05.2 Гигантский невзаимный эффект при взаимовлиянии ферромагнитного и кирального резонансов

© В.С. Бутылкин, Г.А. Крафтмахер

Институт радиотехники и электроники РАН, Москва E-mail: gkraft@ms.ire.rssi.ru

Поступило в Редакцию 21 марта 2006 г.

Обнаружено увеличение невзаимности прохождения электромагнитных волн более чем на два порядка в волноводе с поперечно-намагниченной ферритовой пластиной при внедрении решетки бианизотропных элементов. Это достигается при определенной величине постоянного магнитного поля в условиях взаимовлияния ферромагнитного и кирального резонансов. В запредельном режиме достигнуто увеличение невзаимности в несколько раз. Эффект зависит от типа возбуждения кирального резонанса и наблюдается при возбуждении магнитной компонентой микроволнового поля.

PACS: 04.30.Nk

В работе исследуется прохождение микроволнового излучения через прямоугольный волновод с поперечно-намагниченным ферритом и бианизотропными включениями. Как известно [1,2], в волноводе с ферритом наблюдается невзаимность прохождения электромагнитных волн, причем существенную роль играют компоненты тензора магнитной проницаемости феррита, диагональный μ_F и недиагональные $\pm i\mu_{Fa}$. Недавно экспериментально обнаружено существенное влияние на прохождение волн через прямоугольный волновод бианизотропных включений, таких как планарные двойные разомкнутые кольца (ПДРК)-split ring resonators (SRR) [3,4] и цилиндрические образцы из многозаходных ориентированных спиралей [5]. Так, наблюдаются: область дважды положительной прозрачности (DPS-полоса), где подобная структура может рассматриваться как среда с положительными эффективными диэлектрической и магнитной проницаемостями, и область дважды отрицательной прозрачности, где обе проницаемости отрицательны (DNG-полоса). Есть также область сверхзапрета, где коэффициент

88

пропускания заполненного волновода меньше, чем пустого. При этом оказывается важной магнитная проницаемость бианизотропной искусственной среды-заполнения

$$\mu_{SRR} = (1 - \mu_0 N \alpha_{zz}^{mm})^{-1}$$

[4] (*N* — плотность числа ПДРК, поляризуемость отдельного ПДРК $\alpha_{zz}^{mm} = \beta_m \omega^2 / (\omega_0^2 - \omega^2)$, выражение β_m через параметры ПДРК можно найти из сравнения с формулой для α_{zz}^{mm} в [6], ω_0 — резонансная частота ПДРК, определяемая индуктивностью и емкостью его контура).

В [7,8] экспериментально исследована композиционная среда из бианизотропных и ферритовых элементов. Обнаружено, что влияние кирального резонанса (КР, в английской транскрипции–ChR) бианизотропных элементов и ферромагнитного резонанса (ФМР) феррита на коэффициент прохождения не сводится к наложению соответствующих отдельных резонансных характеристик, проявляется их взаимовлияние. Причину этого можно качественно понять на простейшей модели среды, состоящей из ферритовых сферических частиц и ПДРК, ориентированных как в опытах [3]: ось *z* совпадает с осью ПДРК, ось *y* направлена вдоль электрического поля **E**, ось *x* им ортогональна. Постоянное магнитное поле $\mathbf{H}_0 \parallel \mathbf{E}$. Ненулевые компоненты магнитной проницаемости в приближении совпадающих локальных и средних полей равны (η_f — доля феррита в единице объема):

$$\mu_{xx} = \mu_f = 1 + \eta_f (\mu_F - 1), \quad \mu_{yy} = 1, \quad \mu_{zz} = \mu_f \mu_{SRR}$$

 $\mu_{xz} = -i\mu_{fa} = -i\eta_f \mu_{Fa}, \quad \mu_{zx} = i\mu_{fa} \mu_{SRR}$

(использованы выражения для электрического и магнитного дипольных моментов из [6] и формулы, определяющие магнитный момент ферритового шара [2]). Вклады в μ_{zz} и μ_{zx} ферритовых и бианизотропных частиц перемножаются, а не складываются, поэтому простое наложение характеристик не имеет места.

