01;06.2

Скрытая пространственная неустойчивость тока в мощных биполярных переключателях

© А.В. Горбатюк

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: agor.pulse@mail.ioffe.ru

Поступило в Редакцию 10 июля 2006 г.

Предложена теория неустойчивости инжекции в мощных биполярных полупроводниковых переключателях при плотностях тока $J \sim 1 \text{ kA/cm}^2$ и поле коллектора $E > 5 \cdot 10^4 \text{ V/cm}$. Установлено, что, если эффективность катодного источника инжекции растет с увеличением J и E, в них возможно развитие флуктуаций распределения тока по площади с длинами волн порядка $\lambda \sim 100 \,\mu\text{m}$, не связанными с поперечным размером пластины. Соответствующие объемные флуктуации концентраций носителей, потенциалов, поля и плотности тока локализуются в толще на глубине, существенно меньшей толщины пластины. Эта скрытая от наблюдения неустойчивость не связана со знаком внешнего дифференциального сопротивления, и для ее предотвращения необходимы внутренние демпфирующие факторы.

PACS: 72.20.-i, 85.30.-z, 85.30.Rs, 0.5.45.-a

При работе в мощных цепях биполярные переключатели тиристорного типа, а также мощные транзисторы и диоды [1–3] нередко оказываются в ситуации с плотностью тока J порядка долей и больше kA/cm² и напряжением $U \sim 1$ kV. При этом становятся возможными неустойчивость исходно-равномерного распределения тока и его нежелательная локализация. Подобные явления обычно связывают

1

с реализацией состояний с отрицательным дифференциальным сопротивлением $R_d < 0$. Известно, однако, что как в обычных тиристорах [4], так и в специальных многослойных структурах [5] возможно развитие не зависящей от знака R_d "скрытой" неустойчивости тока, общая идея которой была высказана еще в [6]. Тем не менее ни простая конфигурационная модель [4], ни специальная теория [5] не применимы в интересуемом интервале J и U.

Мы полагаем, что весьма широкий класс родственных проблем можно свести к рассмотрению двухслойной неравновесной системы, которая состоит из распределенного "виртуального" катода \mathcal{K} — источника электронов с эффективностью $\alpha(J, E)$, растущей при увеличении как J, так и E, и примыкающей к нему некоторой окрестности домена сильного поля \mathcal{F} , в который осуществляется двойная инжекция — электронов из \mathcal{K} и дырок из удаленного анодного источника (см. вставку на рис. 1).

В качестве примера рассмотрим структуру МОП-управляемого тиристора с распределенными (с периодом ~ 10 μ m) по направлению $\mathbf{r} \perp \mathbf{x}$ транзисторными n^+pn^- -ячейками, имеющими общие для всей конструкции *p*-базу с толщиной w_{p0} и легированием N_a и pn^- -переход коллектора. Параллельно эмиттерному n^+p -переходу в каждой ячейке встроен *p*-канальный МОП-элемент — дивертер затвора. Предполагается, что тиристор находится на промежуточной стадии процесса выключения из однородного по **r** включенного состояния с большой плотностью тока **J** || **x** под действием отрицательного тока дивертера. Определим систему прикатодных n^+p -частей МОП-выключаемых ячеек в действии как распределенный виртуальный катод \mathcal{K} , а область сильного поля в n^- -слое коллектора со свободными носителями заряда как биполярный домен \mathcal{F} .

Опишем пространственную динамику слоя \mathcal{K} мгновенным распределением плотности избыточного заряда $Q(\mathbf{r}, t)$ в базе, используя зарядовую модель транзистора [7]:

$$\frac{\partial Q}{\partial t} = J_{C_p} - \frac{Q}{\tau} - J_{dv} + \sigma_{\perp} \nabla_{\perp}^2 V_{em}, \quad V_{em} = \frac{kT}{q} \ln \frac{Q}{Q_0}, \quad \nabla_{\perp} = \frac{\partial}{\partial \mathbf{r}}.$$
 (1)

