05,03 Собственный ферромагнетизм в полупроводниковом оксиде Ti_{1-x}Co_xO_{2-δ}, создаваемый инжекцией вакансий

© А.Ф. Орлов¹, Л.А. Балагуров¹, И.В. Кулеманов¹, Н.С. Перов², Е.А. Ганьшина², Л.Ю. Фетисов², A. Rogalev³, A. Smekhova³, J.C. Cezar³

¹ Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет", Москва, Россия

² Московский государственный университет им. М.В. Ломоносова, Москва, Россия ³ European Synchrotron Radiation Facility, Grenoble, France E-mail: imoafo@mail.ru

(Поступила в Редакцию 12 мая 2010 г.)

Исследована возможность создания собственного ферромагнетизма в сильно легированном оксидном полупроводнике при комнатной температуре. Результаты показывают, что такое состояние ферромагнитного полупроводника может быть достигнуто путем нанесения методом магнетронного распыления полуизолирующей пленки легированного переходным металлом оксида с последующим низкотемпературным отжигом в вакууме.

Работа поддержана Российским фондом фундаментальных исследований (грант № 09-02-00309а).

1. Введение

Устройства на основе эффекта переноса спин-поляризованных носителей заряда рассматривают сейчас как перспективные для создания приборов полупроводниковой спиновой электроники и элементов магнитной памяти следующих поколений [1,2]. Основной проблемой при создании таких устройств является отсутствие подходящих материалов для спиновых инжекторов, работающих при комнатных температурах. Весьма многообещающими для этой цели могут быть ферромагнитные оксидные полупроводники благодаря наблюдаемым в этих материалах высоким значениям намагниченности и температуры Кюри. В частности, были проведены многочисленные исследования свойств оксида титана TiO₂, легированного примесями различных переходных металлов (см., например, обзоры [3,4]). Однако в большинстве случаев исследователи имели при этом дело с материалами, в полупроводниковой матрице которых присутствовали включения магнитных кластеров. В таких материалах не может быть обеспечена необходимая для создания приборов спиновая поляризация носителей заряда. Поэтому задача состоит в создании состояния собственного ферромагнетизма при комнатной температуре в полупроводниковом материале.

Ранее было установлено, что ферромагнетизм в оксидных полупроводниках наблюдается только при достаточно высоких концентрациях носителей заряда [5–8]. Однако авторы [9,10] выращивали диэлектрические парамагнитные пленки анатаза $TiO_2: Co$ методом магнетронного распыления керамической оксидной мишени $Ti_{1-x}Co_xO_2$. После низкотемпературного отжига в вакууме пленки сохраняли состояние глубокого изолятора и одновременно приобретали свойства собственного ферромагнетика при комнатной температуре при отсутствии каких-либо магнитных кластеров в матрице. Такие разбавленные магнитные диэлектрики могут быть использованы для магнитооптических применений, но непригодны для создания приборов спиновой электроники. В настоящей работе мы сообщаем о наблюдении собственного ферромагнетизма при комнатной температуре в пленках сильно легированного полупроводника TiO_2 : Co.

2. Методика эксперимента

Пленки $Ti_{0.92}Co_{0.08}O_{2-\delta}$ толщиной 200–300 nm осаждались при 550°С на подложках LaAlO₃ ориентацией (001) высокочастотным магнетронным распылением в аргон-кислородной атмосфере. Парциальное давление кислорода составляло $1 \cdot 10^{-4}$ Torr при скорости осаждения 0.07 nm \cdot s⁻¹. Структура пленок определялась методом рентгеновской дифракции (XRD) на дифрактометре D8 Discover. Химическое и магнитное состояние примеси кобальта контролировалось соответственно методами спектроскопии края поглощения рентгеновского излучения (XANES) и рентгеновского магнитного кругового дихроизма (XMCD) на источнике 1D12 Европейского центра синхротронных исследований в Гренобле (Франция). Магнитные характеристики пленок измерялись методом вибрационной магнитометрии (VSM) на установке LakeShore 7400 с чувствительностью 1 $\cdot 10^{-6}$ emu.

