06,11 Диэлектрические свойства перовскитной керамики твердых растворов (1 - x)ВіFеO₃-x (КВі)_{1/2}TiO₃ (0.4 < x < 0.85) по данным импеданс-спектроскопии

© А.В. Пушкарев, Н.М. Олехнович, Ю.В. Радюш

Научно-практический центр по материаловедению НАН Беларуси, Минск, Беларусь

E-mail: pushk@ifttp.bas-net.by

(Поступила в Редакцию 8 июля 2010 г.)

Приводятся результаты исследования диэлектрических свойств керамики твердых растворов (1-x)ВіFеO₃-x(KBi)_{1/2}TiO₃ (0.4 < x < 0.85) с ромбической структурой по данным температурной импеданс-спектроскопии в области частот 25–10⁶ Hz. Показано, что для данных твердых растворов наблюдается размытый сегнетоэлектрический фазовый переход. Определена температура Кюри, которая лежит в области 620–640 К. Найдены величины энергии активации релаксации диэлектрической поляризации (ΔE_M) и носителей заряда постоянного тока (ΔE_{dc}). Установлено, что ΔE_{dc} в районе 460 К скачкообразно увеличивается при переходе в область более высоких температур.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (грант Ф09MC-005).

1. Введение

В связи с поиском новых оксидных сегнетоэлектрических и пьезоэлектрических материалов с высокой температурой Кюри и не содержащих токсичного оксида свинца значительное внимание уделяется исследованию висмутосодержащих систем со структурой перовскита (см., например, [1–4]), которые рассматриваются как альтернатива материалам, созданным на основе PbO. Из-за сходства электронной конфигурации катионов Bi³⁺ и Pb²⁺ в Bi-содержащих перовскитах, как правило, имеет место дипольное упорядочение.

Феррит висмута (BiFeO₃), как известно, является магнитным сегнетоэлектриком, проявляющим в широкой области температур дипольное и магнитное упорядочение. Данное соединение характеризуется высокой температурой Кюри T_C , составляющей примерно 1100 K, и высокой температурой Нееля ($T_N = 640$ K). Кристаллическая решетка BiFeO₃ при комнатной температуре соответствует полярной ромбоэдрически искаженной структуре перовскита (пространственная группа R3c) [5].

Соединение (KBi)_{1/2}TiO₃ является сегнетоэлектриком с температурой Кюри $T_C = 650$ К. Кристаллическая перовскитная решетка данного соединения при комнатной температуре тетрагонально искажена (пространственная группа *P4bm*) без заметного упорядочения ионов в кубооктаэдрических позициях. При температуре около 540 К наблюдается фазовый переход в псевдокубическую структуру. Фаза с такой структурой проявляет аномальные диэлектрические свойства [6,7].

В настоящей работе приводятся результаты исследования диэлектрических свойств твердых растворов (1 - x)ВіFeO₃-x(KBi)_{1/2}TiO₃ в области составов

0.4 < *x* < 0.85 с ромбической структурой по данным импеданс-спектроскопии.

2. Методика эксперимента

(1-x)BiFeO₃-Твердые растворы системы $x(KBi)_{1/2}TiO_3$ синтезировались из смеси порошков оксидов Bi₂O₃, Fe₂O₃, TiO₂ и карбоната K₂CO₃ марки осч. Получаемая после помола смесь порошков реагентов служила исходной шихтой для синтеза, который проводился в три этапа. На первом этапе спрессованная в таблетки исходная шихта подвергалась термической обработке в закрытом корундовом тигле в атмосфере паров Bi₂O₃ при температурах 1140 К (0.2-0.5 h) и 1270 К (2 h). Второй и третий этапы синтеза проводились при 1140-1320 К (1-2 h). Конечный продукт после указанных трех этапов синтеза, как показал рентгенофазовый анализ, представлял собой твердый раствор с ромбической перовскитной структурой с параметрами элементарной ячейки $a \approx a_p, \ b \approx \sqrt{2a_p}$ и $c \approx \sqrt{2a_p}$, где a_p — параметр элементарной ячейки кубической перовскитной решетки. Следует отметить, что твердые растворы в области составов с x < 0.4 и x > 0.85 кристаллизуются соответственно в ромбоэдрической и тетрагональной структурах подобно крайним соединениям BiFeO3 и (KBi)_{1/2}TiO₃. Для создания плотной керамики твердых растворов из порошка, полученного после третьего этапа, прессовались таблетки при 2-3 GPa, которые затем отжигались при 1300 К в течение 2-4 h.