Здесь σ_{\perp} — листовая проводимость *p*-слоя, V_{em} — смещение эмиттера. Первый член в (1) справа означает приток дырок из \mathscr{F} , второй — линейные по Q потери дырок (рекомбинация и утечка в эмиттер с

Рис. 1. Корни уравнения для $\kappa(k)$. На вставке — геометрия модели и критические *x*-профили объемных флуктуаций. Использовались следующие значения: $N_d = 5 \cdot 10^{13} \text{ cm}^{-3}$, $\tau = 9 \text{ ns}$, $w_{eff} = 5 \mu \text{m}$, $w'_p = 3 \mu \text{m}$, T = 300 K, $D_n = 30 \text{ cm}^2/\text{s}$, $D_p = D_n/b$, b = 3.

темпом $1/\tau$), третий $J_{dv} = V_{em}/R_{dv}$ — ток выведения дырок через дивертер, и последний — дивергенцию дырочного тока вдоль *p*-базы. Плотность тока инжекции электронов J_{C_n} из слоя \mathcal{K} в слой \mathcal{F}

связывается с Q как

$$J_{C_n} = rac{Q}{artheta(E_C)}, \quad artheta(E_C) = rac{w_{eff}^2}{2D_n}, \quad w_{eff}(E_C) = w_{p0} - rac{\epsilon\epsilon_0 E_C}{qN_a}.$$

Дополнительно вводятся следующие определения: $V_p = = \epsilon \epsilon_0 E_C^2 / (2qN_a)$ — напряжение на слое \mathcal{K} , возникающее из-за проникновения поля из \mathcal{F} в w_p ; $\gamma(E) = (1 + \vartheta/\tau)^{-1}$ — локальный коэффициент инжекции n^+ -эмиттера; $\alpha(J, E) = \gamma(E)(1 - J_{dv}/J)$ — эффективный коэффициент инжекции слоя \mathcal{K} . Уменьшение толщины w_p и сокращение пролетного времени ϑ при увеличении E_C хорошо известны как эффекты полевого прокола.

Представим теперь динамические переменные Q, E_C , J_{Cn} , J_{Cp} и т.д. в слое \mathcal{K} в форме $\mathbf{Y} = \mathbf{Y}_0 + \delta \mathbf{Y}$, где \mathbf{Y}_0 — невозмущенные значения, а $\delta \mathbf{Y} = \delta \mathbf{Y}_0 \exp \xi t \cos \mathbf{kr}$ — малые флуктуации, затем, линеаризуя уравнение (1), найдем их взаимозависимости

$$\left(\xi + \frac{1}{\tau} + J_{dv}|_{Q}' + k^{2}D_{Q}\right)\delta Q = \delta J_{Cp}, \quad \delta Q = J_{Cn}\delta\vartheta + \vartheta\delta J_{Cn}.$$
 (2)

Здесь $J_{dv}|_Q' = kT/(qR_{dv}J_{Cn}\theta)$, $D_Q = \sigma_{\perp}kT/(qJ_{Cn}\vartheta)$ — коэффициент "диффузионной" связи дифференциальных сечений \mathcal{K} . Имеют также место соотношения $\delta\vartheta = \vartheta'_E \delta E_C$ и $\delta V = V'_E \delta E$, где $\vartheta'_E = -w_{eff}\epsilon\epsilon_0/(qN_aD_n)$ и $V'_E = \epsilon\epsilon_0 E_C/(qN_a)$.

Теперь рассмотрим процессы в слое \mathscr{F} . При значениях $E > 5 \cdot 10^4$ V/ст носители здесь движутся практически с насыщенной скоростью $v_s \rightarrow 10^7$ ст/s, и время их пролета составляет всего единицы ns. В силу этого, пренебрегая рекомбинацией и диффузией и полагая, что $\mathbf{J}_p = qp\mathbf{v}_p$ и $\mathbf{J}_n = qn\mathbf{v}_n$, где $\mathbf{v} = v_s \mathbf{E}/E$, опишем состояние \mathscr{F} стационарными уравнениями непрерывности для $\mathbf{J}_{p,n}$ и уравнением Пуассона для $\mathbf{E} = -\nabla \varphi$:

$$abla(p\nabla\varphi) = 0, \qquad \nabla(n\nabla\varphi) = 0, \qquad \nabla^2\varphi = -\frac{q(p-n+N_d)}{\epsilon\epsilon_0}.$$
 (3)