Легко видеть, что указанные компоненты магнитной проницаемости среды резко увеличиваются при приближении частоты ФМР к частоте КР

$$\omega_{ChR} = \omega_0 (1 + \mu_0 N \beta_m)^{-1/2}.$$

В связи с этим можно рассчитывать на значительное усиление невзаимных эффектов при сочетании феррита с бианизоропными элементами.

Рис. 1. Частотные зависимости коэффициента прохождения *T* в прямоугольном волноводе с ферритовой пластиной (a, b); с ферритовой пластиной и решеткой двойных разомкнутых колец ПДРК (c, d). T_0 соответствует $H_0 = 0$ (c), T_{H^+} и T_{H^-} соответствуют разным направлениям намагничения, $H_1 = 1000$ Oe (a, d), $H_2 = 1200$ Oe (b).

В данной работе изучается влияние бианизотропных элементов на частотные зависимости и невзаимность коэффициента прохождения *Т* электромагнитных волн через волновод с поперечно-намагниченной ферритовой пластиной.

На рис. 1, *a*, *b* приведены частотные зависимости коэффициента *T* при помещении поперечно-намагниченной ферритовой пластины $(30 \times 20 \times 1 \text{ mm})$ в волновод сечением $48 \times 24 \text{ mm}$ на расстоянии $\lambda/8$ параллельно боковой стенке. Здесь T_{H+} и T_{H-} соответствуют разным направлениям постоянного намагничения или разным направлениям распространения или положениям у противоположных стенок. Наблю-

дается невзаимный ФМР, который смещается к высоким частотам при увеличении постоянного магнитного поля. Параметр невзаимности $\delta = T_{H+} - T_{H-}$ равен 5 dB и незначительно меняется с изменением H_0 .

На рис. 1, *c*, *d* приведены частотные зависимости *T* при помещении решетки медных ПДРК (15 колец) в центре волновода параллельно ферритовой пластине. В отсутствие H_0 вблизи 5.5 GHz наблюдаются резонансные пики КР (I), которые в зависимости от параметров и ориентации элементов возбуждаются как электрической *E*, так и магнитной *h* компонентами микроволнового поля (рис. 1, *c*). При наложении H_0 мы наблюдаем два резонанса: ФМР (II) и КР (I). Пока их частоты далеки друг от друга и взаимовлияние резонансов мало, T_{H+} , T_{H-} и соответственно параметр δ практически не отличаются от приведенных на рис. 1, *a*, *b*. При увеличении H_0 ФМР приближается к КР и достигается режим связанных резонансов. Интенсивность ФМР увеличивается, а невзаимный эффект усиливается. При определенной величине H_0 параметр δ превышает 30 dB, что соответствует увеличению невзаимности прохождения электромагнитных волн более чем на два порядка (рис. 1, *d*).

Особый интерес представляет изучение эффектов в запредельном волноводе как модели невзаимной "левой" среды. Такой средой является, например, многослойная периодическая структура, состоящая из чередующихся металлических пленок и бианизотропных решеток [9]. Металлические пленки формируют структуру, которая для электромагнитной волны, распространяющейся вдоль пленок, может быть волноведущей либо запредельной в зависимости от частоты или расстояния между пленками. В структуре с бианизотропными и ферритовыми слоями при отрицательной эффективной диэлектрической проницаемости, обусловленной волноведущей структурой в запредельном режиме [3,5], возможна отрицательная магнитная проницаемость, носителями которой являются феррит в области ФМР и бианизотропные решетки в области КР. При этом в спектре коэффициента прохождения Т в зависимости от типа возбуждения КР наблюдаются разделенные по частоте как DNG-, так и DPS-полосы прозрачности. Для идентификации и разделения DNG- и DPS-полос применяем спектральный анализ с учетом возбуждения КР [4].

На рис. 2, *a*, *b* приведены частотные зависимости *T* волноводной системы из запредельных ячеек, сформированных аналогично [5], с ферритовой пластиной у боковой стенки в каждой запредельной

Рис. 2. Частотные зависимости коэффициента прохождения *T* запредельных волноводных структур: с ферритовой пластиной (*a*), с ферритовой пластиной и решетками ПДРК (*b*). Справа — использованная решетка бианизотропных элементов и ее ориентация относительно электрического **E** и магнитного **h** векторов падающей волны. Параметры: $\phi = 6.5$ mm, $\Delta = 0.8$ mm, s = 1 mm, $H_+ = H_- = 600$ Oe.

