06 Акустостимулированное преобразование радиационных дефектов в *у*-облученных кристаллах кремния *n*-типа

© Я.М. Олих, Н.Д. Тимочко, А.П. Долголенко

Институт физики полупроводников им. В.Е. Лашкарёва НАН Украины, Киев, Украина E-mail: jaroluk3@ukr.net

Институт ядерных исследований НАН Украины, Киев, Украина

Поступило в Редакцию 24 января 2006 г.

Представлены результаты исследования влияния ультразвуковой (УЗ) обработки ($f_{\rm US} \sim 4 \div 30$ MHz, $W_{\rm US} \sim 0.1 \div 2$ W/cm²) на электрическую активность радиационных дефектов в γ -облученных ($D = 10^8, 10^9$ rad) кристаллах *n*-Si с различным содержанием кислорода ($\sim 10^{18}$ и < 5 $\cdot 10^{15}$ cm⁻³). Из анализа температурных ($100 \div 300$ K) зависимостей холловских характеристик в предположении многоуровневой структуры центров определены их энергетическое положение и концентрации. Показано, что основными акустоактивными дефектами, изменяющими свойства материала при УЗ обработке, являются: в тигельных образцах — А-центры ($E_c - 0.20$) eV и дивакансии ($E_c - 0.23$) eV.

PACS: 72.50.+b, 61.82.Fk

Известно, что ультразвуковые (УЗ) волны активно взаимодействуют с системой дефектов кристалла и могут быть использованы как для исследований свойств дефектов структуры, так и для управления параметрами материала в целом. Физический механизм УЗ действия на свойства полупроводников определяется взаимодействием упругих и электрических полей УЗ волны и дефектов кристалла [1,2]. Воздействие жесткого излучения (*у*-лучей, электронов высоких энергий, нейтронов и т.п.) на кристаллы вызывает появление первичных радиационных дефектов (РД) — вакансий и междоузельных атомов (пары Френкеля), взаимодействие которых с различными несовершенствами структуры может приводить к образованию электрически и оптически активных центров [3]. Традиционным способом восстановления нарушенных свойств облученных материалов является их отжиг; альтернативным —

67

Рассчитанные значения глубины уровней E_{ai} и их концентрации N_{ai} для электрически активных дефектов, определяющих проводимость γ -облученных образцов *n*-Si, а также значения концентраций кислорода и углерода ($N_{\rm O}, N_{\rm C}$) в исходных образцах соответственно

Образец	Состояние образца (последо- вательно)	Номера кривых на рисунках	E _{ai} , eV	$N_{ai},$ $10^{13} \mathrm{cm}^{-3}$	Тип дефекта
	Исходный	1			
Si-Cz $n \sim 2.54 \cdot 10^{14} \mathrm{cm}^{-3}$	γ ₁ -облу- чение	2	$E_c - 0.405$ $E_c - 0.205$ $E_c - 0.190$	11.9 13.2 0.5	$\begin{array}{c} ?+{ m O}_i [6] \ V{ m -O} [7] \ ?+{ m N} [8] \end{array}$
$N_{\rm O} \sim 9.5 \cdot 10^{17} {\rm cm}^{-3}$	УЗО	3	$E_c - 0.405$ $E_c - 0.205$ $E_c - 0.190$	14.4 9.0 2.0	$\begin{array}{c} ?+\mathrm{O}_i \ [6] \\ V\mathrm{-O} \ [7] \\ V\mathrm{O+N} \end{array}$
$N_{\rm C} \sim 3.0 \cdot 10^{16} {\rm cm}^{-3}$	γ ₂ -облу- чение	4	$E_c - 0.424$ $E_c - 0.261$	13.4 12.6	$\begin{array}{c} V_2^- \ [7,9] \\ V_2^{} \ [7] \end{array}$
Рис. 1	УЗО	5	$E_c - 0.424$ $E_c - 0.261$ $E_c - 0.240$	13.9 9.5 2.6	$V_{2}^{-} [7,9] \\ V_{2}^{-} [7] \\ V_{2}^{-} + C$
Si-Fz	Исходный	1			
$n \sim 4.8 \cdot 10^{13} \text{ cm}^{-3}$ $N_0 < 5 \cdot 10^{15} \text{ cm}^{-3}$	<i>γ</i> ₁ -облу- чение	2	$E_c - 0.424$ $E_c - 0.230$	1.3 5.2	$V_2^{-} [7.9] \\ V_2^{-}, \mathbf{P}_s - \mathbf{C}_i [10]$
$N_{ m C} \sim 10^{16} { m cm}^{-3}$ Рис. 2	УЗО	3	$E_c - 0.424$ $E_c - 0.230$	1.7 3.2	$\frac{V_2^{-} [7.9]}{V_2^{-}, \mathbf{P}_s - \mathbf{C}_i [10]}$

может быть ультразвук [4], не только для отжига РД, а и для управления свойствами материала и характеристиками приборов, изготовленных на его основе.

