные на подложках LaAlO₃, для них шумовой параметр Хоуге (α_H) был на порядок меньше, чем для пленок на подложках CeO_2/Al_2O_3 :

$$\alpha_H = \frac{V_n^2 N V f^a}{(IR)^2},\tag{1}$$

где N — концентрация носителей заряда в пленке; V=tA,t — толщина пленки, A — площадь пленки; f — рабочая частота модуляции потока излучения; I,R — ток и сопротивление образца.

При создании болометра и выборе режима его работы необходимо знать зависимость напряжения шума от температуры и сопротивления на переходе. В качестве примера рис. З демонстрирует, что для образца № 533 шум принимает свое максимальное значение в начале перехода, а в максимуме крутизны, т.е. в предполагаемой рабочей

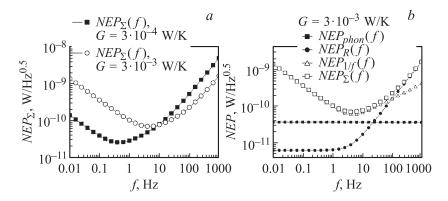
точке болометра, почти минимален, что выгодно с точки зрения получения оптимального отношения сигнал/шум. При измерениях электрофизических параметров ток составлял 1.5 mA; шумовые измерения проводились на частоте 10 Hz.

Используя полученные экспериментальные данные, было проведено расчетное моделирование наиболее важных характеристик YBCO-болометра (см. также табл. 2).

1. Вольт-ваттная чувствительность S_{ν} .

Для болометра, работающего при постоянном токе смещения, т.е. в режиме с положительной электротепловой обратной связью, вольтваттная чувствительность S_{ν} равна:

$$S_{\nu} = \frac{\varepsilon L_0}{I_b (1 - L_0) (1 + \omega^2 \tau_e^2)^{1/2}},$$
 (2)


где ε — коэффициент поглощения приемника (в расчетах принимался за единицу); $L_0=\beta\,P_b/G$ — коэффициент обратной связи; $P_b=I_b^2\,R_b$ — мощность смещения болометра; I_b — расчетный ток смещения болометра; R_b — сопротивление болометра в рабочей точке; G — тепловая проводимость; $\omega=2\pi f$ — круговая частота; $\tau_e=\tau_0/(1-L_0)$ — эффективное значение постоянной времени; τ_0 — тепловая постоянная времени. Для стабильной работы L_0 должен быть меньше 1; $L_0=0.3$ выбирается как близкий к оптимуму. Расчетные зависимости $S_v(f)$ для болометров на основе исследованных образцов представлены на рис. 2,b.

2. Эквивалентная мощность шума NEP_{Σ} .

Выражение, показывающее вклад различных источников шума в эквивалентную мощность шума, дано в работе [5] и записывается в следующем виде:

$$NEP_{\Sigma} = \left\langle \frac{4\kappa T_b^2 G}{\varepsilon^2} + \left(\frac{4\kappa T_b G^2}{\varepsilon^2 \beta^2 P_b} + \frac{G^2 \alpha_H}{\varepsilon^2 \beta^2 N A t f^a} \right) \left[1 + \omega^2 \tau_0^2 \right] \right\rangle^{1/2}. \quad (3)$$

В (3) первая компонента зависит от фононного шума (NEP_{phon}) , вторая — от джонсоновского шума (NEP_R) и третья компонента зависит от 1/f-шума $(NEP_{1/f})$. Заметим, что NEP_R и $NEP_{1/f}$ зависят от тепловой постоянной времени τ_0 , а не от τ_e , как это характерно для S_{ν} . Вычисления были проведены в диапазоне частот модуляции излучения $0.001-1000\,\mathrm{Hz}$ при значениях тепловой проводимости $G=3\cdot 10^{-4}$ и $3\cdot 10^{-3}\,\mathrm{W/K}$.

Рис. 4. a — зависимости результирующей NEP_{Σ} от рабочей частоты модуляции потока излучения для болометра на основе образца № 533 при $G=3\cdot 10^{-4}$ и $3\cdot 10^{-3}$ W/K; b — расчетные зависимости NEP от рабочей частоты модуляции потока излучения различных составляющих шума для болометра на основе образца № 533 при $G=3\cdot 10^{-3}$ W/K.