3. Экспериментальные результаты и их обсуждение

Непосредственно после осаждения пленки обнаруживали кристаллическую структуру рутила с ориентаци-

Рис. 1. Петля магнитного гистерезиса пленки $Ti_{0.92}Co_{0.08}O_{2-\delta}$ ($\rho = 3 \Omega \cdot cm$), отожженной в вакууме в течение 2 h (*a*), и петля элементселективного магнитного гистерезиса, записанная при энергии Со L_3 -края поглощения при комнатной температуре для той же пленки ($\rho = 10 \Omega \cdot cm$) после отжига в течение 1 h (*b*).

ей (110) и резистивность ρ полуизолятора с величиной удельного электросопротивления $10^3 - 10^4 \,\Omega \cdot cm$. Свежеосажденные пленки не обнаруживали ферромагнитного поведения при комнатной температуре. Последующий отжиг в вакууме при температуре 440°С в течение 1-10h приводил к частичному выходу кислорода из пленок и появлению кислородных вакансий в материале. В результате такой обработки пленки сохраняли структуру рутила, но их электросопротивление уменьшалось до 3-10 Ω · ст и пленки приобретали спонтанную намагниченность. Полевая зависимость намагниченности пленки, отожженной с течением двух часов, показана на рис. 1, а. Магнитный момент насыщения этой пленки равен $2.2 \cdot 10^{-4}$ emu, что соответствует 0.4 магнетона Бора на атом Со, а коэрцитивное поле равно 220 Ое. После дополнительного вакуумного отжига в течение 8 h значения этих параметров практически не изменились, но поле насыщения уменьшилось до 3 kOe.

С целью выяснения микроскопической природы валентного состояния Со в материале и ферромагнитного упорядочения при комнатной температуре были использованы такие элементселективные методы исследования, как XANES и XMCD. Измерения проводились при комнатной температуре как при энергии вблизи К-края рентгеновского поглощения на Со (область жесткого рентгена), так и вблизи Со L₃-края поглощения (область мягкого рентгеновского излучения). Для отожженной в течение 1 h пленки с удельным сопротивлением 10 $\Omega \cdot cm$ и магнитным моментом насыщения 8.4 · 10⁻⁵ ети наблюдалась заметная 3*d*-намагниченность атомов Со при энергии Со L3-края поглощения (рис. 1, b). Таким образом, элементселективная кривая намагниченности, полученная методом XMCD, при энергии 778.7 eV обнаруживает ферромагнитное поведение примеси Со в полупроводнике при комнатной температуре. Основной магнитный момент концентрируется на атомах Со, но, как известно [11-13], в этом материале присутствует также слабая спиновая поляризация атомов кислорода. Характер кривой XANES (рис. 2) указывает на неметаллическое состояние атомов примеси Со. Объемно-чувствительные спектры XANES, измеренные вблизи Со К-края поглощения (не показано), также подтверждают ионное (неметаллическое) состояние атомов Со. Следовательно, материал пленок является бескластерным ферромагнетиком.

Необходимо подчеркнуть, что имеется существенная разница между пленками, исследованными в настоящей работе, и теми, которые были исследованы авторами [9]. В нашей работе пленки были получены при парциальном давлении кислорода $1 \cdot 10^{-4}$ Torr и скорости осаждения 0.07 nm · s⁻¹, тогда как в [9] давление кислорода при осаждении пленок было в 2.5 раза выше, а скорость осаждения была в 7 раз меньше, т.е. в последнем случае содержание кислорода в пленках было существенно выше. Соответственно в нашей работе пленки TiO₂:Со после осаждения имели структуру рутила и резистивность полуизолятора, а в работе [9] пленки такого же элементного состава имели структуру анатаза и были глубоким диэлектриком. В результате последу-

Рис. 2. Спектры края поглощения рентгеновского излучения (XANES) и рентгеновского магнитного кругового дихроизма (XMCD) пленки $Ti_{0.92}Co_{0.08}O_{2-\delta}$, отожженной в течение 1 h.