Целью данной работы было исследование процессов перестройки РД под действием УЗ обработки (УЗО) в кристаллах кремния *n*-типа с разным содержанием кислорода. Для исследований выбраны два типа бездислокационных кристаллов Si: a) Si-Cz, полученный методом

Внесенные радиационные нарушения оказались устойчивыми. После γ -облучения часть образцов подвергалась УЗО (продольные волны, частота 4 ÷ 30 MHz, интенсивность 1 ÷ 2 W/cm², длительность обработки $\sim 10^4$ s, температура < 70°C). В отличие от радиационных, изменения n(T), наведенные УЗО оказывались неустойчивыми и через определенное время (несколько суток) параметры образца релаксировали к предыдущему устойчивому состоянию. Отметим, что УЗО исходных, необлученных образцов не приводила к заметным изменениям их электрофизических характеристик.

Результаты измерений n(T) на разных этапах обработки приведены на рис. 1 и 2. Для исходных образцов (кривые 1) n(T) не зависит от температуры, что соответствует полной ионизации мелких доноров атомов фосфора. С целью определения концентрации N_{ai} и энергетического положения уровней E_{ai} электрически активных РД в исследуемых образцах нами проведен теоретический анализ n(T). Предполагалось, что общая концентрация $n(T) = n_0(T) + n_1(T) + n_2(T) - 2N_b + N_{ai}$, где $n_i(T)$ — составляющие концентрации носителей в зоне проводимости за счет тепловой ионизации соответствующих глубоких акцепторных уровней (i = 0, 1, 2), а $N_b = N_d - N_{a0}$.

Расчет $n_i(T)$ производился с помощью следующей системы уравнений [5]:

$$n_i(T) = \frac{1}{2} \left(N_d - N_{ai} - n_{11} \right) \left(\sqrt{1 + \frac{4N_d n_{11}}{(N_d - N_{ai} - n_{11})^2}} + 1 \right).$$
(1)

Здесь $n_{11} = gN_c \exp(-E_{ai}/kT)$ — концентрация электронов в зоне проводимости при совпадении положений уровня Ферми и акцепторного уровня, g = 2 — фактор вырождения акцепторного уровня; N_d, N_{ai} — концентрации исходных доноров и радиационных акцепторов соответственно; N_c — плотность состояний в зоне проводимости.

Рис. 1. Температурные зависимости концентрации электронов в образце Si-Cz на разных этапах его обработки. Кривые: 1 — исходное состояние; 2 — после γ_1 -облучения; 3 — после γ_1 -облучения и УЗО; 4 — после γ_2 -облучения; 5 — после γ_2 -облучения и УЗО. Точки — эксперимент, слошные линии — расчет.

Рис. 2. Si-Fz образец. Кривые 1-3 обозначают то же, что и на рис. 1.

Письма в ЖТФ, 2006, том 32, вып. 13

Также предполагается, что точечные дефекты распределены по объему кристалла Si равномерно, а $N_{ai} < N_d$ и полупроводник невырожденный $(N_d < 10^{15} \, {\rm cm}^{-3})$. Результаты теоретического расчета n(T) представлены на рис. 1 и 2 сплошными линиями (кривые 2-5). Значения N_{ai} находятся путем сопоставления рассчитанной зависимости n(T)с экспериментальной; при этом задаются значения E_{ai} (i = 0, 1, 2)и с помощью системы уравнений (1) подбираются соответствующие им N_{ai} до совпадения расчетной кривой с экспериментальными точками. Рассчитанные значения Eai и Nai приведены в таблице. Для Si-Cz образцов найдено, что в результате у1-облучения определяющими n(T) оказались акцепторные уровни $(E_c - 0.424 \text{ eV}), (E_c - 0.205 \text{ eV})$ и $(E_c - 0.19 \text{ eV})$; а для Si-Fz — уровни $(E_c - 0.405 \text{ eV})$ и $(E_c - 0.23 \text{ eV})$. Согласно данным многочисленных исследований [6-11 и др.], эти уровни могут принадлежать в первом случае дивакансии V_2^- , *A*-центру (*V*-O) и неизвестному комплексу, предположительно содержащему азот (? + N) соответственно; а во втором — дивакансии V2- и/или бистабильному комплексу "фосфор с углеродом" $P_s - C_i$.

Наблюдаемые при УЗО динамические (обратимые) изменения n(T)могут происходить в результате некоторых коррелированных преобразований как близко между собой расположенных дефектных комплексов, так и подвижных примесных атомов [10]. Исходя из наших результатов (см. таблицу), можно определенным образом конкретизировать этот механизм УЗ преобразований РД в n-Si. Как известно, междоузельные атомы азота N_i и углерода C_i обладают малой энергией активации и подвижны при комнатной температуре. Полагаем, что для образцов Si-Cz комплекс V-O (E_c -0.205 eV), с исходной концентрацией после γ_1 -облучения $N_{(V-O)} = 13.2 \cdot 10^{13} \text{ cm}^{-3}$, при УЗО модифицируется атомом подвижной примеси (возможно, азота) и превращается в комплекс VO + N с уровнем ($E_c - 0.19 \text{ eV}$) [8]. При этом уменьшается концентрация $N_{(V-O)} = 9.0 \cdot 10^{13} \text{ cm}^{-3}$ и возрастает $N_{(VO+N)} = 2.0 \cdot 10^{13} \text{ cm}^{-3}$ соответственно. После прекращения УЗО происходит освобождение атомов азота и "медленное" возвращение всей системы дефектов в исходное (до УЗО) состояние.