Для нормальных компонент $\mathbf{J}_{p,n}$ и для φ на правой границе $\mathcal F$ запишем:

$$J_p|_{x=0} = J_{pC}, \qquad J_n|_{x=0} = J_{nC}, \qquad \varphi|_{x=0} = V_p.$$
 (4)

Что касается левой границы $x = -w_n$, где $w_n \gg w_{p0}$, то предполагается, что здесь состояние домена контролируется усредненным по **r**

внешним током J_0 и его составом, а также некоторым значением анодного напряжения $V_A(J_0) = \text{const:}$

$$J_n|_{-w_n} = \alpha J_0, \qquad J_p|_{-w_n} = (1-\alpha)J_0, \qquad \varphi|_{-w_n} = V_A.$$
 (5)

Далее рассматривается только прикатодная часть \mathscr{F} толщиной $w_{p0} \ll w_{\mathscr{F}} \ll w_n$, в которой невозмущенное значение $E_0(J, J_{dv}, V_A)$ можно считать практически не зависящим от x. Левая граница интервала $w_{\mathscr{F}}$ считается лежащей при $x \to -\infty$. Обозначим, как и ранее, распределенные переменные как $\mathbf{Y} = \{p, n, \varphi\}^*$ и представим их в виде суммы невозмущенных значений и малых флуктуаций как $\mathbf{Y} = \mathbf{Y}_0 + \delta \mathbf{Y}$, где $\delta \mathbf{Y} = \delta \mathbf{Y}_0 \exp \kappa x \cos \mathbf{kr}$. Выразив флуктуации для токов как $\delta \mathbf{J}_p = q[\mathbf{v}_0 \delta p - v_s(p_0/E_0)\delta \nabla_{\perp} \varphi]$ и $\delta \mathbf{J}_n = q[\mathbf{v}_0 \delta n - v_s(n_0/E_0)\delta \nabla_{\perp} \varphi]$, после линеаризации системы (3) получим

$$\mathbf{M}\,\delta\mathbf{Y} = 0, \qquad \mathbf{M} = \begin{vmatrix} \kappa & 0 & k^2 p_0 / E_0 \\ 0 & \kappa & k^2 n_0 / E_0 \\ 1 & -1 & \epsilon \epsilon_0 (\kappa^2 - k^2) / q \end{vmatrix} \,. \tag{6}$$

В итоге из условия $\det \mathbf{M}=0$ находим связь между числами κ и k

$$\kappa \cdot \left[\kappa^3 - \kappa k^2 + \frac{q(n_0 - p_0)}{\epsilon \epsilon_0 E_0} k^2 \right] = 0.$$
⁽⁷⁾

Граничные условия для этих флуктуаций, следующие из (4) и (5), имеют вид

$$\delta p \big|_{x \to -\infty} \to 0, \qquad \delta n \big|_{x \to -\infty} \to 0, \qquad \delta \varphi \big|_{x \to -\infty} \to 0,$$
 (8)

$$qv_s \delta p\big|_{x=0} = \delta J_{Cp}, \quad qv_s \delta n\big|_{x=0} = \delta J_{Cn}, \quad \delta \varphi\big|_{x=0} = \delta V_p.$$
(9)

Поскольку из четырех собственных функций системы (6) только две с $\kappa_{1,2} > 0$ удовлетворяют условиям (8), представим соответствующие общие решения в виде

$$\begin{split} \delta p &= \delta p_1 \cdot e^{\kappa_1 x} + \delta p_2 \cdot e^{\kappa_2 x}, \qquad \delta n &= \delta n_1 e^{\kappa_1 x} + \delta n_2 e^{\kappa_2 x}, \\ \delta \varphi &= \delta \varphi_1 e^{\kappa_1 x} + \delta \varphi_2 e^{\kappa_2 x}, \end{split}$$