ющей низкотемпературной обработки в вакууме пленки в [9] сохраняли диэлектрическое состояние, поскольку локализованные кислородные вакансии были фиксированы на ионах Со²⁺, а ферромагнитное упорядочение обеспечивалось связанными магнитными поляронами. Как указано выше, пленки в нашей работе изменяли свое электросопротивление после низкотемпературного вакуумного отжига. Вероятной интерпретацией этого является появление свободных кислородных вакансий в материале при вакуумном отжиге, что обеспечивает появление свободных носителей заряда. В таком случае ферромагнитное упорядочение поддерживается механизмом косвенного обмена ионов магнитной примеси через носители заряда в матрице полупроводника [14-16]. Ключевая роль кислородных вакансий в ферромагнитном упорядочении в легированных кобальтом оксидах была также продемонстрирована в работах [13,17,18]. Таким образом, осаждение полуизолирующих пленок TiO₂:Со с последующим низко-температурным вакуумным отжигом приводит к созданию бескластерного сильно легированного полупроводника, обладающего собственным ферромагнетизмом. Ранее нами было показано [19], что ни прямое осаждение сильно легированных примесями переходных металлов оксидных полупроводниковых материалов, ни последующий вакуумный отжиг высокоомных пленок при более высоких температурах не обеспечивают получение бескластерных ферромагнитных оксидных полупроводниковых материалов.

4. Заключение

Использование осаждения полуизолирующих пленок TiO₂: Со с последующим низкотемпературным вакуумным отжигом приводит к получению сильно легированного полупроводникового материала, обладающего собственным ферромагнетизмом при комнатной температуре. Эти свойства делают такой ферромагнитный полупроводник многообещающим материалом для использования в полупроводниковой спиновой электронике.

Список литературы

- [1] I. Zutic, J. Fabian, S. Das Sarma. Rev. Mod. Phys. **76**, 323 (2004).
- [2] M.H. Kryder, C.S. Kim. IEEE Trans. Magn. 45, 3406 (2009).
- [3] S.J. Pearton, M.H. Heo, M. Ivill, D.P. Norton, T. Steiner. Semicond. Sci. Technol. 19, R 59 (2004).
- [4] T. Dietl. J. Appl. Phys. 103, 07D111 (2008).
- [5] W.K. Park, R.J. Ortega-Hertogs, J.S. Moodera. J. Appl. Phys. 91, 8093 (2002).
- [6] Л.А. Балагуров, С.О. Климонский, С.П. Кобелева, А.Ф. Орлов, Н.С. Перов, Д.Г. Яркин. Письма в ЖЭТФ 79, 98 (2004).
- [7] T. Fukumura, H. Toyosaki, Y. Yamada. Semicond. Sci. Technol. 20, S 103 (2005).
- [8] T. Fukumura, H. Toyosaki, K. Ueno, M. Nakano, M. Kavasaki. New J. Phys. 10, 055 018 (2008).

- [9] K.A. Griffin, A.B. Pakhomov, C.M. Wang, S.M. Head, K.M. Krishnan. Phys. Rev. Lett. 94, 157 204 (2005).
- [10] K. Griffin Roberts, M. Varela, S. Rashkeev, S.T. Pantelidis, S.J. Pennycook, K.M. Krishnan. Phys. Rev. B 78, 014409 (2008).
- [11] E. Goering, A. Bayer, S. Gold, S. Schutz, M. Rabe, U. Rudiger, G. Gunterodt. Europhys. Lett. 58, 906 (2002).
- [12] A. Nefedov, N. Akdogan, H. Zabel, R.I. Khaibullin, L.R. Tagirov. Appl. Phys. Lett. 89, 182 509 (2006).
- [13] N. Akdogan, A. Nefedov, H. Zabel, K. Westerhold, H.-W. Becker, C. Somsen, S. Gok, A. Bashir, R. Khaibullin, L. Tagirov. J. Phys. D: Appl. Phys. 42, 115 005 (2009).
- [14] T. Dietl. Nature Mater. 5, 673 (2006).
- [15] K. Kikoin, V. Fleurov. Phys. Rev. B 74, 174407 (2006).
- [16] T. Jungwirth, J. Sinova, J. Masek, J. Kucera, A.H. MacDonald. Rev. Mod. Phys. 78, 809 (2006).
- [17] W. Yan, Z. Sun, Z. Pan, Q. Liu, T. Yao, Z. Wu, C. Song, F. Zeng, Y. Hie, T. Hu, S. Wei. Appl. Phys. Lett. 94, 042 508 (2009).
- [18] B. Ali, L.R. Shah, C. Ni, J.Q. Xiao, S.I. Shah. J. Phys.: Cond. Mater. 21, 456 005 (2009).
- [19] L.A. Balagurov, S.O. Klimonsky, S.P. Kobeleva, A.S. Konstantinova, A.F. Orlov, N.S. Perov, A. Sapelkin, D.G. Yarkin. J. Phys.: Cond. Mater. 18, 10 999 (2006).