Диэлектрические характеристики керамики твердых растворов определялись по параметрам комплексного импеданса Z^* , измеренным для образцов-конденсаторов с серебряными электродами с использованием измерите-

ля иммитанса E7-20, при шаговом изменении частоты f измерительного поля в 1 V от 25 до 10⁶ Hz. При каждой заданной температуре в интервале от 290 до 950 K в автоматическом режиме измерялись модуль Z и угол фазового сдвига φ комплексного импеданса для исследуемого конденсатора в указанном частотном диапазоне. По измеренным значениям Z и φ определялись действительная σ'' и мнимая σ'' составляющие удельной электропроводности

$$\sigma^* = \sigma'(f) + j\sigma''(f) = \frac{l}{s} Z^{*-1}, \qquad (1)$$

где *s* и *l* — площадь и толщина плоского конденсатора соответственно, $j = \sqrt{-1}$.

Из диаграммы $\sigma'' - \sigma'$ в области низких частот определялась величина удельной электропроводности керамики на постоянном токе σ_{dc} при разных температурах. По величиниам σ'' , σ' и σ_{dc} находились действительная M'_{ac} и мнимая M''_{ac} составляющие комплексного электрического модуля, связанные только с диэлектрической поляризацией, т. е. при исключении вклада σ_{dc} [8]:

$$M_{\rm ac}^{\prime\prime} = \varepsilon_0 \omega \sigma^{\prime\prime} / \left((\sigma^\prime - \sigma_{\rm dc})^2 + \sigma^{\prime\prime 2} \right), \tag{2}$$

$$M_{\rm ac}^{\prime\prime} = \varepsilon_0 \omega (\sigma^\prime - \sigma_{\rm dc}) / \left((\sigma^\prime - \sigma_{\rm dc})^2 + \sigma^{\prime\prime 2} \right), \qquad (3)$$

где $\omega = 2\pi f$, ε_0 — электрическая постоянная.

Для оценки характеристик диэлектрического отклика керамики анализировались частотные зависимости $M'_{\rm ac}(f)$, $M''_{\rm ac}(f)$ и диаграмма $M''_{\rm ac}-M'_{\rm ac}$ на комплексной плоскости.

3. Результаты и их обсуждение

Как показали результаты исследований, частотные зависимости $\sigma'(f)$ и $\sigma''(f)$ при разных температурах имеют различный характер. На рис. 1 для иллюстрации представлены данные для керамики 0.2BiFeO₃-0.8(KBi)_{1/2}TiO₃. Видно, что зависимость $\lg \sigma''$ от $\lg f$ при низких температурах является практически линейной. При переходе в область более высоких температур в низкочастотной области наблюдается более крутое возрастание $\lg \sigma''$. Поведение действительной составляющей удельной электропроводности σ' по сравнению с σ'' имеет свои особенности. Как видно из рис. 1, отклонение от линейности зависимости $\lg \sigma'(\lg f)$ проявляется даже при низких температурах. При повышении температуры кривые $\lg \sigma'$ в области низких частот выходят на плато. Данный факт свидетельствует о том, что в исследованной керамике имеет место электропроводность на постоянном токе, вклад которой возрастает с температурой. Частотная зависимость действительной составляющей удельной электропроводности может быть описана следующим соотношением [9]:

$$\sigma' = \sigma_{\rm dc} + A\omega^n, \tag{4}$$

где *А* и *п* — параметры, зависящие от состава и температуры. Второй член в (4) представляет поляризационную компоненту электропроводности.

Рис. 1. Частотные зависимости действительной σ' и мнимой σ'' составляющих удельной электропроводности при различных температурах для керамики (1-x)BiFeO₃-x(KBi)_{1/2}TiO₃ с x = 0.8.

Рис. 2. Диаграмма $\sigma'' - \sigma'$ в области низких частот при различных температурах для керамики с x = 0.8.

Величины σ_{dc} при разных температурах были определены по диаграмме $\sigma'' - \sigma'$. В области низких частот соотношение между σ'' и σ' представляется отрезками прямых (рис. 2), при экстраполяции которых до пересечения с осью абсцисс находится значение σ_{dc} при разЭнергия активации носителей заряда электропроводности на постоянном токе ΔE_{de} и характеристики температурной зависимости времени релаксации диэлектрической поляризации керамики (1 - x)BiFeO₃-x(KBi)_{1/2}TiO₃ при x = 0.5 и 0.8

x	$\Delta E_{ m dc}, { m eV}$		ΔE_M , eV	<i>T</i> 0, S
	$T < 460 \mathrm{K}$	$T > 460 \mathrm{K}$	$T > 660 \mathrm{K}$	10,5
0.5 0.8	0.12 0.10	0.56 0.79	1.18 1.10	$\frac{1.8 \cdot 10^{-12}}{8.5 \cdot 10^{-12}}$