Из рис. 4,a видно, что при увеличении тепловой проводимости NEP_{Σ} увеличивается на частотах, меньших $10\,\mathrm{Hz}$, и уменьшается за счет джонсоновской составляющей на частотах, больших $10\,\mathrm{Hz}$. Проведенный сравнительный анализ влияния основных источников шума на эквивалентную мощность шума NEP (рис. 4,b) показал, в частности, что NEP_{Σ} главным образом должен определяться фликкер-шумом, который является основной причиной ограничения чувствительности болометра; и только на частотах выше $100\,\mathrm{Hz}$ начинает сказываться вклад джонсоновского шума.

Расчеты, приведенные в работе [6], показали, что режим с отрицательной электротепловой обратной связью дает возможность уменьшить постоянную времени, поддерживая низкую NEP_{Σ} , близкую к ограниченной фононным шумом. Это позволяет работать на модулированном потоке синхротронного излучения, уменьшая влияние температурного дрейфа в криостате на точность измерения.

В заключение, проведены анализ экспериментальных данных для пленок YBCO и расчетное моделирование основных характеристик бо-

Таблица 2. Экспериментальные характеристики YBCO-пленок и расчетные параметры болометров на их основе

№ образца	538	533	412-1
Тип подложки и буфера	CeO ₂ /Al ₂ O ₃	CeO ₂ /Al ₂ O ₃	LaAlO ₃
Толщина YBaCuO, nm	500	500	200

Экспериментальные характеристики YBaCuO пленок

$R_{300\mathrm{K}},\mathrm{k}\Omega$	9.6	11.1	20.7
T_b , K	91.3	83.47	87.85
R_b ,k Ω	1.21	1.2	3.08
$\gamma_{\rm max},~\Omega/{ m K}$	1524	714	5945
β , 1/K	1.26	0.6	1.93
α_H ; a	3.77; 1.18	1.29; 0.85	0.12; 0.8

Рассчитанные параметры YBaCuO болометров

			$3 \cdot 10^{-4}$			
τ_0/f_{cut} , s/Hz	0.41/0.39	0.04/3.93	0.41/0.39	0.04/3.93	1.38/0.12	0.14/1.15
$I_b, \mu A$	243.5	769.9	354.1	1120	123.1	389.4
S_{ν} , V/W	48.4		33.28			
			$4.4 \cdot 10^{-9}$			
NEP_{Σ} , W/Hz ^{0.5}	$8.1 \cdot 10^{-11}$	$7.8 \cdot 10^{-11}$	$1.3 \cdot 10^{-10}$	$1.3 \cdot 10^{-10}$	$1.5 \cdot 10^{-10}$	$8.3 \cdot 10^{-11}$

 T_b и R_b — температура и сопротивление ВТСП-пленки в максимуме крутизны; γ_{\max} — максимальное значение крутизны; a и α_H определены в максимуме крутизны; f_{cut} — частота среза; NEP_{Σ} — результирующая мощность, эквивалентная шуму. Величины S_{v} , V_n , NEP_{Σ} приведены для частоты модуляции потока излучения, равной 10 Hz. Расчетные параметры вычислены для режима работы болометра с постоянным током.

лометра на их основе. Оценка прогнозируемой величины эквивалентной мощности шума $NEP_{\Sigma}=8\cdot 10^{-11}-1.3\cdot 10^{-10}~\mathrm{W/Hz^{0.5}}$ демонстрирует возможность использования таких пленок для создания высокоточного абсолютного радиометра, способного регистрировать сигналы мягкого рентгеновского синхротронного излучения в широком диапазоне частот мощностью около $1\,\mu\mathrm{W}$ с точностью измерения не хуже 1%.

Работа выполнена в рамках проекта МНТЦ № 2920.

Список литературы

- [1] Rabus H., Persch V., Ulm G. // Appl. Opt. 1997. V. 36 (22). P. 5421.
- [2] Rice J.P. // Metrologia. 2000. V. 37. P. 433.
- [3] *Karmanenko S.F., Nikolaev D.A.* et al. // IEEE International students seminar on MW applications of Novel Physical Phenomena. St. Petersburg Electrotechnichal University, 2002. P. 13.
- [4] Bobyl A.V., Gaevskii M.E., Karmanenko S.F., Kutt R.N., Suris R.A. // J. Appl. Phys. 1997. V. 82. N 3. P. 1274.
- [5] Khrebtov I.A., Malyarov V.G., Ivanov K.V., Khokhlov D.A. et al. // Proc. of 7th International Workshop on Low Temperature Electronics, WOLT-7. Noordwijk, Netherlands, ESA. 2006. V. WPP-264. P. 217.
- [6] Lee T., Richards P.L. et al. // Appl. Phys. Lett. 1996. V. 69. P. 1801.