секции (рис. 2, a), ферритовой пластиной и решетками из ПДРК (3 решетки, 45 колец) в геометрии, при которой поле **h** параллельно оси кольца, а поле **E** перпендикулярно линиям, замыкающим разрывы колец (рис. 2, b). При этом обеспечивается возбуждение КР магнитной компонентой микроволнового поля (h — возбуждение) и практически исключается E-возбуждение. В бианизотропной среде в таких условиях проявляется резонансная зависимость наведенной магнитной проницаемости с положительными значениями ниже и отрицательными

Рис. 3. Частотные зависимости параметра невзаимности δ . Кривая *1* соответствует рис. 2, *a*; кривая *2* соответствует рис. 2, *b*.

выше КР. На рис. 2, *a*, *b* в диапазоне 3.5–4.7 GHz видны связанные с ФМР DNG-полоса прозрачности с коэффициентом прохождения T_{H+} и полоса сверхзапрета с коэффициентом T_{H-} , соответствующие разным направлениям H_0 . Выше 5 GHz мы видим полосу прозрачности, обусловленную КР (рис. 2, *b*). Это DNG-полоса, которая наблюдается и в отсутствие H_0 . Рис. 2, *b* отображает ситуацию взаимовлияния ФМР и КР и увеличения δ при наложении $H_0 = 600$ Oe, когда уровень прозрачности и параметр δ в области ФМР в сравнении со структурой без ПДРК намного выше. Это наглядно видно на рис. 3. Эффект увеличения δ в нсколько раз сохраняется при изменении величины H_0 на 300 Oe при некотором сужении частотной полосы. Отметим, что тип возбуждения КР по-разному влияет на уровни прозрачности и сверхзапрета и не всегда взаимовлияние ФМР и КР приводит к увеличению невзаимности прохождения. Возбуждение КР электрической компонентой микроволнового поля уменьшает параметр невзаимности.

Полученные результаты представляют интерес и для разработок новой элементной базы техники сверхвысоких частот (СВЧ-техники), и для создания новых многофункциональных метаматериалов, чьи свойства определены не только гиротропией феррита, киральными резонансными эффектами и взаимовлиянием резонансов разной природы. Они связаны также с волноводом и не могут проявляться в однородных ферритовых и бианизотропных средах.

В заключение благодарим РФФИ за поддержку (гранты № 03-02-16257, 03-02-9023).

Список литературы

- [1] Микаэлян А.Л. Теория и применение ферритов на сверхвысоких частотах. М.; Л.: Госэнергоиздат, 1963. 664 с.
- [2] Гуревич А.Г. Магнитный резонанс в ферритах и антиферромагнетиках. М.: Наука, 1973. 592 с.
- [3] *Marqu'es R., Martel J., Mesa F.* et al. // Phys. Rev. Lett. 2002. V. 89. N 18. P. 183901-1–183901-4.
- [4] Бутылкин В.С., Крафтмахер Г.А. // Радиотехника и электроника. 2006. Т. 51. № 5. С. 1–15.
- [5] *Крафтмахер Г.А., Бутылкин В.С. //* Письма в ЖТФ. 2003. Т. 29. В. 6. С. 26– 32.
- [6] Marqu'es R., Medina F., Rafii-El-Idrissi R. // Phys. Rev. B. 2002. V. 65. N 14.
 P. 144440-1–144440-6.
- [7] Kraftmakher G., Kazantsev Y., Kozyrkov A. // Proceedings of "BIANISOTROPICS 2000" (8th International Conference on Electromagnetics of Complex Medla). Lisbon, Portugal. 2000. P. 397–400.
- [8] Крафтмахер Г.А. // Радиотехника и электроника. 2003. Т. 48. № 1. С. 106– 115.
- [9] Kraftmakher G. // International Journal of Applied Electromagnetics and Mechanics. 2004. V. 19. N 1–4. P. 57–61.