ных температурах. Анализ показал, что температурная зависимость удельной электропроводности на постоянном токе керамики хорошо описывается выражением $\sigma_{\rm dc} = \sigma_{\rm 0dc} \exp(-\Delta E_{\rm dc}/kT)$, где $\sigma_{\rm 0dc}$ — предэкспоненциальный множитель, ΔE_{dc} — энергия активации носителей заряда, k — постоянная Больцмана. При комнатной температуре σ_{dc} составляет величину порядка 10^{-8} S/m. Установлено, что величина энергии активации $\Delta E_{\rm dc}$ в районе 460 К скачкообразно увеличивается при переходе в область более высоких температур. В таблице для сравнения представлены значения $\Delta E_{\rm dc}$ для составов с x = 0.5 и 0.8. Видно, что величина ΔE_{dc} в низкотемпературной области ($T < 460 \,\mathrm{K}$) во много раз меньше, чем в высокотемпературной. Наблюдаемый скачок ΔE_{dc} свидетельствует о различии механизмов электропроводности керамики в области низких и высоких температур. Подобный характер температурной зависимости σ_{dc} связан с выявлением двух температурных областей, различающихся величиной ΔE_{dc} , и наблюдается для ряда других оксидных перовскитов (см., например, [8,10–12]). Можно полагать, что электропроводность керамики при низких температурах, характеризующейся малой величиной энергии активации носителей заряда, связана с дефектами кристаллической решетки, образующейся в процессе синтеза. В частности, такими дефектами могут быть вакансии в подрешетках перовскитной решетки, обусловленные отклонением от стехиометрического состава.

По найденным значениям σ' и σ'' и на основе (2) и (3) были определены частотные зависимости мнимой и действительной составляющих электрического модуля $M_{\rm ac}^* = M_{\rm ac}' + j M_{\rm ac}''$, связанных только с диэлектрической поляризацией, т.е. не содержащих вклада $\sigma_{\rm dc}$, а также построены диаграммы $M''_{\rm ac} - M'_{\rm ac}$ на комплексной плоскости. Частотная зависимость $M'_{\rm ac}(f)$ характеризуется s-образной кривой. Чем выше температура, тем при более высоких частотах кривая $M'_{\rm ac}(f)$ выходит на насыщение. На рис. 3 в качестве иллюстрации представлены при разных температурах частотная зависимость $M''_{\rm ac}$ и диаграмма $M''_{\rm ac} - M'_{\rm ac}$ для керамики твердого раствора с x = 0.8. Видно, что на кривой частотной зависимости $M''_{\rm ac}(f)$ выявляется максимум, положение которого по мере увеличения температуры смещается в область более высоких частот. При температурах ниже примерно 590 К максимум M["]_{ac} достигается при низких частотах, лежащих за пределом использованного диапазона.

По положению максимума на кривых $M''_{ac}(f)$, построенных при разных температурах, определено наиболее вероятное время релаксации т диэлектрической поляризации $(2\pi f_{\max}\tau = 1)$. Установлено, что найденная температурная зависимость τ описывается соотношением Аррениуса $\tau = \tau_0 \exp(\Delta E_M/kT)$. Из анализа температурной зависимости $\tau(T)$ определены энергия активации ΔE_M и множитель τ_0 в области T > 660 К. В таблице приведены найденные значения ΔE_M и τ_0 для керамики с x = 0.5 и 0.8. Обращает на себя внимание тот факт, что значение ΔE_M намного больше величины энергии активации носителей заряда электропроводности на постоянном токе. Так как ΔE_M определяет время релаксации диэлектрической поляризации зерен керамики, т.е. поведение зарядов в ее зернах, на основе факта указанного различия в величинах ΔE_M и ΔE_{dc} можно полагать, что величина $\sigma_{\rm dc}$ в большей мере определяется электропроводностью границ зерен.

На диаграмме $M''_{ac} - M'_{ac}$ (рис. 3, b) выделяются две области. Первая соответствует вкладу в диэлектрический отклик зерен керамики. Соотношение между M''_{ac} и M'_{ac} в этой области описывается полуокружностью с центром, расположенным несколько ниже оси абсцисс. Последнее означает, что спектр времен релаксации диэлектрической поляризации имеет некоторую протяженность. При температурах выше примерно 700 К полуокружность проходит через начало координат. Радиус ее увеличивается по мере роста температуры. Вторая область (точки, лежащие вне окружности), расположенная в высокочастотной части диаграммы, связана с вкладами неодно-

Рис. 3. Частотная зависимость мнимой составляющей электрического модуля $M''_{\rm ac}(a)$ и диаграмма $M''_{\rm ac}-M'_{\rm ac}(b)$ для керамики с x = 0.8.

Рис. 4. Температурная зависимость C_0/C для керамики с x = 0.5 (1) и 0.8 (2).

родностей керамики, диэлектрический отклик которых характеризуется меньшими временами релаксации.