В результате УЗО образцов Si-Fz наблюдается уменьшение концентрации уровня (E_c -0.23 eV), возможно, это уровень дивакансии V_2^{--} и/или пары P_s - C_i [10]. Предполагаем, что часть их "временно" распадается, а часть переходит в другое состояние. После прекращения УЗО образцов Si-Fz, как и для Si-Cz, происходит релаксация в исходное состояние.

С увеличением дозы облучения до $\gamma_2 \sim 10^9$ rad в Si-Cz в системе электрически активных дефектов преобладают дивакансии V_2^{-1} (E_c -0.261 eV) с концентрацией $N_{(V_2^{-1})} = 12.6 \cdot 10^{13}$ cm⁻³. Теперь электроны находятся на этом более глубоком уровне и уровень *A*-центра (E_c -0.204 eV) уже не проявляется. При УЗО, как и при отжиге дивакансий [12], наиболее подвижные атомы примеси, предположительно C_i , частично освобождаются со стоков и локализируются вблизи V_2^{--} , возмущая при этом их энергетическое положение. В результате уменьшается $N_{(V_2^{--})} = 9.5 \cdot 10^{13}$ cm⁻³ и возникает уровень (E_c -0.24 eV) с концентрацией $N_{(V_2^{--})} = 2.6 \cdot 10^{13}$ cm⁻³. После выключения УЗО C_i покидают V_2^{--} и происходит восстановление уровня $N_{(V_2^{--})} = 12.6 \cdot 10^{13}$ cm⁻³, система дефектов возвращается в исходное состояние.

Таким образом, впервые обнаружены акустоактивные дефекты в γ -облученных кристаллах *n*-Si, как в безкислородных, так и в кислородсодержащих. Показано, что основными акустоактивными дефектами являются: в Si-Cz образцах — *A*-центры (E_c -0.20) eV и дивакансии (E_c -0.26) eV; в Si-Fz — дивакансии и/или комплексы P_s - C_i (E_c -0.23) eV. Предполагается, что УЗО стимулирует "локальную диффузию" отдельных примесных атомов с образованием новых нестабильных комплексов, а происходящее при этом частичное восстановление электрофизических параметров облученных *n*-Si, создающее иллюзию отжига РД, в целом таковым не является.

Приносим благодарность В.М. Бабичу и В.И. Хивричу за помощь в постановке эксперимента и обсуждении полученных результатов.

Список литературы

- [1] Подолян А.А., Хиврич В.И. // Письма в ЖТФ. 2005. Т. 31. В. 10. С. 11-16.
- [2] Парчинский П.Б., Власов С.И., Муминов С.И. и др. // Письма в ЖТФ. 2000. Т. 26. В. 10. С. 40–45.
- [3] Конозенко И.Д., Семенюк А.К., Хиврич В.И. Радиационные эффекты в кремнии. Киев: Наук. думка, 1974. 200 с.
- [4] Олих Я.М., Карась Н.И. // ФТП. 1996. Т. 30. В. 8. С. 1455–1459.
- [5] Долголенко А.П., Литовченко П.Г., Варенцов М.Д., Гайдар Г.П. // Сб. науч. трудов Института ядерных исследований. Киев, 2003. № 1(9). С. 63–68.
- [6] Brosious P.R. // Proc. Conf. "Defects and Radiation Effects in Semiconductors". Nice-1978. Bristol–London, Inst. of Phys. 1979. N 46. P. 248.

- [7] Asghar M., Zafar Iqbal M., Zafar N. // J. Appl. Phys. 1993. V. 73. N 8. P. 3698– 3708.
- [8] Tokumaru Y., Okushi H., Masui T., Abe Y. // Jpn. J. Appl. Phys. Part 2. 1982. N 21. P. L443.
- [9] Moll M., Fretwurst E., Kuhnke M. Lindström G. // Nucl. Instr. and Meth. B. 2002. V. 186. P. 100–110.
- [10] Asom M.T., Benton J.L., Sauer R., Kimerling L.C. // Appl. Phys. Lett. 1987. N 4. P.256–258.
- [11] Jellilson G.E. // J. Appl. Phys. 1982. V. 53. N 8. P. 5715–5719.
- [12] Абдуллин Х.А., Мукашев Б.Н., Тамендаров М.Ф. и др. // ФТП. 1990. Т. 24.
 В. 2. С. 391–392.