откуда с учетом (9) получим выражения для объемных флуктуаций

$$\begin{split} \delta p &= \frac{-k^2 p_0}{E_0} \left(\frac{e^{\kappa_1 x} \delta \varphi_1}{\kappa_1} + \frac{e^{\kappa_2 x} \delta \varphi_2}{\kappa_2} \right), \quad \delta n = \frac{n_0}{p_0} \, \delta p, \\ &- \delta E_x = \kappa_1 e^{\kappa_1 x} \delta \varphi_1 + \kappa_2 e^{\kappa_2 x} \delta \varphi_2, \end{split}$$

где $\delta \varphi_1 = [(1 + V'_E \kappa_2)/(\kappa_2 - \kappa_1)] \delta E_C$, $\delta \varphi_2 = [(1 + V'_E \kappa_1)/(\kappa_2 - \kappa_1)] \delta E_C$, а E_x — продольное поле, и соотношения между амплитудами флуктуаций δJ_{C_P} , δJ_{C_R} и δE_C при x = 0:

$$\delta J_{Cp} = -\frac{J_{Cp} \, \delta E_C}{u(k) \, E_0}, \qquad \delta J_{Cn} = -\frac{J_{Cn} \, \delta E_C}{u(k) \, E_0},$$
$$u(k) = \frac{\kappa_1 \kappa_2}{k^2 [1 + V'_E(\kappa_1 + \kappa_2)]}.$$
(10)

Окончательно, подставляя (10) в выражения (2) для флуктуаций в \mathcal{K} , приходим к следующему выражению для инкремента нарастания неравновесных флуктуаций:

$$\xi(k) = \frac{J\alpha'_J - u(k) E_0 \alpha'_E}{\tau \left[\alpha(1-\gamma) + u(k) E_0 \alpha'_E\right]} - J_{dv} \big|_Q^{\prime} - k^2 D_Q.$$
(11)

Здесь $\alpha'_J = \gamma J_{dv}/J^2$ и $\alpha'_E = -(\alpha \gamma / \tau) \theta'_E.$

В проведенном далее расчете исходное состояние тиристора определяется выбором значений J_0 и J_{dv} . Причем последнее выбирается таким, чтобы не нарушалось условие постоянства E_0 по x. Для этого задается специальное значение коэффициента $\alpha = (1 + qN_dv_s/J_0)/2$, формально обеспечивающее равенство $n_0 - p_0 = N_d$. Соответствующее значение внутреннего коэффициента запирания оказывается равным $K_{\text{OFF}} = J_0/J_{dv} = 2\gamma/(2\gamma - 1 - qN_dv_s/J_0)$. Считается также, что модуляция толщины $\delta w_p(E_C)$ происходит только за счет ее слаболегированной части с $N_a = 2.5 \cdot 10^{15} \text{ cm}^{-3}$. Вместе с этим при расчете листовой проводимости *p*-слоя σ_{\perp} используются эффективные значения $N'_a = 4 \cdot 10^{17} \text{ cm}^{-3}$ и $w'_p = 3 \mu \text{m}$, а также фактор $g \leq 1$ ее ослабления изза дискретности ячеек по **r**. Величина $E_0 = 10^5$ V/cm принята для всех случаев одинаковой.

Рис. 2. Дисперсионные зависимости $\xi(k)$. Критический случай (линия I) соответствует значениям g = 0.988, $J_0 = 386.5$ A/cm² и $K_{GTO} = 8.539$. Для случаев 2 и 3 соответственно задавались $J_0 = 420$ A/cm² при $K_{GTO} = 7.741$ и $J_0 = 450$ A/cm² при $K_{GTO} = 7.221$ при неизменном g = 0.988. Случаям 2' и 3' отвечают значения g = 0.75 и g = 0.5 при тех же, что и для I параметрах J_0 и K_{GTO} .