Область диаграммы $M''_{ac} - M'_{ac}$, соответствующая вкладу зерен керамики, может быть описана с использованием эквивалентной схемы электрической цепи, включающей *RC*-ячейку с параллельным соединением элементов. Действительная и мнимая компоненты электрического модуля такой цепи выражаются соотношениями [13]

$$M' = \frac{C_0}{C} \frac{\omega^2 R^2 C^2}{1 + \omega^2 R^2 C^2},$$
(5)

$$M'' = \frac{C_0}{C} \frac{\omega RC}{1 + \omega^2 R^2 C^2},\tag{6}$$

где C_0 — электроемкость вакуумного конденсатора с такими же размерами, как у исследуемого керамического конденсатора, величина C пропорциональна действительной составляющей диэлектрической проницаемости зерен керамики.

По пересечению полуокружностей на диаграмме $M''_{ac} - M'_{ac}$ с осью абсцисс были определены значения C_0/C при разных температурах. Как видно из рис. 4, температурная зависимость C_0/C при температурах выше примерно 800 К независимо от состава керамики является линейной в соответствеии с законом Кюри-Вейсса $(1/\varepsilon' = (T - T_C)/B_C)$. При экстраполяции наблюдаемых отрезков прямых до пересечения с осью абсцисс (рис. 4) определена температура Кюри T_C для разных составов твердого раствора. Установлено, что T_C слабо уменьшается по мере увеличения содержания (KBi)_{1/2}TiO₃ в системе. Так, при x = 0.5 она составляет 640 К, а при x = 0.8 — примерно 625 К. Для исследованной керамики наблюдается широкая температурная область (160–170 K) выше T_C , в которой

температурная зависимость диэлектрической проницаемости отклоняется от закона Кюри–Вейсса. Этот факт свидетельствует о том, что температура, при которой начинается образование полярных кластеров (температура Барнса [14]), лежит в области 800 К. Плавный ход кривых C_0/C в окрестности T_C означает, что сегнетоэлектрический фазовый переход в данной системе твердых растворов является размытым.

4. Заключение

Приведенные результаты исследования спектров электрического модуля показывают, что керамика (1-x)BiFeO₃-x(KBi)_{1/2}TiO₃ тверлых растворов (0.4 < x < 0.85) проявляет свойства сегнетоэлектрика с размытым фазовым переходом. Температура Кюри Т_С слабо зависит от состава и лежит в области 620-640 К. Анализ спектров импеданса при разных температурах показал, что электропроводность на постоянном токе для данной керамики имеет полупроводниковый характер. Энергия активации носителей заряда постоянного тока ΔE_{dc} скачкообразно увеличивается в окрестности 460 К при переходе в область более высоких температур. Температурная зависимость времени релаксации диэлектрической поляризации керамики при T > T_C, найденной из частотной зависимости мнимой составляющей электрического модуля $M''_{\rm ac}$, описывается соотношением Аррениуса с энергией активации ΔE_M , намного большей ΔE_{dc} .

Список литературы

- [1] L.E. Cross. Nature **432**, 24 (2004).
- [2] H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka. Jpn. J. Appl. Phys. 42, 7401 (2003).
- [3] P. Baettig, C.F. Schelle, R. Lesar, U.V. Waghmare, N.A. Spaldin. Cnem. Mater. 17, 1376 (2005).
- [4] M. Davis. J. Electroceram. **19**, 25 (2007).
- [5] A. Poliwicz, R. Przenioslo, I. Sosnowska, A.W. Hewat. Acta Cryst. B 37, 537 (2007).
- [6] Г.А. Смоленский, В.А. Исупов, А.И. Аграновская, Н.Н. Крайник. ФТТ 2, 2982 (1960).
- [7] В.В. Иванова, А.Г. Капишев, Ю.Н. Веневцев, Г.С., Жданов. Изв. АН СССР. Сер. физ. 26, 354 (1962).
- [8] Н.М. Олехнович, А.Н. Салак, А.В. Пушкарев, Ю.В. Радюш. Н.П. Вышатко, Д.Д. Халявин, V.М. Ferreira. ФТТ 51, 547 (2009).
- [9] A.K. Jonscher. Dielectric relaxation in solids. Chelsca Dielectric Press Ltd., London (1983). 380 p.
- [10] M.M. Kumar, A. Srinivas, S.V. Suryanarayanan, T. Bhimasankaram. Phys. Status Solidi A 165, 317 (1998).
- [11] S. Lanfredi, L. Dessemond, A.C.M. Rodrigues. J. Am. Ceram. Soc. 86, 291 (2003).
- [12] M.C. Sekar, N.V. Prasad. Ferroelectrics 345, 45 (2006).
- [13] E. Barsoukov, J.R. MacDonald. Impedance spectroscopy: theory, experiment and applications. John Wiley & Sons Inc., N.Y. (2005). 616 p.
- [14] G. Burns, F.H. Dacol. Phys. Rev. B 28, 2527 (1983).