На рис. 1 показаны зависимости корней (7) $\kappa_1(k)$ и $\kappa_2(k)$, а также (на вставке) *х*-профили флуктуаций для критического случая с $\xi = 0$. Далее, на рис. 2 построены зависимости $\xi(k)$. Они во всех случаях обнаруживают максимум при $k \neq 0$, что объясняется следующим образом. Сама возможность реализации состояний с $\xi > 0$

обеспечивается благодаря "активности" \mathcal{K} -слоя $(d\alpha/dJ > 0)$, которая может компенсироваться за счет как подавления эффектов полевого прокола в области малых k, так и диффузионного сглаживания флуктуаций в \mathcal{K} при больших k. В итоге неустойчивость тока становится возможной только для флуктуаций с промежуточной длиной волны. Из расчетов следует, что режим с $\xi(k) > 0$ впервые возникает при $\lambda_{cr} = 2\pi/k_{cr} \simeq 250\,\mu{
m m},\; 1/\kappa_1 = 52\,\mu{
m m},\; 1/\kappa_2 = 110\,\mu{
m m}.$ Однако уже при небольшом увеличении J_0 или снижении σ_{\perp} инкремент может вырасти до весьма опасных значений $\xi \sim 10 \mu s^{-1}$. Как видно на вставке к рис. 1, критические флуктуации переменных не выходят за пределы полупроводниковой структуры. Возникающая неустойчивость, таким образом, является скрытой от наблюдения, и факторы ее демпфирования следует искать в структуре внутренних обратных связей. Интересно, что при $\delta J_x > 0$ значения δE_x отрицательны на дистанции 70 μ m от границы с Жи положительны для более дальних участков, что интерпретируется как спонтанное формирование внутренних активных и демпферных зон с $R'_d < 0$ и с $R''_d > 0$.

Развитые соображения можно непосредственно распространить и на обычные запираемые тиристоры (3T), если положить, что выключение производится не дивертером, а внешним током затвора. Такая модель должна стать более адекватной в количественном отношении при интерпретации эффекта пространственно-периодического разрушения 3T [1], чем простая конфигурационная модель работы [4].

Концепция скрытой неустойчивости применима также и к объяснению пространственно-периодической локализации тока при обратном восстановлении мощных диодов, содержащих остаточную электроннодырочную плазму [8]. В базе диодов в таких режимах сначала формируются однородные по площади слои — широкий, граничащий с плазмой, и узкий в противоположном конце, значения поля в которых соответственно ниже и выше порога лавинного умножения. Поскольку слой умножения производит электроны в количестве, растущем как с J, так и с E, он способен выполнять ту же функцию, что и виртуальный катод \mathcal{K} в примере, рассмотренном выше. В итоге распределение тока может стать неустойчивым по рассмотренному выше механизму.

В заключение автор благодарит А.С. Кюрегяна за плодотворное обсуждение всех положений настоящей работы.

Список литературы

- [1] Горбатюк А.В., Линийчук И.А., Свирин А.В. // Письма в ЖТФ. 1989. Т. 15. В. 6. С. 42–45.
- [2] Oetjen J., Jungblut R., Kuhlmann U., Arkenau J., Sittig R. // Solid-State Electronics. 2000. V. 44. P. 117–123.
- [3] Liu Y., You B., Huang A.Q. // Solid-State Electronics. 2003. V. 47. P. 1-14.
- [4] Горбатюк А.В., Родин П.Б. // Радиотехника и электроника. 1994. Т. 39. В. 11. С. 1876–1885.
- [5] Gorbatyuk A.V., Niedernostheide F.-J. // Phys. Rev. B. 2002. V. 65. P. 245318-1-15.
- [6] Кернер Б.С., Осипов В.В. // Письма в ЖЭТФ. 1973. Т. 18. С. 122.
- [7] Зи С. Физика полупроводниковых приборов. Кн. 1 / Пер. с англ. под ред. P.A. Суриса. М.: Мир, 1984. 455 с.; Sze S.M. Physics of Semiconductor Devices. N. Y.: John Willey & Sons, 1981.
- [8] Niedernostheide F.-J., Schulze H.-J. // Physica D (Amsterdam). 2004. V. D-199 (1-2). P. 129–137.